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Abstract:  
In search to construct a Lagrangian functional of  a damped harmonic oscillator 
I thought to study higher derivatives of coordinates with respect to time in the 
Lagrangian of a simple harmonic oscillator by adding a term proportional to the 
square of the second derivative of the coordinate with respect to time in its 
Lagrangian. In Newtonian mechanics a damping term is added directly to the 
equation of motion of a simple harmonic oscillator, whereas in Lagrangian and 
Hamiltonian mechanics (Analytical Mechanics as opposed to Vectroial 
Mechanics of Newton) adding a term to the Lagrangian of the simple harmonic 
oscillator wouldn’t reveal whether the term is a damping driving or a forced 
driving agent until one study the solutions of the equation of motion. 
 
Here, The Euler-Lagrange and equation of motion of a harmonic oscillator in a 
potential energy proportional to the square of the second derivative of the 
coordinate with respect to time have been formulated and discussed. The 
equation of motion is derived from Euler-Lagrange equation by performing the 
partial derivatives on the Lagrangian functional of the second variation of the 
calculus of variations. 
 
PACS numbers: 01.55. +b, 02.30.Hq, 02.30.Xx2 
Keywords: General physics, Harmonic oscillator, Ordinary differential    
                    Equations, Analytic mechanics, Euler-Lagrange equation. 
 
Introduction: 
The harmonic oscillator model is very important in physics (Classical physics 
and Quantum models of natural phenomena); because any mass subject to a 
force in stable equilibrium acts as a harmonic oscillator for small vibrations. 
Harmonic oscillators occur widely in nature and are exploited in many 
manmade devices, such as clocks and radio circuits. They are the source of 
virtually all sinusoidal vibrations and waves.  
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Discussion 
A Lagrangian functional of simple harmonic oscillator  
A Lagrangian functional of simple harmonic oscillator in one dimension may be 
written as:  

2 21 1
2 2

L k x m x     
The first term is the potential energy and the second term is kinetic energy of 
the simple harmonic oscillator.  
The equation of motion of the simple harmonic oscillator is derived from the 
Euler-Lagrange equation:  

0L d L
x dt x
 

 
   

To give 
0kx mx  

   
 

This is the same as the equation of motion of the simple harmonic oscillator 
resulted from application of Newton's second law to a mass attached to spring 
of spring constant k   and displaced to a position x  from equilibrium position.  
 
Solving this differential equation, we find that the motion is described by the 
function 

0 0( ) cos( ),x t x t    

where 0 0( )x x t t 
 
and 0

2k
m T


   . 

 
Damped harmonic oscillator in the Newtonian Mechanics 
In real oscillators, friction, or damping, slows the motion of the system. Due to 
frictional force, the velocity decreases in proportion to the acting frictional 
force. While simple harmonic motion oscillates with only the restoring force 
acting on the system, damped harmonic motion experiences friction. In many 
vibrating systems the frictional force fF  can be modeled as being proportional 
to the velocity v  of the object: vfF b  , where b  is called the viscous damping 
coefficient. 
Balance of forces (Newton's second law) for damped harmonic oscillators is 
then 

2

2ext f
dx d xF F F kx b m
dt dt

      

When no external forces are present (i.e. when 0extF  ), this can be rewritten into 
the form 

2
2

0 02 2 0d x dx x
dt dt

     



(3) 
 

where  

0
2k

m T


    is called the” un-damped angular frequency of the oscillator” and 

2
b
mk

   is called the “damping ratio”. 

The value of the damping ratio   critically determines the behavior of the 
system. A damped harmonic oscillator can be: 

 Over-damped ( 1  ): The system returns (exponentially decays) to steady 
state without oscillating. Larger values of the damping ratio   return to 
equilibrium slower. 

 Critically damped ( 1  ): The system returns to steady state as quickly as 
possible without oscillating (although overshoot can occur). This is often 
desired for the damping of systems such as doors. 

 Under-damped ( 1  ): The system oscillates (with a slightly different 
frequency than the un-damped case) with the amplitude gradually 
decreasing to zero. The angular frequency of the under-damped harmonic 
oscillator is given by 2

1 0 1    ; the exponential decay of the under-
damped harmonic oscillator is given by 0   . 
 

The Q  factor of a damped oscillator is defined as 

2 energy storedQ
energy lost per cycle

  

Q  is related to the damping ratio by the equation 1
2

Q


 . 

