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Abstract

This submission demonstrates how to use the analytic class number
formula to express certain quotients of Dedekind’s Eta function as a unit
raised to the power of a quoteint of class numbers, for particular number
fields. It includes a loose derivation for some special cases of reciprocity
laws and the Fourier series of particular Eisenstein series.

1 Gauss Sums and Reciprocity

1.1 Preliminaries

Consider the field

Z/pZ

It is known when p is a prime, the multiplicative group

(Z/pZ)× 'Zp−1

is isomorphic to the cyclic group of order p− 1, which implies a single non-zero
α in the multiplicative group generates the whole group. A Dirichlet Character,
χp, is a multiplicative group homomorphism

χp : Z/pZ 7→C×

where p indicates the modulus. By fermats little thorem,

αp ≡α (mod p)

αp−1 ≡1 (mod p)
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which tells us the group homomorphism χ

χp(α)p−1 = 1 =⇒ χp(α) = ζkp−1

for some integer k and ζp−1 a p−1’th primitive root of unity, giving p−1 distinct
flavors for the characters χp. The trivial homomorphism

χp(n) =1

for a non-zero n in Z/pZ is known as the trivial character. Regardless of the
character, χp(p) is always zero.

1.2 Orthogonality of characters

Let c(χp) be the constant defined by

c(χp) =
∑

n∈Z/pZ

χp(n)

Then the following holds on c;

c(χp) =

{
0 if χ is not the trivial character

p− 1 if χis the trivial character

Proof
Assume χ is trivial. Then c(χp) is just∑

n∈(Z/pZ)×

1 =p− 1

In other words, it counts the number of non-zero elements in Z/pZ.

Assume χ is non-trivial. Consider the map

n 7→α · n

It is one to one and onto for n and α elements of (Z/pZ)× and α non-zero. Since
χ is non-trivial, that means there exists a non-zero α such that

χp(α) 6=1
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Now consider the quantity

χp(α) · c(χp) = c′(χp)

It can be rewritten as the following sums

c′(χp) =χp(α) ·
∑

n∈(Z/pZ)×

χp(n)

∑
n∈(Z/pZ)×

χp(α) · χp(n) =
∑

n∈(Z/pZ)×

χp(n · α)

∑
n∈(Z/pZ)×

χp(n · α) =
∑

n∈(Z/pZ)×

χp(n)

where the second summation equality holds because χ is a homormorphism
under multiplication and the last summation equality holds because the multi-
plication map by α affects the sum only by rearrangement of the order of the
terms. This gives

χp(α) · c(χp) = c(χp) =⇒ c(χp) = 0

since α can be taken as a generator of the multiplicative group, which forces
χp(α) to never be equal to 1 if χp is non-trivial.

1.3 Gauss Sum properties

A Gauss Sum of a character χp and modulus p is defined to be

τ(χp) =
∑

n∈(Z/pZ)×

χp(n) · ζnp

which is usually seen alongside with a similar sum

τ(χp, v) =
∑

n∈(Z/pZ)×

χp(n) · ζv·np

where v is taken to be an integer. τ(χp) is the Gauss Sum of χp. The character
χp here will never be considered to be the trivial character.

For the latter sum under the restrictions on v and χ, the sum obeys

τ(χp, v) =χ̄p(v) · τ(χp)
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where χ̄p is the conjugate of χp.

Proof

Assume

v ≡0 (mod p)

This gives

τ(χp, 0) =
∑

n∈(Z/pZ)×

χp(n) · ζ0·n
p

=
∑

n∈(Z/pZ)×

χp(n)

=0

=χ̄p(0) · τ(χp)

which holds due to the orthogonality of χp non-trivial and

χp(p) =χp(0)

0̄ =0

Now, assume

v 6= 0 (mod p)

which implies

χp(v) 6=0

as well as the multiplication map by v being one to one and onto within Z/pZ.
As of right now, we have

τ(χp, v) =χp(v) · χ̄p(v) · τ(χp, v)

=χ̄p(v) ·
∑

n∈(Z/pZ)×

χp(n · v) · ζv·np

=χ̄p(v) ·
∑

m∈(Z/pZ)×

χp(m) · ζmp

=χ̄p(v) · τ(χp)
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Although simple, the property of τ(χp, v) just proven is important when work-
ing within finite rings
Along with the properties investigated on τ , it also obeys

| τ(χp) |2=p

where | · | is the absolute value of a complex number ·.

Proof

The norm squared of τ can be manipulated from the sum to yield

| τ(χp) |2=τ̄(χp) · τ(χp)

=
( ∑
n∈(Z/pZ)×

χp(n) · ζ ·np
)
·
( ∑
n∈(Z/pZ)×

χp(n) · ζnp
)

=
∑

(m,n)∈(Z/pZ)2×

χ̄p(n)χp(m) · ζm−np

where

(Z/pZ)2×

is the cartesian product of (Z/pZ)× with itself. Since n is always non-zero in
Z/pZ within the sum, we can sum over the multiplication map

(m,n) 7→(n ·m,n)

to give∑
(m,n)∈(Z/pZ)2×

χ̄p(n)χp(m) · ζm−np =
∑

(m,n)∈(Z/pZ)2×

χ̄p(n) · χp(n)χp(m) · ζm·n−np

=
∑

(m,n)∈(Z/pZ)2×

χp(m) · ζn·(m−1)
p

=

p−1∑
m=1

χp(m)

p−1∑
n=1

ζn·(m−1)
p
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The last double sum can be manipulated even further to give

p−1∑
m=1

χp(m)

p−1∑
n=1

ζn·(m−1)
p =

p−1∑
m=1

χp(m) ·
(

(

p∑
n=1

ζn·(m−1)
p )− 1

)
=
( p−1∑
m=1

χp(m) ·
p∑

n=1

ζn·(m−1)
p

)
−
( ∑
m∈(Z/pZ)×

χp(m)
)

