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Abstract—In this paper, we propose the complex neutrosophic 

soft set model, which is a hybrid of complex fuzzy sets, neutrosophic 

sets and soft sets. The basic set theoretic operations and some 

concepts related to the structure of this model are introduced, and 

illustrated. An example related to a decision making problem 

involving uncertain and subjective information is presented, to 

demonstrate the utility of this model.  
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I. INTRODUCTION  

The neutrosophic set model (NS) proposed by Smarandache [1, 

2] is a powerful tool to deal with incomplete, indeterminate and

inconsistent information in the real world. It is a generalization of 

the theory of fuzzy sets [3], intuitionistic fuzzy sets [4, 5], 

interval-valued fuzzy sets [6] and interval-valued intuitionistic 

fuzzy sets [7]. A neutrosophic set is characterized by a truth-

membership degree (t), an indeterminacy-membership degree (i) 

and a falsity-membership degree (f), all defined independently, 

and all of which lie in the real standard or nonstandard unit 

interval ]−0, 1+[. Since this interval is difficult to be used in real-

life situations, Wang et al. [8] introduced single-valued 

neutrosophic sets (SVNSs) whose functions of truth, 

indeterminacy and falsity all lie in [0, 1]. Neutrosophic sets and 

its extensions such as single valued neutrosophic sets, interval 

neutrosophic sets, and intuitionistic neutrosophic sets have been 

applied in a wide variety of fields including decision making, 

computer science, engineering, and medicine [1-2, 8-27, 36-37]. 

The study of complex fuzzy sets were initiated by Ramot et al. 

[28]. Among the well-known complex fuzzy based models in 

literature are complex intuitionistic fuzzy sets (CIFSs) [29, 30], 

complex vague soft sets (CVSSs) [31, 32] and complex 

intuitionistic fuzzy soft sets (CIFSSs) [33].These models have 

been used to represent the uncertainty and periodicity aspects of 

an object simultaneously, in a single set. The complex-valued 

membership and non-membership functions in these models have 

the potential to be used to represent uncertainty in instances such 

as the wave function in quantum mechanics, impedance in 

electrical engineering, the changes in meteorological activities, 

and time-periodic decision making problems.  

Recently, Ali and Smarandache [34] developed a hybrid model of 

complex fuzzy sets and neutrosophic sets, called complex 

neutrosophic sets. This model has the capability of handling the 

different aspects of uncertainty, such as incompleteness, 

indeterminacy and inconsistency, whilst simultaneously handling 

the periodicity aspect of the objects, all in a single set. The 

complex neutrosophic set is defined by complex-valued truth, 

indeterminacy and falsity membership functions. The complex-

valued truth membership function consists of a truth amplitude 

term (truth membership) and a phase term which represents the 

periodicity of the object. Similarly, the complex-valued 

indeterminacy and falsity membership functions consists of an 

indeterminacy amplitude and a phase term, and a falsity 

amplitude and a phase term, respectively. The complex 

neutrosophic set is a generalized framework of all the other 

existing models in literature.  
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However, as the CNS model is an extension of ordinary fuzzy 

sets, it lacks adequate parameterization qualities. Adequate 

parameterization refers to the ability of a model to define the 

parameters in a more comprehensive manner, without any 

restrictions. Soft set theory works by defining the initial 

description of the parameters in an approximate manner, and 

allows for any form of parameterization that is preferred by the 

users. This includes using words and sentences, real numbers, 

functions and mappings, among others to describe the parameters. 

The absence of any restrictions on the approximate description in 

soft set theory makes it very convenient to be used and easily 

applicable in practice. The adequate parameterization capabilities 

of soft set theory and the lack of such capabilities in the existing 

CNS model served as the motivation to introduce the CNSS 

model in this paper. This is achieved by defining the complex 

neutrosophic set in a soft set setting.   

The rest of the paper is organized as follows. In section 2, we 

present an overview of some basic definitions and properties 

which serves as the background to our work in this paper. In 

section 3, the main definition of the CNSS and some related 

concepts are presented. In section 4, the basic set theoretic 

operations for this model are defined. The utility of this model is 

demonstrated by applying it in a decision making problem in 

section 5. Concluding remarks are given in section 6. 