 
Second Variations of the Calculus of Variations of scalar functions 
It is known that the Euler-Lagrange equation resulting from applying the second 
variations of the Calculus of Variations of a Lagrangian functional 

( , ( ), ( ), ( ))L t q t q t q t   of a single independent variable ( )q t , its first and second 
derivatives ( )q t , ( )q t  of following action  

   [ ( )] ( , ( ), ( ), ( ))I q t L t q t q t q t dt          

When varied with respect to the arguments of integrand and the variation are set 
to zero, i.e. 
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2

2

0 [ ( )] ( , ( ), ( ), ( ))

[ ( , ( ), ( ), ( ))]

I q t L t q t q t q t dt

L t q t q t q t dt

L L d L d L d L d L Lt q q q q dt
t q dt q dt q dt q dt q q

 



    

 



                                                              






 

 


    

 

is given by 

    
2

2 0
L d L d L
q dt q dt q
  

  
   

     

Provided that the variations q and q  vanish at the end points of the integration. 
 
The Model:  
(1) A negative term proportional to square of second derivative of 
coordinate with respect to time

  A Lagrangian functional of a simple harmonic oscillator in one dimension in a 
potential energy proportional to square of second derivative of coordinate with 
respect to time may be written as:  

2 2 21 1 1
2 2 2

L k x m x nx      
where n

 
is a positive parameter. 

 
The first two terms are the potential energy and kinetic energy of a simple 
harmonic oscillator. The third term has been added to study effects on motion of 
the harmonic oscillator of higher derivatives in the Lagrangian functional via 
varying the parameter n .  
The equation of motion is derived from Euler-Lagrange equation by performing 
the partial derivatives on the Lagrangian functional:    

2

2 0L d L d L
x dt x dt x
  

  
   

 

To give the equation of motion  
2

2( ) ( ) 0

0

d dkx mx nx
dt dt

kx mx nx

   

   

 

   
Or, 

  0kx mx nx     
 
where , ,k m n  are spring constant, mass of particle and the yet unknown factor n  , 
respectively. They are positive and have finite real valued constants, and none 
have zero value (i.e. 0, 0, 0; , ,k m n k m n         ). 

where the units of the constants in the SI are [ ] Nk
m

 , [ ]m kg , 2[ ]n kgs  
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Assume a solution of the form 

   0 exp[ ( )]x x i t     
Where 0x  the amplitude in [m], 1i    is the imaginary unit,   is the angular 
frequency in [Hz], t  is the time in [s] and is a phase factor in [dimensionless]. 
 

0 0

2 2

3 3

4 4

exp[ ( )] exp[ ( )]x x i t x x i t
x i x x i x
x x x x
x i x x i x
x x x x

   
 
 
 
 

     
  
   
   
   

 

 

 

 

 

Substituting in the equation of motion, we get 
2 4

2 4

( ) ( ) 0
[ ( ) ( )] 0
kx m x n x
k m n x

 

 

   

   
    

Assume ( ) 0x t   at all times, then, 
    2 4[ ( ) ( )] 0k m n       

2 4 0k m n     
This has four solutions, using the general method for determining roots of a 
quadratic equation ( 2 0, 0.az bz c a    ): 
 

2 4
2

b b acz
a

  
  

with, 
2 ; , ,z a n b m c k      

The solutions are: 
 

2

2

4( )( )
2( )

41
2 2

m m n k
n

m m nk
n n m


 

 

   

 

Define; 2
0

k
m

   where 0  is the natural frequency of the oscillator. 

Then,  may be written as 
 

2
04

1
2 2
m m n
n n m


    

 
Then, the fours roots are 
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2 2

0 0
1 2

3 1 4 2

4 41 , 1
2 2 2 2
,

m m m mn n
n n m n n m

 
 

   

       

   

 

 
Types of motion for different values of the positive parameter ( n ) 
Case (1):

 
0n   

The harmonic oscillator should oscillate with its natural frequency when the 
external potential energy term vanish or has very small value close to zero for 
fixed values of the simple harmonic oscillator parameters ,k m and / or 0 . 
Setting 0n   in the four solutions of  above, and approximating the inner 
radical:  

2 2 2
0 0 04 4 211 [1 ( )] [1 ]

2
n n n

m m m
  

      

We, get 
2 2

20 0
1 0

2 2
20 0

2 0 0

2 2
20 0

3 0

2 2
20 0

4 0 0

2 2
(1 ) ,

2 2 2 2 2

2 2(1 ) ,
2 2 2 2 2

2 2(1 ) ,
2 2 2 2 2

2 2
(1 ) ,

2 2 2 2 2

m m m m m mn n
n n m n n n m n

m m m m mn n
n n m n n n m

m m m m m mn n
n n m n n n m n

m m m m mn n
n n m n n n m

 
 

 
  

 
 

 
  

          

           

          

           

  
So, we choose 2  and 4   to be the solutions in case 0n  . The 
corresponding equations of motion are that of a simple harmonic oscillator as it 
should. 

