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In this paper an algebraic method is presented to derive a non-Hermitian Schrödinger equation

from total relativistic energy. Here, E = V + c
√

m2c2 +
(
p− q

c
A
)2

with E → i~ ∂
∂t

and p→ −i~∇.
In the derivation no use is made of Dirac’s method of four vectors and the root operator isn’t squared
either. Instead, use is made of the algebra of operators. Proof is delivered that it is possible to
derive Lorentz invariant forms in this way.

PACS numbers: 03.65Aa, 03.65-w
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I. INTRODUCTION

In many textbooks, treatises or lecture notes, e.g. [1, Chapter 2 page 40], [2, Chapter 6] or [3], one can find that
Dirac’s road to relativistic quantum mechanics is the way to quantize the total relativistic energy. In some, [4, Chapter
2, section 2.4], Kramer’s work on the relativistic quantum mechanics or Weyls’s equation is mentioned. However,
Dirac’s method is more general and is best known.

The main difficulty with the quantization of the energy expression below is that a direct more or less straightforward
Schrödinger equation appears to be impossible because of the square root term in the total energy

E = V + c

√
m2c2 +

(
p− e

c
A
)2

(1)

In this equation, V is the potential energy, m the mass of the quantum, p the momentum, e the unit of charge, c the
velocity of light in vacuum and A the electromagnetic field vector. In the following section we present a method with
operator algebra to tackle the operator form in the square root term of (1).

II. OPERATOR ALGEBRA

Let us rewrite equation (1) and write, HV = (E−V )/c. Introduce a vector of operators, pA = p− e
cA. We suppose

A 6= 0. Nothing serious did happen here, so we have the equivalent.

HV =
(
m2c2 + pA

2
)1/2

(2)

The quantized version of the operator then is

HV =
1

c

(
i~
∂

∂t
− V

)
Let us subsequently observe that because of p → −i~∇ the operator pA

2 =
(
−i~∇− q

cA
)2

will contain a real,

Re(pA
2) and an imaginary, Im(pA

2) part. Given this format it follows that

m2c2 + pA
2 = m2c2 + Re(pA

2) + iIm(pA
2) (3)

If we then introduce two real operator 4-vector functions H1 and H2, the operator in (3) can be equal to (H1 + iH2)2.
So we look at

m2c2 + pA
2 = (H1 + iH2)

2
(4)

Similar to pA
2 = pA · pA, we have, (H1 + iH2)

2
= (H1 + iH2) · (H1 + iH2). Combining (3) with (4) the following

two equations can be obtained

β = m2c2 + Re(pA
2) = H2

1 −H2
2

γ = Im(pA
2) = H1 ·H2 +H2 ·H1 (5)

The H1 and H2 operators are spanned by {êµ}4µ=1 and for κ = 1, 2, 3, 4, we have (êµ)κ = δµ,κ. This defines the four

unit base vectors. The δµ,ν , is the Kronecker delta, µ, ν = 1, 2, 3, 4. The · product of basis vectors {êµ}4µ=1 therefore
shows, êµ · êν = δµ,ν .

III. DEFINITION OF THE H1 AND H2 OPERATOR

Let us define the operators that are used in (5). We have

H1 = ê4σmc+
e

c

3∑
k=1

êkAk(x, t)

H2 = ~
3∑
k=1

êk
∂

∂xk
(6)
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We will demonstrate that for σ ∈ {−1, 1}, H1 and H2 can be employed in (5). Because the {êµ}4µ=1 are orthonormal

it is found that, noting σ2 = 1,

H2
1 = m2c2 +

(e
c

)2 ∣∣∣∣A∣∣∣∣2,
H2

2 = ~2∇2,

H1H2 +H2H1 =
e~
c

3∑
k=1

(
∂

∂xk
Ak +Ak

∂

∂xk

)
(7)

Then, the operators in the previous equation match the definitions of β and γ in (5).

A. Four-vector root terms

Subsequently it must be noted that (5) has a ”=” on the scalar level. Hence, we cannot flat out take the square
root on both sides of (5) and have H1 + iH2, a 1× 4 form, on the right hand and HV , defined in (2) a 1× 1 form on
the left hand. However, let us define a 1× 4 form EV as

EV =
4∑

µ=1

êµHV,µ (8)

Let us suppose that the Hamiltonian operator breaks down as HV,µ = cµHV and that
∑4
µ=1 c

2
µ = 1. Because the

wave function equations contain complex entries, we are allowed to use complex valued cµ. Hence, it is possible to
select for instance

c1 = c2 = c3 = 1

c4 = i
√

2 (9)

In this way we may derive in a Euclidean metric operator 4-space, that, ||EV ||2 = H2
V .

B. Quantization equation

The result (9) can now be employed where the inner product of left and right hand side result in a Schrödinger

equation. Let us define ψ =
∑4
ν=1 êνψν(x, t), and

EV êνψν = (H1 + iH2)êνψν (10)

with ν = 1, 2, 3, 4. If, e.g. ν = 4, looking at (8) and (9), then on the left hand of (10) we will find

i
√

2

c

(
i~
∂

∂t
− V (x, t)

)
ψ4.

