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Abstract 

The first order quaternionic partial differential equation can play as the mother of all field equations. 

Second order partial differential equations describe the interaction between point-like artifacts and 

fields. A direct relationship exists between the first order quaternionic partial differential equation 

and integral balance equations.  

1 Quaternions 
Quaternions constitute nature’s natural number system. Reality applies a read only repository that 

stores the dynamic geometric data of its inhabitants and that repository can only cope with elements 

of a division ring. The only suitable division rings are the real numbers, the complex numbers, and 

the quaternions. Quaternions form the most elaborate division ring. The repository can also store 

quaternionic continuums that are defined by quaternionic functions. Quaternionic differential 

equations can describe the dynamic behavior of quaternionic continuums. Quaternions are ideally 

suited for the storage of discrete dynamic geometric data. The real part of the quaternion can 

represent a timestamp, and the imaginary part can represent a three-dimensional spatial location. 

Quaternionic fields combine a scalar field and a vector field. 

Quaternionic second order partial differential equations can describe the interaction between point-

like artifacts and quaternionic continuums. In a quaternionic model of the universe, these point-like 

artifacts constitute the objects that occur in the model. 

The quaternionic first order partial differential equation appears to be the mother of all field 

equations. It applies the quaternionic nabla, and this differential operator behaves as a quaternionic 

multiplier. Thus, the quaternionic multiplication rule acts as the template for the quaternionic first 

order partial differential equation. 

c = cᵣ + c = ab  

≡ (aᵣ + a) (bᵣ + b) = aᵣbᵣ − 〈a,b〉 + abᵣ + aᵣb ± a×b 

 
Here the real part gets subscript ᵣ , and the imaginary part appears in bold face. 
 
The right side covers five different terms. 
〈a,b〉 is the inner product. 
a×b is the external product. 
± indicates the choice between right and left handedness. 

2 The quaternionic nabla 

Partial quaternionic differential equations that apply the quaternionic nabla ∇ describe the interaction 
between a field and a point-like artifact. 

∇ ≡ {∂/∂τ, ∂/∂x, ∂/∂y, ∂/∂z} 

(1) 

(1) 



∇ ≡ {∂/∂x, ∂/∂y, ∂/∂z} 

∇ᵣ ≡ ∂/∂τ 

τ is progression or proper time. 

In the quaternionic differential calculus, differentiation with the quaternionic nabla is a 

quaternionic multiplication operation: 

Φ = ϕᵣ + Φ = ∇ψ  

≡ (∇ᵣ + ∇) (ψᵣ + ψ) = ∇ᵣψᵣ − 〈∇, ψ〉 + ∇ψᵣ + ∇ᵣ ψ ± ∇× ψ 

ϕᵣ = ∇ᵣψᵣ − 〈∇, ψ〉 

Φ = ∇ψᵣ + ∇ᵣ ψ ± ∇× ψ 

〈∇, ψ〉 is the divergence of ψ 

∇ψᵣ is the gradient of ψᵣ 

∇× ψ is the curl of ψ 

Some of the terms get new symbols 

E = −∇ψᵣ−∇ᵣψ 

B = ∇×ψ 

3 Higher order differentiation 

Double differentiation leads to the second order partial differential equation: 

ρ = ∇*ϕ = (∇ᵣ−∇) (∇ᵣ+∇) (ψᵣ+ ψ) = (∇ᵣ∇ᵣ+〈∇, ∇〉) (ψᵣ+ ψ)  

= ρᵣ+J 

This equation splits into two first order partial differential equations Φ = ∇ψ and ρ = ∇*ϕ. 

ρᵣ = 〈∇,E〉 

J = ∇×B −∇ᵣE 

∇ᵣB = −∇×E 

Two quite similar second order partial differential operators exist. The first appears 

above. 

 (∇ᵣ∇ᵣ + 〈∇, ∇〉) ψ = ρ 

This equation is still nameless.  
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The second is the quaternionic equivalent of d’Alembert’s operator (∇ᵣ∇ᵣ − 〈∇, ∇〉). It 
defines the quaternionic equivalent of the well-known wave equation. 

 (∇ᵣ∇ᵣ − 〈∇, ∇〉) ψ = φ  

Both second order partial differential operators are Hermitian differential operators.  

3.1 Solutions 
The homogeneous second order partial differential equations offer solutions that occur when 

actuators trigger them. 

3.1.1 Waves 

f (τ, x) = a exp (i ω (cτ-|x-x' |)); c=±1 

solves  

∇ᵣ∇ᵣ f = 〈∇, ∇〉 f = −ω² f 

3.1.2 Warps 

ψ = g(x i±τ) 

3.1.3 Clamps 

ψ = g(r i±τ)/r 

Clamps and warps are shock fronts. They only occur in odd dimensions.  

All solutions have advanced and retarded components. 

