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Abstract  

As we have recently shown, the minimal fractal manifold (MFM) describes the underlying structure of 

spacetime near or above the electroweak scale ( 246EWM  GeV). Here we uncover the connection between 

quantum field operators and the MFM starting from the operator product expansion of high-energy 

Quantum Field Theory (QFT). The approach confirms that the Standard Model of particle physics (SM) 

stems from a symmetry breaking mechanism that turns the spacetime continuum into a MFM.    

1. Multifractal description of high-energy QFT     

QFT is plagued by several technical difficulties that challenge its consistency and 

predictive power in the ultraviolet (UV) region of energy scales. For example, [1]: 

1) QFT operators ( )O x  are singular at sharp points x , as they create or annihilate 

states with arbitrarily high energy from the vacuum, 

2) Correlation functions 1 20 ( ) ( )... 0O x O x  are always singular, an outcome derived 

from the relativistic invariance and positivity of the Hilbert space, 

3) Definite localization of quantum particles in space-time is impossible: Vectors 

having the form 4 ( ) ( ) 0d x f x O x  are spread across the entire Hilbert space, 
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4) Interacting field theories contain arbitrarily many quantum particles associated 

with operators acting on the vacuum, ( ) 0O x . 

In our opinion, these challenges call for a fresh perspective on the construction and 

interpretation of the high-energy Lagrangian, which defines a theory in a range well above 

the electroweak scale ( 246 )EWM GeV . The goal of this section is to elaborate on this 

viewpoint. 

We start by recalling that all perturbative QFT’s with well-behaved ultraviolet (UV) 

behavior are thought to be described by operator product expansions (OPE’s). OPE’s are 

a standard tool in the analysis of high-energy QFT, whose applications include quantum 

gauge and conformally invariant field theories [1-3]. The formulation of OPE’s is based 

on the following prescription:  Given a set of quantum fields labeled by the index A  , 

namely  AO , a state   represents an expectation value functional defined by the N  

point functions 
1 1( )... ( )

NA A NO x O x


> 0  and the OPE states that 

 
1 11 ... 1( )... ( ) ( ,..., ) ( )

N N

B

A A N A A N B N

B

O x O x C x x O x


   (1) 

The expansion (1) means that the product of N  local fields located at nearby points 

1,..., Nx x  is identical to the expectation value of another local field defined at the last point 

in the series ( )Nx . The numerical coefficient functions 
1... 1( ,..., )

N

B

A A NC x x  are independent of 

  and play the role of “structure constants” in the OPE algebra. In particular, the two-

point function of perturbative Euclidean field theory is fully specified by the collection of 
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OPE coefficients which are state-independent, along with the 1-point function ( )cO y , as 

in 

 ( ) ( ) ( ) ( )C

A B AB c

C

O x O y C x y O y

    (2) 

As shown in [6-7], the concept of OPE’s sets up a direct link between multifractals and 

Lagrangian field theory, in that it maps the field operators to the moments of multifractal 

scaling according to 

 1 2 1 2( ) ( )... ( ) ( )...n m

n mO x O x O x O x  
   (3) 

in which 


 stands for the expectation value measured over a short-distance cutoff  . 

Relation (3) is a typical an example of multifractal behavior since the expectation values 

of field operators scale as  

  
nx

nO





   (4) 

for vanishing cutoffs ( 0)   and diverging correlation lengths ( )   . In field-

theoretic language, the spacetime cutoff represents the inverse of a large momentum 

cutoff 1( )UV   and the correlation length the inverse of a mass parameter 1( )m  . 

