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Lisez Euler, lisez Euler, c’est nous maîıtre à tous!

Pierre-Simon Laplace

Abstract. Usually, physics students don’t like thermodynamics: it is in-
comprehensible. They commonly get told to get used to it. Later on,
as an expert, they’ll find that the thermodynamic calculations come
with surprises: sometimes evil, sometimes good. That can mean only
one thing: The theory is inconsistent. In here, it will be shown where
that is.

1. Lisez Euler

Laplace meant what he said, and he knew what Daniel Bernoulli and Leon-
hard Euler worked out in Basel and Saint Petersburg 30-60 years ago: His
theory of gravitation introduced hydrodynamics and Euler’s methods into
classical mechanics - a fact that was well-understood by Lyapunow in Rus-
sia, but completely overlooked in the rest of the world.

In order to shed a bit of light on Bernoulli’s and Euler’s doings: New-
ton’s axioms surely were a lovely set of mathematical statements for one or
two particles, but noone ever succeeded to calculate three or more interacting
particles with that. At that point, Bernoulli radically cut down the hindering
3N location coordinates of an N -particle system to three location coordinates
which allowed to describe the flow of myriads of particles altogether, which
made up the hydromechanics. Euler’s path however was a more subtle one:
He noticed that generally (i.e.: in case the forces are the differential of a po-
tential energy V ), the equations of motion of an N-particle system could be
described as the extremal paths of a function L = T −V of 3N location coor-
dinates qj , their velocities q̇j , and the time coordinate t, where T denotes the
kinetical energy of the system. (The function L now is oddly called Lagrange
function, and the equations are termed the Euler-Lagrange equations.) The
hindsight with these extremal equations is that the conjugates of all coor-
dinates, which the Lagrange function does not explicitly depend upon, drop
out as integration constants. And, for the most parts, a coordinate system
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can be chosen, such that the new coordinates are constant along the path
of motion. Hence, the equations of many N-particle systems can be solved,
which previously were held to be insolvable. (What in Göttingen was termed
to be Noether’s theorem at the beginning of the 20th century, was nothing
new: it was Euler’s well-understood, common practice since at least 1750.)

We’ll pick up with Euler later. For now, let’s summarize that Bernoulli
and Euler had set the theoretical foundation for a possible theory of heat.

2. Steam Engine

The steam engine was invented in England at lifetime of both Euler and
Bernoulli by Thomas Newcomen and enhanced by James Watt, and it be-
came the driving force for its industrialization. It is highly unefficient (by
design), but just because it was the ”ideal” machine for the forthcoming
thermodynamics, it is necessary to describe its working shortly: heated water
vapor was let in to a cylinder with a moveable, airtight piston, then cold wa-
ter was sprayed into the cylinder, extracting the vapor molecules the warm
condensed water, rinsing into the cool water basin, and the cooled down gas
contracted, pulling in the piston, which would do work against an external
system. It was clear from scratch that the ”heat” Q in the hot vapor contain-
ing cylinder was energy, and the transfer of much of that to the cool water
basin meant a tremendous loss of unused energy. So, the very first problem
to answer should have been: is that loss by design, or is it by principle? -
However, the evolving thermodynamics took as granted to be by principle:

3. Beginnings of Thermodynamics

The big industrial success of the Watt’s machine towards the end of the
18th century drew considerable attention to the then leading French physics
community, reviving the theory of gas with its formost theorem, the law
of Boyle-Mariotte (then 100 years old), and it was in line with these, that
Lazar N. Carnot and his sun Sadi Carnot engaged themselves in the physical
understanding of the steam engine, and in the year 1824, Sadi published a
summarizing book on that, [1], which became famous, not because of its rock-
solid physical contents, but because it was unavailable for nearly 70 years,
and it was constantly referred to it indirectly. (Therefore, I highly recom-
mend reading that book, althemore, since it was finally re-published 1892 by
Ostwald, the foremost advocate of a felt supremacy of thermodynamics over
”atomism”, governing the 19th century in Germany.)
Remarkably, Carnot’s book does not mention a cycle, not really touches on
the reversibility, and there is no mention of the engine’s efficiency, so no
notion of what relates to the entropy.

Ten years after, in the year 1834, E. Clapyeron wrote his famous paper
[3], pointing to Carnot’s book [1] as his principal source. That paper included
nearly all of what was to become the thermodynamics, from the cycle, later
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incorrectly attributed to Carnot (see figure 1 below), the irreversibility consid-
erations, the calculation of energy consumption of (reversible) steam engines,
to the introduction of entropy.

Figure
1. Carnot
cycle.