II. PRELIMINARIES

In this section, we recapitulate some important concepts 
related to neutrosophic sets (NSs), and complex neutrosophic sets 
(CNSs). We refer the readers to [1, 8, 10, 34] for further details 
pertaining to these models.  

Let X  be a space of points (objects) with generic elements in 
X denoted by x. 

Definition 1. [1] A neutrosophic set A is an object having the 

form � = �〈�, ��	�
, ��	�
, ��	�
〉: � ∈ ��,  where the functions�, �, � ∶ � →]�0, 1�[	, denote the truth, indeterminacy, and falsity

membership functions, respectively, of the element � ∈ �  with

respect to set �.  These membership functions must satisfy the

condition 0� ≤ ��	�
 +	��	�
 +	��	�
 ≤ 3�.																											1

The functions ��	�
, ��	�
,  and ��	�
  are real standard or

nonstandard subsets of the interval ]−0,1+[. However, these 

intervals make it difficult to apply NSs to practical problems, and 

this led to the introduction of a single-valued neutrosophic set 

(SVNS) in [12]. This model is a special case of NSs and is better 

suited to handle real-life problems and applications. 

Definition 2. [8] An SVNS �  is a neutrosophic set that is

characterized by a truth-membership function ��	�
,  an

indeterminacy-membership function ��	�
,  and a falsity-

membership function ��	�
,  where ��	�
, ��	�
, ��	�
 ∈ [0, 1].
A SVNS � can thus be written as� = �〈�, ��	�
, ��	�
, ��	�
〉: � ∈ �� 		2


Definition 3. [8] The complement of a neutrosophic set �,
denoted by � , is as defined below for all � ∈ �:�� 	�
 = ��	�
, �� 	�
 = 1 − ��	�
, �� 	�
 = ��	�
.
Definition 4. [10] Let "  be an initial set and #  be a set of

parameters. Let $	"
 denote the power set of ", and let � → #.
A pair 	�, �
 is called a soft set over ", where � is a mapping

given by �: � → $	"
.  In other words, a soft set is a

parameterized  family  of subsets of the set ". Every �	%
, where% ∈ #, from  this  family  may be  considered as the set of %-

elements of the soft set 	�, �
.
Definition 5. [34] A complex neutrosophic set � defined on a

universe of discourse �, is characterized by a truth membership

function ��	�
,  an indeterminacy membership function ��	�
,
and a falsity membership function ��	�
 that assigns a complex-

valued grade for each of these membership function in � for any� ∈ �. The values of ��	�
, ��	�
 and ��	�
, and their sum may

assume any values within a unit circle in the complex plane, and 

is of the form ��	�
 = &�	�
%'()	*
, ��	�
 = +�	�
%',)	*
, and��	�
 = -�	�
%'.)	*
.  All the amplitude and phase terms are

real-valued and &�	�
, +�	�
, -�	�
 ∈ [0, 1],  whereas/�	�
, 0�	�
,1�	�
 ∈ 	0, 22], such that the condition0 ≤ &�	�
 + +�	�
 + -�	�
 ≤ 3																						3

is satisfied. A complex neutrosophic set �  can thus be

represented in set form as: � = �〈�, ��	�
 = 34 , ��	�
 = 35, ��	�
 = 36〉: � ∈ ��,
where ��: � → �34: 34 ∈ 7, |34| ≤ 1�,  ��: � → �35: 35 ∈7, |35| ≤ 1�, ��: � → �36: 36 ∈ 7, |36| ≤ 1�, and also|��	�
 + ��	�
 + ��	�
| ≤ 3.                                                                   (4)

The interval 	0, 22] is chosen for the phase term to be in line with

the original definition of a complex fuzzy set in which the 

amplitude terms lie in an interval of 	0, 1
, and the phase terms

lie in an interval of 	0, 22].
Remark: In the definition above, 9 denotes the imaginary number9 = √−1 and it is this imaginary number 9 that makes the CNS

have complex-valued membership grades. The term %'; denotes

the exponential form of a complex number and represents %'; =cos ? + 9 sin ?.
Definition 6. [34] Let � = �〈�, ��	�
, ��	�
, ��	�
〉: � ∈ �� be a

complex neutrosophic set over �.  Then the complement of �,
denoted by � , is defined as:� = �〈�, �� 	�
, �� 	�
, �� 	�
〉: � ∈ ��,
where �� 	�
 = -�	�
%'BCD�()	*
E,�� 	�
 = B1 − +�	�
E%'BCD�,)	*
E, and�� 	�
 = &�	�
%'BCD�.)	*
E.