Case (2):
 

2
04

mn



 
(i.e. 

2
04

1 0n
m


  )  

Substituting 2
04

mn



 
in 2 , we get 

 
2

20
0 0

2
0

4
1 2 2

2 2 2( )
4

m m mn mn n m


  



         
 

The corresponding equations of motion are that of a simple harmonic oscillator 
oscillating at a frequency  of a value larger by ( 41% ) of the value of natural 
frequency 0 of free oscillation. 
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Case (3):
 

2
04

0 1 1n
m


  
 
(e.g.

2
04

1 0.64n
m


  )  

Substituting 
2

04
1 0.64n

m


   or, 

 (
2 2

0 0
2 2 2

0 0 0

4
1 0.64 (1 0.64) 0.36 0.9

4 4 2 1.8
m m m mn n

m n
 

  
         ) as an example 

in the equation of , we get the following solutions: 
 

2
0

0(0.64) [1 (0.64)] [1 (0.64)] 0.45
2 2 2 1.8
m m m
n n n


            

 
 
The corresponding equations of motion are that of a simple harmonic oscillator 
oscillating at a frequency   of almost the half the value of the value of natural 
frequency 0 of free oscillation. 
 

Case (4):
 

2
04

mn



 
(i.e. 

2
04

1 0n
m


  ) 

Substituting 
2

04
1 0n

m


  in the equation of , we get 
 

 

2 2
0 0

2
0

4 4
1 ( 1)

2 2 2 2

4
1

2 2

m m m mn n
n n m n n m

m m i n
n n m

 




        

   

 

    
It is a square root of a complex number (i.e. it is a complex number), when a 
complex number appears in the power of a complex number written in its polar 
form a decay behavior appears. 
 
Changing variables,  

2
2 04

1
2 2
m m i n
n n m


      

Its modulus is 

 

22 2 2 22 2 22
0 0 0

2

2 22
0 0

02

4 4 4
1

2 2 2 2 2 4

4
4 1

m m m m m mn n n
n n m n n m n n m

m m mn
n m n n

  


 


                                     

  

 

 
Its arguments are 
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2
0

2
0

4 1 42arctan( ) arctan arctan 1

2

m ny n m nmx m
n






 
    

       
     

 

 

It is in the fourth quarter in the complex plane. 
In Cartesian form; 

[cos( ) sin( )]i      
Now, taking the square root of both sides of 2   , we get 
 

1
2

1
2

0

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )
2 2

i

i

m i
n

    

  

 


  

 

 
    

 

 

and, the other root; 

    

1
2

0
2 2cos( ) sin( )

2 2
m i
n

   
 

   
    

   
 

Now, inserting the value in the equation of motion 0 exp[ ( )]x x i t    , yields 
 

  
0 0

0 0

exp {[ cos( ) sin( )] }
2 2

exp { [( cos( )) ] sin( ) }
2 2

mx x i i t
n

mx i t t
n

 
 

 
 

   

   
 

and, 

  
0 0

0 0

2 2exp {[ cos( ) sin( )] }
2 2

2 2exp { [( cos( )) ] sin( ) }
2 2

mx x i i t
n

mx i t t
n

   
 

   
 

 
   

 
   

 

 
Taking the negative sign in the exponential we get a smoothly damping solution 

with a damping constant sin( )
2
  and 2sin( )

2
  , otherwise we get a growing 

solution if the positive sign is taken and with growing constant sin( )
2
  and 

2sin( )
2

  .   
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(2) A positive term proportional to square of second derivative of 
coordinate with respect to time

  The Lagrangian functional may be given by 
2 2 21 1 1

2 2 2
L k x m x nx      

The equation of motion is derived from Euler-Lagrange equation by performing 
the partial derivatives on the Lagrangian functional:  

2

2 0L d L d L
x dt x dt x
  

  
   

 

 
To give the equation of motion this may be written as  

      
2

2( ) ( ) 0d dkx mx nx
dt dt

    
 

where , ,k m n  are spring constant, mass of particle and the yet unknown factor n  , 
respectively. They are positive and have finite real valued constants, and none 
have zero value (i.e. 0, 0, 0; , ,k m n k m n         ). 
 