It also included a sad mathemati-
cal error of confusing the path integra-
tion over the cycle with the calculation
of the encircled area (see: next section),
which will turn out to be the cause of
much of the cumbersome energy and re-
versibility discussion within thermody-
namics. Historically, R. Clausius’ book [2]
from 1850 is understood to have been the
next milestone for thermodynamics. (Un-
fortunately, I was not able to note es-
sential changes in contents compared to
[3]: Both, Carnot and Clapyeron already
state, that the flow of heat was only from
high to low temperature. Clausius later
expressed that as the 2nd law of thermo-
dynamics, while the very nature of heat was left unqualified as some kind
of energy. As to Clausius, the 15th edition of Encyclopedia Britannica says:
(He) ”is credited with making thermodynamics a science”.)

Strangely neither Carnot, nor in succession Clapyeron, Clausius, Meyer,
Helmholtz, Ostwald do mention Euler and Bernoulli at all. Both, Euler and
Bernoulli, simply had been forgotten.

4. Comprenez Euler

What the beginning thermodynamics had missed out, is elucidated by a short
citation from Euler’s popular lecture notes on physics (see: [4, p.137]) on heat
and combustion from 1761:

Wenn nämlich die natürlichen Sonnenstrahlen auf einen Körper
fallen, so bringen sie dessen kleinste Theilchen zum Erzittern oder
in eine schwingende Bewegung, welche ihrerseits neue Strahlen
hervorzurufen vermag, wodurch eben der Körper sichtbar wird. Ein
Körper ist überhaupt nur erleuchtet und sichtbar, insofern seine
eigenen Theile in eine so rasche schwingende Bewegung versetzt
werden, daß er imstande ist, im Aether neue Strahlen hervorzu-
rufen... Denn wenn ein Körper brennbar ist, wie das Holz, so
wird die Trennung seiner kleinsten Theilchen, verbunden mit der
heftigsten Bewegung einen großen Theil derselben in Form von
Rauch in die Luft treiben, während die größeren Theile als Asche
zurückbleiben. Schmelzbare Körper, wie Metalle, werden durch die
Trennung ihrer kleinsten Theilchen flüssig, und man kann hieraus
begreifen wie das Feuer auf die Körper wirkt.
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In particular, what Euler a.o. wrote is: Heat is kinetic energy of the N-
particle body (which is a statement, commonly attributed to Robert Mayer,
a century later). As easy as it is to derive energy conservation from the
Euler-Lagrange equation for a not explicitly time dependent potential field,
it seems unlikely that Euler, the master of cyclic coordinates, did not know
about energy conservation. As of today still one third of Eulers work has not
yet been published, which comprises much of his papers late of age.

Even more, conservative N-particle systems would just fit into his view of
mechanics: For one, his mechanical world could always be expressed through
the single function L(q, q̇, t) = T − V of a vector of location coordinates
q = (q1, . . . , q3N ), the velocity vector q̇ = (q̇1, . . . , q̇3N ), and a time parame-
ter t ∈ R, which means that the overall force must be integrable to a scalar
potential field V (q, q̇, t). The motion of all N particles then is nothing but
a (time) curve starting from some vector q0 with velocity q̇0 at time t0 to
some other end location vector q′0 at end time t′0. And, knowing that time is
completely decoupled from location coordinates, for a mathematician there is
nothing more natural than to always start from time zero and end at time 1.
The very first scratch of an idea would therefore be to demand time transla-
tion invariance for time, as a second postulate, to be allowed to always start
from time 0. And the third postulate would be that a scaling of time t 7→ λt
for any positive λ > 0 would map the the given dynamic system into an
equivalent one, which I call ”scale covariance”, since that would allow to set
the end time equal to 1, always.
And indeed, the time-translation invariance demands that V will no longer
be explicitly depending on time (as is well-known), and the scale postulate
likewise implies V not to be explicitly dependent of the velocities. Plus, look-
ing at the Euler-Lagrange equations ∂L/∂q + d

dt
∂
∂q̇L = 0, where V is only a

function of q, we see that the scaling of time t 7→ λt is equivalent to the scal-
ing of the potential energy by the factor λ−1. That is the desired covariance:
A scaling of time by a factor λ can be compensated by scaling the potential
energy by λ−1.

That would make E := E0 + T + V a cyclic (invariant) coordinate,
where E0 is an arbitrary, yet properly to pick integration constant for the
system. Summarizing: if at all the Carnot cycle is telling us a story from
Euler’s view, then it is hiding us the rest of the energy, which is a rest mass
E0 and a potential V (q), whereas the sum E, the total energy will have to
be conserved at all times on a dynamically possible path of particle motion!