III. COMPLEX NEUTROSOPHIC SOFT SETS 

In this section, we introduce the complex neutrosophic soft set 

(CNSS) model which is a hybrid of the CNS and soft set models. 

The formal definition of this model as well as some concepts 

related to this model are as given below: 

 

Definition 7. Let "  be universal set, #  be a set of parameters 

under consideration, � ⊆ #, and G� be a complex neutrosophic 

set over " for all � ∈ ". Then a complex neutrosophic soft set H�over " is defined as a mapping H�: # → 7I	"
, where 7I	"
 
denotes the set of complex neutrosophic sets in ", and J�	�
 =∅  if � ∉ �.  Here J�	�
 is called a complex neutrosophic 

approximate function of H� and the values of J�	�
 is called the � -elements of the CNSS for all � ∈ ".  Thus, H�  can be 

represented by the set of ordered pairs of the following form: H� = MB�,J�	�
E: � ∈ #,J�	�
 ∈ 7I	"
N, 
where J�	�
 = B&�	�
%'()	*
, +�	�
%',)	*
, -�	�
%'.)	*
E, &�, +�, -�  are real-valued and lie in [0,1],  and /�, 0�, 1� ∈	0, 22]. This is done to ensure that the definition of the CNSS 

model is line with the original structure of the complex fuzzy set, 

on which the CNSS model is based on.  

 

Example 1. Let "  be a set of developing countries in the 

Southeast Asian (SEA) region, that are under consideration, # be 

a set of parameters that describe a country’s economic indicators, 

and � = �%O, %C, %P, %Q� ⊆ #,  where these sets are as defined 

below: " = �RO = Republic	of	Philippines, RC = Vietnam,  
          RP = Myanmar, RQ = Indonesia�,  # = �%O = inflation	rate, %C = population	growth,	%P = GDP  growth	rate, %Q = unemployment	rate, %i = export	volume�.  
 

The CNS J�	%O
,J�	%C
, J�	%P
 and J�	%Q
 are defined as: 
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and 

( ) ( )

( ) ( )
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Then the complex neutrosophic soft set H� can be written as a 

collection of CNSs of the form: H� = �J�	%O
, J�	%C
, J�	%P
,J�	%Q
�. 
 

Definition 8. Let H�  and Hl  be two CNSSs over a universe ". 
Then we have the following: 

(i) H�  is said to be an empty CNSS, denoted by H�∅ ,  if J�	�
 = ∅, for all � ∈ "; 
(ii) H�  is said to be an absolute CNSS, denoted by H�n , if J�	�
 = " for all � ∈ "; 
(iii) H� is said to be a CNS-subset of Hl , denoted by H� ⊆ Hl , 
if for all � ∈ ",  J�	%
 ⊆ Jl	%
,  that is the following 

conditions are satisfied: &�	%
 ≤ &l	%
, +�	%
 ≤ +l	%
, -�	%
 ≤ -l	%
, 
and      /�	%
 ≤ /l	%
, 0�	%
 ≤ 0l	%
,1�	%
 ≤ 1l	%
. 
(iv) H� is said to be equal to Hl , denoted by H� = Hl , if for all � ∈ " the following conditions are satisfied: 

            &�	%
 = &l	%
, +�	%
 = +l	%
, -�	%
 = -l	%
,      
and      /�	%
 = /l	%
, 0�	%
 = 0l	%
, 1�	%
 = 1l	%
. 

 
Proposition 1. Let H� ∈ 7I	"
. Then the following hold: 

(i)  	H� 
 = H�; 
(ii)  H�∅ = H�n .  
Proof. The proofs are straightforward from Definition 8. 

 

IV. OPERATIONS ON COMPLEX NEUTROSOPHIC 

SOFT SETS 

In this section we define the basic set theoretic operations on 

CNSSs, namely the complement, union and intersection. 

 

Let H� and Hl be two CNSSs over a universe ".  
 

