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Abstract: In this work, we discuss the possibility to formulate a covariant Ricci flow so that it 

satisfies the principle of relativity and therefore can be applied to all coordinate systems 

defined on a Riemannian manifold. Since the investigation may be considered to be in the 

domain of pure mathematics, which is outside our field of physical investigations, therefore 

there may be errors in mathematical arguments that we are unable to foresee.    

 

In our previous works, we have examined geometrical and topological formulations that can 

be applied to physical theories, in particular spacetime structures of quantum particles [1,2]. 

In general, the geometrical approach to fundamental structures of quantum particles requires 

the construction of a space so that physical objects can be identified with the geometrical 

properties of that space. The physical description that is associated with the geometrical 

structures are expressed in the form of field equations, such as Einstein’s field equations of  

general relativity. From this view point, geometry no longer exists independently of physics. 

Geometrical and topological methods applied to physical theories are a way of establishing a 

correspondence between mathematical concepts and physical objects. This can be achieved 

by searching for a mathematical structure that can provide a consistent description of 

dynamics and physical observables. Conversely, physical objects may provide an empirical 

realisation of the abstract concepts associated with geometry and topology. However, there 

are restrictions on the applicability of geometrical and topological methods in the 

construction of physical theories. A general feature of geometrical models applied to physics 

is that their mathematical realisation can only be described approximately since physical 

theories have been based on concepts, such as mass, which are poorly defined from the point 

of view of mathematics. Geometrical procedures that require the generalisation of such 

concepts may also lead to a poor description of physical phenomena. For this reason, 

Einstein’s theory of general relativity cannot be considered to be a truly geometrical theory 

because the energy-momentum tensor which enters the theory is a non-geometrical quantity. 

As shown in our works [2,3], this blemish can be overcome by formulating the field 

equations of the gravitational field using the contracted Bianchi identities 

   
   

 

 
                                                                                                                                         

Equation (1) has a covariant form of the field equations of the electromagnetic field written in 

a covariant form as    
      , where the electromagnetic tensor     is expressed in 

terms of the four-vector potential          as              . The four-current    is 
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defined as           . From this similarity, it is possible to suggest that a four-current of 

some form of matter           can be defined purely geometrical as 

   
 

 
                                                                                                                                                 

For the case in which         , Equation (1) reduces to the equation 

   
                                                                                                                                                       

Firstly, since         for a given metric tensor    , Equation (3) implies 

                                                                                                                                                         

where   is an undetermined constant. If we consider a centrally symmetric field then the 

Schwarzschild solution can be found as  

       
   

 
 
   

 
          

   

 
 
   

 
 

  

                               

Secondly, if we consider only coordinate transformations that are time-independent then from 

Equation (3) we can obtain the Ricci flow given by the evolution equation 

    

  
                                                                                                                                                   

It is observed that even though the Ricci flow has been considered as a purely geometric 

process, whose purpose is to smooth out irregularities of a Riemannian manifold, the Ricci 

flow itself contains in it evolutionary processes that can be applied to explain physical 

phenomena. For example, consider the case of neckpinchings that arise from an evolution 

Ricci flow. It is a remarkable fact that the Ricci flow does not give rise to neckpinches on 

two-dimensional manifolds, but neckpinchings do happen in three-dimensional manifolds, as 

illustrated in two-dimensional space in Figure 1 below [4,5] 

 

 

Figure 1 

The neckpinching process can be used to explain the process of radiation of a photon from an 

atom as a geometrical process. Furthermore, if the radiation is a neckpinching process than 

quantum particles must exist as three-dimensional manifolds and this leads to the possibility 



to classify elementary particles as Thurston geometries [6,7]. However, there are problems 

with the form of the Ricci flow given in Equation (6). First, the Ricci flow given in Equation 

(6) is not a tensorial equation therefore it does not satisfy the principle of relativity and 

therefore cannot be applied to all coordinate systems. Second, the Ricci flow given in 

Equation (6) becomes a tensorial equation only when we restrict the coordinate 

transformations to those that are time-independent and this can only result in non-relativistic 

theories [3]. In the following we will discuss how this can be overcome by formulating a 

covariant Ricci flow that is invariant under all coordinate transformations instead of invariant 

only under coordinate transformations that are time-independent. 