Clamps integrate into the Green’s function. They quickly fade away. For that reason, they 

temporarily deform the carrier. 

4 Balance equations 
The first order partial differential equation is a continuity equation. It has a direct relation to integral 

balance equations. 

Concerning a local part of a closed boundary that is oriented perpendicular to vector 𝙣 the partial 
differentials relate as 

 

∇ψ = ∇ψᵣ − 〈∇, ψ 〉 ± ∇×ψ ⇔ n ψᵣ − 〈n, ψ 〉 ± n× ψ 

 

This correspondence is exploited in the generalized Stokes theorem 

∭
𝑉

 ∇ψ = ∯
𝑆

 nψ 

Gradient theorem 

∭
𝑉

∇ψᵣ = ∯
𝑆

nψᵣ   

Divergence theorem (Gauss theorem) 

∭
𝑉

〈∇, ψ 〉 = ∯
𝑆

〈n, ψ 〉  

(6) 
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Curl theorem (Stokes theorem) 

∭
𝑉

 ∇×ψ = ∯
𝑆

 n×ψ   

4.1 Two-dimensional balance equations 

∇ᵣ B = −∇×E 

∬
𝑆

 〈∇ᵣ B, dA〉 = −∬
𝑆

 〈∇×E, dA〉 = ∮ 〈E, dℓ〉 

J = ∇× B −∇ᵣE 

∬
𝑆

 〈J +∇ᵣE, dA〉 = ∮ 〈B, dℓ〉 

5 Material penetrating field 

Basic fields can penetrate homogeneous regions of condensed matter. Within these regions, the 
fields get crumpled. Consequently, the average speed of warps, clamps, and waves diminish, or 
these vibrations just get dampened away. 

The basic field that we consider here is a smoothed version ψ of the original field ψ that 

penetrates the material. 

Φ = ϕᵣ + Φ = ∇ψ ≡ (∇ᵣ +∇) (ψᵣ + ψ) =  

∇ᵣψᵣ − 〈∇, ψ 〉 + ∇ψᵣ + ∇ᵣ ψ ± ∇× ψ = ∇ᵣψᵣ − 〈∇, ψ 〉 ±B – E 

The penetration adds a polarization P to the smoothed vector field 𝔈, which is reduced with the 

permittivity factor ϵ. 

D = ϵ 𝔈 + P 

The penetration adds a magnetization M to the smoothed vector field 𝕭, which is reduced with 

permeability factor μ. 

H = μ 𝕭 + M 

This results in corrections in the 𝔈 and the 𝕭 field and the average speed v of warps and waves 

reduces from 1 to  

v=1/√(ϵμ) 

6 Green’s Function 
The Green’s function describes the interaction between a field and a point-like artifact. 

We can use the gradient of the inverse of the spatial distance |𝒒 − 𝒄|. 

 

𝜵
1

|𝒒 − 𝒄|
= −

𝒒 − 𝒄

|𝒒 − 𝒄|𝟑
 

 

(5) 
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The divergence of this gradient is a Dirac delta function. 

 

𝛿(𝒒 − 𝒄) = −
1

4𝜋
〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉 = −

1

4𝜋
〈𝜵, 𝜵〉

1

|𝒒 − 𝒄|
 

 

This equation means that: 

 

𝜙(𝒄) = ∭ 𝜙(𝒒)𝛿(𝒒 − 𝒄)
𝑉

= −
1

4𝜋
∭ 𝜙(𝒒)〈𝜵, 𝜵〉

𝑉

1

|𝒒 − 𝒄|
 

 

As alternative, we can also use the Green’s function 𝐺(𝒒) of the partial differential equation. 

 

𝜙(𝒄) = ∭ 𝜙(𝒒)𝐺(𝒒 − 𝒄)
𝑉

 

 

For the Laplacian 〈𝜵, 𝜵〉 this obviously means: 

 

〈𝜵, 𝜵〉𝔉 = 𝜙(𝒒) 

 

𝐺(𝒒 − 𝒄) =
1

|𝒒 − 𝒄|
 

 

However, when added to the Green’s function, every solution 𝑓 of the homogeneous equation 

 

〈𝜵, 𝜵〉𝑓 = 0 

 

is also a solution of the Laplace equation. 

 

𝜙(𝒄) = ∭
𝜙(𝒒)

|𝒒 − 𝒄|𝑉

 

 

Function 𝜙(𝒄) can be interpreted as the potential that is raised by charge distribution 𝜙(𝒒). 

In pure spherical conditions, the Laplacian reduces to: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



 

〈𝜵, 𝜵〉𝔉(𝑟) =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝔉(𝑟)

𝜕𝑟
) 

 

For the following test function 𝔗(𝑟) this means [3]: 

 

𝔗(𝑟) =
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔉(𝑟) =
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 
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