On the right hand side, looking at (9) and the definitions in (6) we see

σmcψ4

Hence, a Schrödinger equation

i~
∂

∂t
ψ4(x, t) = − iσ√

2
mc2ψ4(x, t) + V (x, t)ψ4(x, t) (11)

is found. If ν = k = 1, 2, 3, then it is found from (9) and the operator definitions in (6), that

i~
∂

∂t
ψk(x, t) = i~c

∂

∂xk
ψk(x, t) + {V (x, t) + eAk(x, t)}ψk(x, t). (12)



4

C. Lorentz invariance

In order to demonstrate the principle possibility of Lorentz invariance, let us simplify the set of equations. So,
ψ2 = ψ3 ≡ 0. Subsequently, let us zoom in on (x, t), with x = x1, coordinate transformation. Of course, the Lorentz
transformations for an observer with constant velocity v along the x-axis, related to the (x, t) system, are,

x′ = γ(x− vt)

t′ = γ
(
t− vx

c2

)
(13)

with γ = 1/
√

1− (v/c)2. The inverse transformation is equal to

x = γ(x′ + vt′)

t = γ

(
t′ +

vx′

c2

)
(14)

For ease of argument, let us take in equations (11) and (12), V = V0 ≡ constant in (x, t).
We start the Lorentz transformation exercise by looking at the transformation rule of ψ4(x, t). Suppose

ψ4(x, t) = ψ0
4 exp [λ0(x+ ct)] (15)

Here, ψ0
4 is a constant in (x, t). The constant λ0 in this equation is defined by

λ0 =
V0
i~c
− σmc

~
√

2

From the definitions one can derive that equation (11) for constant V = V0 applies. Moreover, it is found for ψ4 that

i~
∂

∂t
ψ4(x, t) = i~c

∂

∂x
ψ4(x, t) (16)

Lorentz transformations of ∂
∂t and ∂

∂x are

∂

∂x
= γ

∂

∂x′
− γ v

c2
∂

∂t′

∂

∂t
= −γv ∂

∂x′
+ γ

∂

∂t′
(17)

This implies that equation (11) is Lorentz invariant and entails the transformation

ψ′
4(x′, t′) = γ

(
1 +

v

c

)
ψ4 [x(x′, t′), t(x′, t′)] (18)

Here equation (14) is observed on the rhs. Hence, if λ′0 = γ
(
1 + v

c

)
λ0, then

ψ′
4(x′, t′) = (ψ0

4)′ exp [λ′0(x′ + ct′)] (19)

To continue with equation (12) the consistency with the transformation of λ0 gives that V ′
0 = γ

(
1 + v

c

)
V0. Making

use of (14) in A′
1(x′, t′) = γ

(
1 + v

c

)
A1 [x(x′, t′), t(x′, t′)], together with m′ = γ

(
1 + v

c

)
m and (17) leads to the fact

that the k = 1 equation of (12) is Lorentz invariant as well.
Hence, given ψ2 = ψ3 ≡ 0 and only (x, t) dependence, Lorentz invariance is demonstrated for our operator algebraic

quantization of relativistic total energy.

IV. 4× 4 SCHRÖDINGER EQUATION AND P, T SYMMETRY.

From the equations (11) and (12) a 4× 4 Schrödinger equation can be derived. Suppose, the 4× 4 diagonal matrix
H0 is defined by

H0(x, σ) = diag

(
i~c

∂

∂x1
, i~c

∂

∂x2
, i~c

∂

∂x3
,− iσ√

2
mc2

)
(20)
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In addition, we define the 4× 4 diagonal matrix U = U(x, t) as follows

U = diag (V + eA1, V + eA2, V + eA3, V ) (21)

From equations (11) and (12) and making use of (20) and (21), then, the 4× 4 Schrödinger equation can be written
down as

i~
∂

∂t
ψ(x, t) = H0(x, σ)ψ(x, t) + U(x, t)ψ(x, t) (22)

and the symmetry conditions of the non-hermitian H(x, t, σ) = H0(x, σ) + U(x, t) can be studied. Concerning non
Hermitian Hamiltonians and possible physical states, the following can be noted. In the first place there is the
possibility to weak measure non Hermitian operators [5]. Secondly, there is the notion that Parity & Time symmetry
would also be a condition for the physicalness of a non-Hermitian Hamiltonian. In that case we don’t insist to have
H†(x, t, σ) = H(x, t, σ) but we want to see HT P(x, t, σ) = H(x, t, σ). Here P is the parity operator Px = −xP. The
operator T is the time reversal operator, with, T x = xT and T i = −iT , [6].

A. Parity and Time reversal

Looking at the definition of the 4 × 4 diagonal H0 it is easy to acknowledge that indeed HT P
0 = H0. So if it is

assumed that UT P = U , then the Hamiltonian is T P symmetric. Hence, physical states can be associated to the 4×4
Schrödinger equation. This equation was directly derived from the relativistic total energy without using Clifford
algebra or squaring the root term. If the non Hermitian Hamiltonian is unrelated to real physical phenomena then we
can refer to [2, Page 148]. Non-Hermitian operators can be added to the description of physical relevant equations. In
case of a totally unphysical Hemiltonian in (22) it would be an interesting mathematical exercise to find out if adding
the obtained 4× 4 Schrödinger equation to a Dirac description, would leave the physical phenomenon unchanged.

V. CONCLUSION & DISCUSSION

In the present paper a 4× 4 Schrödinger equation was directly derived from the total relativistic energy equation.
The latter is also the starting point for Dirac’s treatment of relativistic quantum mechanics. We showed that there
is a T P symmery in the 4 × 4 Hamiltonian diagonal matrix. Hence, the possibility exists that physical states can
be associated to the obtained Schrödinger equation. It was demonstrated that Lorentz invariant equations can be
derived from the algebraic operator method.
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