Thus, 

 ( ) n

UV

x

n
UV

mO





  (5) 

Elaborating further, one appeals to dimensional regularization to connect (5) with the 

infinitesimal deviation of spacetime dimension from 4D   viz. [9-13] 
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224 ( ) n

UV

x

n
UV

mD O 


    
                                              (6)    

Remarkably, it can be shown that, not only the expectation value of quantum fields, but 

masses and gauge charges obey similar power-law dependence on   due to the “minimal 

fractal manifold” (MFM) structure of the four-dimensional continuum near or above the 

electroweak scale EWM . It is this transition that explains both the hierarchical 

organization and self-contained nature of SM in a range of scales ( )EWO M [9-13].  

2. Emergence of SM from the minimal fractal manifold 

Previous section has shown that the UV region of field theory may be modeled as a 

multifractal set with field operators unfolding from the non-vanishing deviation of 

spacetime dimensionality from 4D   viz. 4 1D    . Exploiting the analogy between 

multifractal sets and statistical physics [4- 5, 10-11], a reasonable interpretation of 1   

is that it encodes a dimensional polarization of spacetime. This polarization plays the role 

of an effective order parameter and it characterizes a phase transition occurring in the 

flow from UV to infrared (IR). In general, this scaling flow is non-Markovian, as it 

preserves the memory of consecutive scale transformations.  

Elaborating on these insights, the coupling between field operators at successive 

polarizations 1   along the flow trajectory may be formulated by analogy with the 

traditional one-dimensional Ising model. The simplest Hamiltonian reflecting this long-

range and weak interaction takes the form [4]:   

  ( )
2

n n

i jn
i j i

J
H O O O

n 

     (7) 
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where operator averaging is performed over the short-distance cutoff 1

UV    and where 

0 1J   denotes the “nearest neighbor” coupling. Replacing (6) in (7) yields 

  ( )
2 2

ji

n n n n
xx

i jn
i j i i j i

J J
H O

n n
   

 

       (8) 

It is seen from (7) and (8), that the expectation value of the Hamiltonian  ( )
n

H O  

behaves as an extensive quantity, proportional to the number of scaling iterations n . By 

comparison with the concept of spin magnetization in the Ising model, the overall 

dimensional polarization is given by  

 
k k

k k

O

n n



  
 

  (9) 

and satisfies the self-consistent equation [4] 

 
11

ln( )
2 1

qJ









  (10) 

There is a splitting of phases at the critical point cq q  such that (10) has a trivial solution 

0   for cq q  while for cq q  ,   grows with increasing q . In short, 

 

0,

,

c

cq

q q

q q





 


 
 


  (11) 

Since q  relates to an inverse temperature in the thermodynamic analog of multifractal 

sets ( 1q T  ), a natural interpretation of (11) is as follows: large temperatures defining  
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the UV sector of scales ( 1 0UV    ) correspond to a vanishing overall dimensional 

polarization, while “cooling off” the flow above the critical point ( )cq q  generates an 

“ordered” phase displaying non-zero polarization. The net effect of strong-gravity and 

strong quantum fluctuations in the UV is to smear off average deviations of spacetime 

dimensionality below the critical point ( )cq q , yet this symmetry is broken once the flow 

evolves above this point. Considering [4-5, 10-11], one can further speculate that the 

emergence of cq  at some large 1n  , fixes all parameters describing the multifractal set, 

in particular the free energy ( )cq  and the generalized dimension  

 
( )

1c

c
q

c

q
d

q





  (12) 

3. Conclusions 

Needless to say, the derivation outlined here is far from being either rigorous or complete.  

However, it suggests a qualitative picture of how SM arises from dimensional polarization 

near the critical point, 4 1
c cq q

D    , where the four-dimensional continuum turns 

into a MFM. It is also consistent with the naturalness principle advanced a while ago by 

‘t Hooft [8], according to which a parameter should be small only if the underlying theory 

becomes more symmetric as that parameter tends to zero1.  

                                                   

1 It is known that the SM Higgs sector is unnatural since its symmetry is not enhanced in the massless Higgs 

limit. Perturbative corrections drive the electroweak scale towards the Planck scale, leading to the so-called 

fine-tuning problem.  
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