It is shown in differential geometry that besides the derivatives with respect to affine 

connections, Lie derivatives are also invariant under coordinate transformations on a 

differentiable manifold. For clarity, we first outline how the Lie derivatives are introduced 

into differential geometry [8]. On a manifold  , consider a congruence of curves given by 

         on which a tangent vector field        along the curve can be defined. If a 

tangent vector field can be defined for every curve in the congruence then a vector field    

can be established over the whole manifold. Inversely, a congruence of curves can be 

obtained from a given non-zero vector field defined over a differentiable manifold. Now a 

tensor field    
      can be differentiated by using the vector field   . First we use the 

congruence of curves to drag the tensor at some point  ,    
     , along the curve passing 

through   to some neighbouring point   and then compare the dragged-along tensor with the 

tensor already at  ,    
     , as shown in Figure 2 

 

Figure 2 

 

Therefore, a derivative can be defined by subtracting the dragged-along tensor    
       and 

the tensor at  , which is    
     , as follows 

     
         

    

   
         

      

  
                                                                                                

The following results can be obtained: 



The Lie derivative of a scalar field   

                                                                                                                                                      

The Lie derivative of a covariant vector field    

                 
                                                                                                                         

The Lie derivative of a contravariant vector field    

   
       

       
                                                                                                                     

The Lie derivative of a general tensor field    
   

     
          

      
  
   

      
     

                                                                        

In particular, for the case of a covariant metric tensor     we have 

                    
        

                                                                                       

Besides the important properties of being linear, satisfying the product rule for differentiation 

and commuting with contraction, the Lie differentiation with respect to a vector field   also 

preserves the type of a tensor. Since the Lie derivative of a covariant metric tensor of second 

rank is also a covariant tensor of second rank we may propose the following tensor equation 

                                                                                                                                                  

where   is a dimensional constant. Using Equation (12), Equation (13) also can be written as 

              
        

                                                                                            

As an illustration, consider the case when the vector field    is the gradient of a scalar 

function   and satisfies the condition 

                                                                                                                                                  

then Equation (14) reduces to a homothetic Ricci soliton equation 

                                                                                                                                    

where   is the homothetic constant. If    , then the soliton is shrinking if    , the soliton 

is expanding if     and the soliton is static if    . An example of a static gradient Ricci 

soliton is the cigar soliton                  on the two-dimensional space    with the 

metric is given by the relation                         and the vector field 

                 [4,5].  

Mathematically, the covariant flow given in Equation (14) can be reduced to the Ricci flow 

given in Equation (6) if the vector field    can be smoothly assigned values in the form 



             , where    is a constant temporal component of the vector field. In this case 

we obtain the form of the Ricci flow given in Equation (6) as 

                                                                                                                                               

Physically, Equation (17) can be explained using commoving synchronous coordinate 

systems, as described in Gravitation [9]. First we choose a homogeneous three-dimensional 

spatial manifold   formed by some fluid substance, which is a hypersurface, and then assign 

a coordinate time   to all events on the manifold and set up a spatial coordinate system   , 

        on  . These spatial coordinates propagate off   and throughout all spacetime by 

means of the world lines. The spatial coordinates are then considered to be comoving if they 

are assigned to events at which the world line intersects the hypersurface  . Because the 

hypersurfaces   are given by the condition           , the spatial basis vector     , 

        at any given event are tangent to the hypersurface and the temporal basis vector 

     is tangent to the world line. In this case, the temporal coordinate is the proper time of 

the world line and is the four-velocity of the motion of the fluid substance that form the three-

dimensional spatial manifold.  

 

References 

[1] Vu B. Ho, Geometrical and Topological Methods in Classical and Quantum Physics 

(PhD thesis, Monash University, 1996). 

[2] Vu B Ho, Spacetime Structures of Quantum Particles (Preprint, ResearchGate, 2017), 

viXra 1708.0192v1. 

[3] Vu B Ho, A Derivation of the Ricci Flow (Preprint, ResearchGate, 2017), viXra 

1708.0191v1. 

[4] Huai-Dong Cao and Xi-Ping Zhu, A Complete Proof of the Poincaré and Geometrization 

Conjectures-Application of the Hamilton-Perelman Theory of the Ricci Flow, Asian J. Math., 

Vol 10, No. 2, 165-492, June 2006.  

[5] Nick Sheridan, Hamilton’s Ricci Flow (Honours Thesis, Department of Mathematics and 

Statistics, The University of Melbourne, 2006). 

[6] William P. Thurston, The Geometry and Topology of Three-Manifolds, Electronic version 

1.1 March 2002. 

[7] Vu B Ho, On the Physical Character of the Ricci Flow and the Fundamental Structures of 

Elementary Particles (Preprint, ResearchGate, 2017). 

[8] Ray D’Inverno, Introducing Einstein’s Relativity (Clarendon Press, Oxford, 1992). 

[9] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, (W. H. Freeman and 

Company, New York, 1971). 