5. Integrating the Carnot cycle

What Euler did with 6N coordinates, that can also be done with two, namely
the pressure P and the volume V , shown in the above graph 1: the curve is
composed of 4 smooth curves I, . . . , IV , so the result will be the sum of
path integration of these four curves. Let ω : [t0, t1] 7→ (ωP (t), ωV (t)) ∈ R2

be any one of these curves, where [t0, t1] denotes the (closed) time interval
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from t0 to t1. The function to integrate is L(P, V ) := PV , so path integral

is
∫
Ldω =

∫ t1
t0
ωP (t)ωV (t)‖dω(t)dt ‖dt. Adding all four values up, we get zero.

Why? Because the entire path is closed, is piecewise continuously differen-
tiable, and L is continuous and well-defined throughout R2. Zero action means
zero loss or gain in energy, which of course becomes trivial, when demanding
the whole system to be energy preserving.

Now, let us define a system to be reversible, if the Euler-Lagrange equa-
tions are invariant w.r.t. time reflection t 7→ −t. Obviously, conservation of
energy implies reversibility. The opposite direction, however, is untrue: re-
versibility does not imply conservation of energy, but if energy would not
be conserved, then the system would not be invariant w.r.t. time translation.
And of an engine, in particular, we would expect it to work the same today as
tomorrow. That said, we can replace the reversibility demand of the Carnot
engine with the demand of conserving energy. Let’s now look a little closer
at this machine: It has two distinct modes, an idle mode and a load mode. In
idle mode, we don’t feed it with any energy, there will be no energy in and
no energy out.

Using the universal gas law, PV = NkT (which Clapyeron derived
from the laws of Boyle- Mariotte and Gay-Lussac (see: [3, p.164])), we see
that Clapyeron designed path I as the hyperbola P (V ) = (const)/V of points
(P, V ) of constant heat quantity PV . Since the total energy is constant and
that heat quantity is constant on that path, so must be the potential energy U
(which we now have to give the different symbol U in order not to clash with
the volume V ). So, everything of dynamical relevance is constant on path I,
and the analogous holds for path III. These two paths do nothing, they are
completely uninteresting and useless. It’s only path II and path IV, where
something is happening, and they are doing just the reverse of eachother: the
path -IV from point A to D is equivalent to path II: on it, the heat drops
from a high value to a low value, and that means that as the heat drops,
an additional potential energy must increase from 0 to the energy difference
between high and low heat. So, the whole system turns out to be a harmonic
oscillator, where heat is nothing but the system’s kinetic energy - as proposed
by Euler!
But there is more: The oscillator deviates around the average temperatur
Tav = 1

2 (Thot − Tcold) (where Thot is the temperature on path I and Tcold
that of path III), which determines the oscillation energy per period to be
Eosc = nk√

2π
Tav.

Now, how can that energy-conserving oscillator machine do work on
an external system? The answer is: it cannot. But it can transform energy
coming in into equal energy going out: each time the oscillator converted
the maximum kinetic energy into potential energy (of either sign), which
means, when the oscillator reached either path I or III, we may exchange
the particles of the same total energy with minimal potential energy and an
appropriately higher kinetic energy. And the potential energy of the expelled
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particles are usable for doing work! In all, although the total energy is main-
tained throughout, the Carnot engine would be able to ”import” heat and
convert it into usable potential energy. (Note: if we exchanged the particles
only at the low temperature, then we’d get an ideal Newcomen machine, and
with an exchange at both high and low temperature points, that’s what’s
making it an ideal Watt’s machine.)

6. Entropy and Irreversibility

Clausius followed Clapyeron in his interpretation of the area between curve III
and the V -axis (defined by P ≡ 0) to be a measure of inefficiency of the (re-
versible) Carnot engine. That said, translating the system along the positive
P -axis, the Carnot engine would become steadily more inefficient. It is a curi-
ous idea, because the heat consumption only depends on the difference of the
temperature, not on the temperature or pressure itself. Anyhow, the ratio of
the enclosed area of the Carnot cycle by the area under the path I was calcu-
lated, and it was found to be the simple formulaW := Qeff/Qtotal = 1−Tcold

Thot
,

see e.g. [5, eq. 44.14]. That led to a factor Q/T that was conserved in a (re-
versible) Carnot cycle. The entropy S then is defined as the indefinite integral

S =
∫
dQ
T , which exists as an up to a constant defined function in the cone

{(T, V ) ∈ R2|T, V > 0}, see: [5, Sec. 4-6]: it’s just the same argument as for
the Carnot circle: if the (real-valued) function is defined throughout that cone
(which is convex) and is continuous therein, then the path integral over any
closed, (piecewise) continuously differentiable paths is zero. That’s why that
integral is defined up to a constant. (Out of the box, that indefinite integral
is logarithmic of nature, so it never can be extended to a point, where the
denominator T vanishes. But Walter Nernst could: he simply declared it to
be zero, when T is zero, which would fix the additive constant of S. He called
this then a theorem.)