Definition 9. The complement of H�, denoted by H� , is a CNSS 

defined by H� = MB�, G� 	�
E: � ∈ "N,  where G� 	�
  is the 

complex neutrosophic complement of G�. 



Example 2. Consider Example 1. The complement of H� is given 

by H� = �G� 	%O
, G� 	%C
, G� 	%P
, G� 	%Q
�.  For the sake of 

brevity, we only give the complement for G� 	%O
 below:   
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The complements for the rest of the CNSs can be found in a 

similar manner.  

 

Definition10. The union of H�  and Hl ,  denoted by H� ∪p Hl ,  is 

defined as: Hq = H� ∪p Hl = �	�, G�	�
 ∪p Gl	�

 ∶ � ∈ "�, 
 

Hq	%
 = rB�, G�	�
E																									if		% ∈ � − s,B�, Gl	�
E																									if		% ∈ s − �,	�, G�	�
 ∪p Gl	�

								if		% ∈ � ∩ s,  
 

where 7 = � ∪ s, � ∈ ", and  

G�	�
 ∪p Gl	�
 = uB&�	�
 ∨ &l	�
E%'B()	*
∪(w	*
EB+�	�
 ∧ +l	�
E%'B,)	*
∪,w	*
EB-�	�
 ∧ -l	�
E%'B.)	*
∪.w	*
Ey, 
where ∨  and ∧  denote the maximum and minimum operators 

respectively, whereas the phase terms of the truth, indeterminacy 

and falsity functions lie in the interval 	0, 22],  and can be 

calculated using any one of the following operators: 

(i) Sum:  /�∪l	�
 = /�	�
 + /l	�
, 0�∪l	�
 = 0�	�
 + 0l	�
,  
and 1�∪l	�
 = 1�	�
 + 1l	�
.  

(ii) Max: /�∪l	�
 = maxB/�	�
, /l	�
E , 0�∪l	�
 = maxB0�	�
, 0l	�
E, 
and 1�∪l	�
 = maxB1�	�
,1l	�
E. 
(iii) Min: /�∩l	�
 = minB/�	�
, /l	�
E , 0�∩l	�
 = minB0�	�
, 0l	�
E, 
and 1�∩l	�
 = minB1�	�
,1l	�
E. 
(iv) “The game of winner, neutral, and loser”: /�∪l	�
 = z/�	�
											if		&�	�
 > &l	�
/l	�
										if		&l	�
 > &�	�
 ,  0�∪l	�
 = z0�	�
											if		+�	�
 < +l	�
0l	�
											if		+l	�
 < +�	�
, and  

1�∪l	�
 = z1�	�
									if		-�	�
 < -l	�
1l	�
									if		-l	�
 < -�	�
.  
All of the operators presented above are straightforward 

generalizations of the corresponding operators that were 

originally defined in [28]. The intersection between CNSSs are 

defined in a similar manner in Definition 11.  

Definition 11. The intersection of H�  and Hl ,  denoted by H� ∩p Hl , is defined as: H} = H� ∩p Hl = �	�, G�	�
 ∩p Gl	�

 ∶ � ∈ "�, 
H}	%
 = rB�, G�	�
E																									if		% ∈ � − s,B�, Gl	�
E																									if		% ∈ s − �,	�, G�	�
 ∩p Gl	�

								if		% ∈ � ∩ s,  

 

where ~ = � ∪ s, � ∈ ", and  

G�	�
 ∩p Gl	�
 = uB&�	�
 ∧ &l	�
E%'B()	*
∪(w	*
EB+�	�
 ∨ +l	�
E%'B,)	*
∪,w	*
EB-�	�
 ∨ -l	�
E%'B.)	*
∪.w	*
Ey, 
where ∨  and ∧  denote the maximum and minimum operators 

respectively, whereas the phase terms of the truth, indeterminacy 

and falsity functions lie in the interval 	0, 22],  and can be 

calculated using any one of the following operators that were 

defined in Definition 10. 

