Defining and Measuring Drowsiness

Chun-Shu Wei

Definition of Drowsiness

 Assume that drowsiness is related to the chance of the occurrence of a slow response or non-response to a stimulus.

$$D(t) = P(\tau(t + \epsilon) > \tau_{thr})$$

 τ : response time (RT)

 τ_{thr} : a set threshold that determines a long RT

 ϵ : the duration from the current time to the upcoming stimulus

Drowsiness Index

In a sustained attention task (e.g. lane-keeping task),
 RT is measured discretely across time. The discrete
 form of drowsiness is expressed as:

$$D[n] = P(\tau[n+1] > \tau_{thr})$$

 A drowsiness index (DI) is designed for tracking the slow-response probability.

$$x[n] \approx P(\tau[n+1] > \tau_{thr} \mid x[n])$$

Extracting DI from RT data

• Normalization $x[n] = max\left(0, \frac{1 - e^{-a(\tau[n] - \tau_0)}}{1 + e^{-a(\tau[n] - \tau_0)}}\right)$

 τ_0 is the RT in the alert state

• Smoothing $\bar{x}[n] = \frac{1}{M} \sum_{m} x[m]$

m belongs to the trials occurs within the time window [-w, 0] of the current trial n.

Validating the DI

Estimating the slow-response probability

$$P(\tau[n+1] > \tau_{thr} \mid 0 \le x[n] < 0.1)$$

$$= \frac{number\ of\ trials\ at\ [n+1]\ with\ \tau > \tau_{thr}\ given\ 0 \le x[n] < 0.1}{number\ of\ trials\ at\ [n+1]\ given\ 0 \le x[n] < 0.1}$$

Data: NCTU LKT Dataset (79 session)

$$x[n] = \tau[n]/\tau_0$$

$$x[n] = max\left(0, \frac{1 - e^{-a(\tau[n] - \tau_0)}}{1 + e^{-a(\tau[n] - \tau_0)}}\right)$$

$$x[n] = \tau[n]/\tau_0$$

$$x[n] = max\left(0, \frac{1 - e^{-a(\tau[n] - \tau_0)}}{1 + e^{-a(\tau[n] - \tau_0)}}\right)$$