Then, the equation of motion may further be written as 

  0kx mx nx      
Assume a solution of a form 

       0 exp[ ( )]x x i t     

    

0 0

2 2

3 3

4 4

exp[ ( )] exp[ ( )]x x i t x x i t
x i x x i x
x x x x
x i x x i x
x x x x

   
 
 
 
 

     
  
   
   
   

 

 

 

 

 

Substituting in the equation of motion, we get 
2 4

2 4

( ) ( ) 0
[ ( ) ( )] 0

kx m x n x
k m n x

 

 

    

    
    

Assume ( ) 0x t   at all times, then, 
    2 4[ ( ) ( )] 0k m n        

2 4 0k m n      
This has four solutions, using the general method for determining roots of a 
quadratic equation ( 2 0, 0.az bz c a    ): 

2 4
2

b b acz
a

  
  

with, 
2 ; , ,z a n b m c k      
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The solutions are: 
2

2

4( )( )
2( )

41
2 2

m m n k
n

m m nk
n n m


   

 


   

 

Then,  may be written as 
2

04
1

2 2
m m n
n n m





   

 
where 2

0
k
m

   is the natural frequency of the oscillator. 

Then, the fours roots are 
 

2 2
0 0

1 2

3 1 4 2

4 41 , 1
2 2 2 2
,

m m m mn n
n n m n n m

 
 

   

 
       

   

 

 
Types of motion for different values of the positive parameter ( n ) 
Case (1):

 
0n   

The harmonic oscillator should oscillate with its natural frequency when the 
external potential energy term vanish or has very small value close to zero for 
fixed values of the simple harmonic oscillator parameters ,k m and / or 0 . 
Setting 0n   in the four solutions of  above, and approximating the inner 
radical:  

2 2 2
0 0 04 4 211 [1 ( )] [1 ]

2
n n n

m m m
  

      

We, get 
2 2

20 0
1 0 0

2 2
20 0

2 0

2 2
20 0

3 0 0

2 2
0 0

4

2 2
(1 ) ,

2 2 2 2 2

2 2(1 ) ,
2 2 2 2 2

2 2(1 ) ,
2 2 2 2 2

2 2
(1 )

2 2 2 2 2

m m m m mn n
n n m n n n m

m m m m m mn n
n n m n n n m n

m m m m mn n
n n m n n n m

m m m m mn n
n n m n n n m

 
  

 
 

 
  

 


 
           

  
          

 
           

 
          2

0 ,m
n





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So, we choose 1  and 3   to be the solutions in case 0n  . The 
corresponding equations of motion are that of a simple harmonic oscillator as it 
should. 
 
Case (2): Other values of the positive parameter ( n )  
For all other values of the positive parameter n the value of 1  and 3  are 
real and the motion is oscillatory:   
 

    

2
0

1

3 1

41 ,
2 2
m m n
n n m




 


   

 

 

As an example: I take  
  

   

2 2 2
0 0 0

2
0

4 20.440.44
4 2 0.44 0.22

m mn n
m n
  


       , 

Then,

 

1  take the value 
 

 

2 2 2 2 2
0 0 0 0 0

1 01 0.44 (1.2) (0.2) 0.95 ,
0.22 0.22 0.22 0.22 0.22
    

 
 

             

And,  

   

2 2
0 0

2
0

4 299999999
4 2 9999

m mn n
m n
 


      , 

 Then,

 

1  take the value; 
2 2 2 2 2

0 0 0 0 0
1 0

2 2 2 2 2
1 9999 10000 (99) 0.14 ,

9999 9999 9999 9999 9999
    

 
 

             

 
The frequency of oscillation decreases with increasing the value of the positive 
parameter n . 
 
Conclusion:   
Studying systems with additional nonlinear term in their Lagrangian functional 
may lead to interesting results. In our simple example of a simple harmonic 
oscillator with a third -positive and negative term proportional to the square of 
the second derivative of coordinates with respect to time- it is observed that 
oscillatory, damping and growing behaviors emerged from the solution of the 
equation of motion. Although it doesn’t substitute the direct treatment of the 
Newtonian Mechanics of the damping harmonic oscillator it could be an 
additional method for study it. This method could be applied to other systems 
e.g. non-linear classical fields and may be to nonlinear quantum fields. 
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