 

V. APPLICATION OF THE CNSS MODEL IN A 

DECISION MAKING PROBLEM 

In Example 1, we presented an example related to the economic 

indicators of four countries. In this section, we use the same 

information to determine which one of the four countries that are 

studied has the strongest economic indicators. To achieve this, a 

modified algorithm and an accompanying score function is 

presented in Definition 12 and 13. This algorithm and score 

function are an adaptation of the corresponding concepts 

introduced in [35], which was then made compatible with the 

structure of the CNSS model. The steps involved in the decision 

making process, in the context of this example, until a final 

decision is reached, is as given below. 

 

Definition 12. A comparison matrix is a matrix whose rows 

consists of the elements of the universal set 	" = �RO, RC, … , R��,  whereas the columns consists of the 

corresponding parameters # = �%O, %C, … , %��  that are being 

considered in the problem. The entries of this matrix are 	�'� , such that �'� = B���� + ���� − ����E + B������ + ������ − ������E, 
where the components of this formula are as defined below for all �� ∈ ", such that �' ≠ ��: ���� = the number of times the value of the amplitude term of ���B%�E ≥ ���B%�E, ���� = the number of times the value of the amplitude term of ���B%�E ≥ ���B%�E, ���� = the number of times the value of the amplitude term of ���B%�E ≥ ���B%�E, 
and  



������ = the number of times the value of the phase term of���B%�E ≥ ���B%�E,������ =  the number of times the value of the phase term of���B%�E ≥ ���B%�E,������ =  the number of times the value of the phase term of���B%�E ≥ ���B%�E.
Definition 13. The score of an element iu  can be calculated by 

the score function �'  which is defined as �' = ∑ �'�� .
Next, we apply the algorithm and score function in a decision 

making problem. The steps are as given below: 

Step 1: Define a CNSS 

Construct a CNSS for the problem that is being studied, which 

includes the elements R'	9 = 1, 2, …	, �
,  and the set of

parameters %�	� = 1, 2, … , �
, that are being considered.

In the context of this example, the universal set ",  set of

parameters �, and the CNSS H� that were defined in Example 1

will be used.  

Step 2: Construct and compute the comparison matrix 

A comparison matrix is constructed, and the values of �'� for each

element R'  and the corresponding parameter %� is calculated using

the formula given in Definition 12. For this example, the 

comparison matrix is given in Table 1.  

Table 1.Comparison matrix for H�" %O %C %P %Q
R1 6 3 3 5 

R2 3 5 1 2 

R3 4 -3 1 -1 

R4 -1 7 5 8 

Remark: In this example, the phase terms denotes the time taken 

for any change in the economic indicators to affect the 

performance of the economy. The magnitude of these phase terms 

would indicate the economic sectors that has the most influence on 

the economy and by extension, the sectors that the economy is 

dependent on. Therefore, the closer the phase term is to 0, the 

smaller it is, whereas the closer the phase term is to 22, the larger

it is. For example, phase terms of 
PDQ  is larger than the phase terms 

of
DP and 

DC. As such, the values of ������ , ������  and ������was by

computing the number of times the value of the phase term of 

element �'� exceeds the value of the phase term of element ��� .
Step 3: Calculate the score function 

Compute the scores �' for each element R'	9 = 1, 2, …	,�
 using

Definition 13. The score values obtained are given in Table 2. 

Table 2. Score function for H�" �9R1 17 R2 11 R3 1 R4 19 

Step 4: Conclusion and discussion 

The values of the score function are compared and the element 

with the maximum score will be chosen as the optimal alternative. 

In the event that there are more than one element with the 

maximum score, any of the elements may be chosen as the 

optimal alternative.   

In the context of this example, max��∈���'� = RQ. As such, it can be

concluded that country RQ i.e. Indonesia is the country with the

strongest economic indicators, followed closely by the Republic 

of Phillipines and Vietnam, whereas Myanmar is identified as the 

country with the weakest and slowest growing economy, among 

the four South East Asian countries that were considered.   

VI. CONCLUSION

In this paper, we introduced the complex neutrosophic soft set 

model which is a hybrid between the complex neutrosophic set and 

soft set models. This model has a more generalized framework 

than the fuzzy soft set, neutrosophic set, complex fuzzy set models 

and their respective generalizations. The basic set theoretic 

operations were defined. The CNSS model was then applied in a 

decision making problem involving to demonstrate its utility in 

representing the uncertainty and indeterminacy that exists when 

dealing with uncertain and subjective data. 
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