So, what is the physical meaning of entropy? Assuming that the number
of particles N in the system is constant, the universal gas law gives: dQ/T =
d(PV )/T = NkdT/T , so S = ln(T ) + Const, and is monotone increasing
with T . So, with the assumption that an irreversible dynamic system will
strictly heat up the system, then it would follow that the entropy increases.
However, that is not the case:
The classic experiment to show irreversibility is a closed container with a wall
that separates two volumes A and B say which are filled with two gasses GA
and GB at temperature T1 and T2, say. So, the heat Q1 of GA is given by
Q1 = N1kT1, and analogously Q2 = N2kT2 is that of GB , where N1 and N2

are the numbers of particles in either gas.
The irreversible observation now is: Not depending from the values Q1 and
Q2, GA and GB will always change in positive time direction such that their
temperatures become equal.
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Now we can calculate, what that final temperature Tfinal will be: The
whole box is a closed system, and we assume GA and GB don’t contain
potential energy that could become active, transforming into kintic energy
and faking the experiment. Then we have Tfinal = ∆T1 + T1 = ∆T2 + T2
and Nj1k∆T1 = −N2k∆T2 (from ∆Q1 + ∆Q2 = 0). The result is ∆T1 =
N2

N1+N2
(T − 1− T2), and, deciding for T1 < T2, we can calculate the entropy

from this: S =
∫ Tfinal

T1

dQ
T +C1+

∫ T2

Tfinal

dQ
T +C2 = ln(T2

T1
)+C1+C2, where C1,

C2 are the entropy values of gas GA and GB at their initial temperatures T1,
T2, respectively. We write that sum as S = S1 +S2. However, neither S1 nor
S2 are well defined, because N1, nor N2, need to be independent fom temper-
ature: GA could have been water vapour starting at T1 = −100C and ending
with water vapor at Tfinal = 150C. If it was water vapour throughout, then
N1 was constant throughout, fine. But, that water vapour on its tour from T1
to Tfinal could have intermediately accumulated into snow flakes. Then the
number of particles changes with temperature, n : T 7→ n(T ), say, where we

still have N1 = n(T1) = n(Tfinal). Consequently, S′1 :=
∫ Tfinal

T1
k d(n(k)T )

T +C1

will become unequal to S1 =
∫
T1
N1kTfinal

dT
T + C1. And now we have the

problem that there are two processes with different entropy starting in the
very same state and ending in the same state.

So, the entropy not only fails to describe that irreversibility, it is incon-
sistent!

Historically, what followed Nernst’s theorem, was that a machinery set
in: the entropy S was taken as if it was a time parameter, and an analogue
of a Legendre transformation was carried out, which leads to the enthalpy
H(S, P )... I’ll leave that out and turn to statistical physics:

We saw above that the entropy is not capable to describe the obvious ir-
reversibility of dynamic systems. Interestingly, statistical nearly physics was:
It was James Clerk Maxwell, who started out to answer the daring question,
what the distribution of the particles in the atmosphere must be like so that
they withstand gravitation and don’t just all fall to the ground like rain.
And he succeeded (with the fortunate assistance from Ludwig Boltzmann
from Austria): He found that, although the particle density drops exponen-
tially with height, the distribution of the mean kinetic energy of the particles
was independent from height.
That had to mean something: Because the earth’s atmosphere is so enour-
mously stable, that macro state of the atmosphere must be attracted by a
force. And, as was then shown by Boltzmann, it just needs that distribu-
tion of kinetic energy to explain, what the final state of equal temperature is
about, given the above situation of two gases at different temperatures.
So, Maxwell and Boltzmann had achieved something that is strictly out of
range for thermodynamics and was held to be uncalculatable by the methods
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of Newtonian mechanics, either. Boltzmann then saw himself under cross-
fire: From side of the Newtonian guards, his former teacher Loschmidt pub-
lically criticized Boltzmann for introducing an irreversibility into classical
mechanics, for which there was no appropriate force. And from side of the
thermodynamics favouring physicists, he was attacked for not being able to
integrate his results into the concept of a monotonously growing entropy to
full satisfaction of thermodynamics. For the latter, we saw why: the concept
of entropy does not hold its promise. As to Newtonian mechanics, Loschmidt
clearly was right in that a reversibility breaking law was missing. But it also
was an unjust verdict, because Newtonian mechanics (at that time) was not
able even to prove the stability of the solar system.

The 19th century saw a bad end for Boltzmann, even more for physics,
and foremost for mankind, who steered right into world war I with the con-
sciousness, that if entropy was to steadily increase over time, everything will
go to ashes some day - a credo that still prevails today.
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[1] S. Carnot, Réflexions sur la puissance motrice du feu, https://books.google.
de/books?id=1so6AQAAMAAJ&pg=RA1-PA153&redir_esc=y&hl=de#v=onepage&

q&f=false, 1824
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