=

p−1∑
m=1

χp(m)

p∑
n=1

ζn·(m−1)
p

where the last summation equality holds because of the orthogonality of a non-
trivial character. Now, the interior sum of the last double sum obeys

p∑
n=1

ζn·(m−1)
p =

{
p if n · (m− 1) ≡ 0 (mod p)

0 else

for n,m integers. This follows from manipulations on

p∑
n=1

ζv·np

and by letting v be equal to n · (m− 1). Now, since n is non-zero in Z/pZ, this
means that (m − 1) has to be 0 in Z/pZ for the interior sum to be non-zero.
This happens only when m = 1. The sum now reads

p−1∑
m=1

χp(m)

p∑
n=1

ζn·(m−1)
p =χp(1)p+

p−1∑
m=2

χp(m)

p∑
n=1

0

=p

since χp(1) is always 1, which folllows easily by just squaring 1. This completes
the proof of

| τ(χp) |2=p

for χ a non-trivial character of prime modulus p.
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1.4 Gauss Sums and some Reciprocity

Gauss Sums have some significance in reciprocity. For example, consider the
residue character on odd primes p, q(q

p

)
2

=q
p−1
2 (mod p)

This character is also known as the Legendre Symbol. When p is fixed and
q is variable, then the residue symbol becomes the unique quadratic character
defined by

χp : N→C×

χp(α) =− 1

for a generator α of the multiplicative group (Z/pZ)×. It is of more interest
when q is fixed and p is variable, especially when trying to determine how a
rational prime ideal (p) within the ideals of a quadratic field Q(

√
q) factors.

This can be reformulated as(q
p

)
2

= 1 =⇒ (p) = p · p̄(q
p

)
2

= −1 =⇒ (p) is a prime ideal

It turns out if q is fixed and p is variable, then the symbol is wholly defined by
the residue class p falls in within either the ring Z/qZ or Z/4qZ.

1.5 Quadratic Reciprocity

The law of quadratic reciprocity precisely states(p
q

)
2
·
(q
p

)
2

=(−1)
p−1
2 ·

q−1
2

for odd primes p, q and (2

p

)
2

=χ8(p)
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where χ8 is a non-trivial character (mod 8) with

χ8(±1) =1

χ8(±3) =− 1

Proof

Assume q = 2. Consider the character on (Z/8Z)× defined by

χ8(±1) =1

χ8(±3) =− 1

χ8(2) =0

Then the Gauss Sum of this character has the following expression

τ(χ8) =

7∑
n=1

χ8(n)ζn8

=2
√

2

While working within the cyclotomic field Z(ζ8) modulo a prime p, the gauss
sum of this character behaves in an interesting manner under the map

α :7→αp

Precisely, while working in Z(ζ8)/pZ(ζ8)

τp(χ8) =(2
√

2)p

=2 · (
√

2)p

=2
p−1
2 (2
√

2)

=
(2

p

)
2
· τ(χ8)

8



But if we consider the property within (mod p)

(a+ b)p =ap + bp (mod p)

then the Gauss Sum under this map also yields

τp(χ8) =
( 7∑
n=1

χ8(n)ζn8

)p
=

7∑
n=1

χp8(n)ζp·n8

=χ8(p) ·
7∑

n=1

χ8(n)ζn8

Which is due to the fact that (±1)p = ±1, since χ8 only takes those values...
as well as the properties established earlier on τ(χq, v)! This gives the following
equality; (2

p

)
2
· τ(χ8) = χ8(p) · τ(χ8) =⇒

(2

p

)
2

= χ8(p)

In general for odd primes p, q, the law of quadratic reciprocity can be proven
by considering the Quadratic Gauss Sum

τ(χp) =
∑

n∈Z/pZ

χp(n)ζnp

in the setting of

Z(ζp)/qZ(ζp)

of the character χp, which happens to coincide with the symbol

χp(q) =
(q
p

)
2
.

The absolute value squared of this quantity

| τ(χp) |2=χp(−1) · τ(χp) · τ(χ̄p)

=χp(−1) · τ2(χp)

=p
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where the second to last equality holds due to the property of χp is a purely real
character, hence being its own conjugate, as well as the property of τ(χp, v).
Now, within Z(ζp)/qZ(ζp), this particular quantity under the map

α :7→αq

satisfies

τ q(χp) ≡
(
τ2(χp)

) q−1
2 · τ(χp)

≡
(
χp(−1) · p

) q−1
2 · τ(χp)

≡(−1)
p−1
2 ·

q−1
2 · p

q−1
2 · τ(χp)

≡(−1)
p−1
2 ·

q−1
2 ·

(p
q

)
2
· τ (mod q)

where the last equality holds since this was all done in a finite ring where the
prime q = 0, as well as

χp(−1) =
(−1

p

)
2

=(−1)
p−1
2

It seems that the power map ’dislodges’ the residue symbol from the Gauss
Sum. Like done with the q = 2 case, the particular quantity can be seen from
the point of view of

τ q(χp) =
( ∑
n∈Z/pZ

χp(n) · ζnp
)q

=
∑

n∈Z/pZ

χqp(n) · ζq·np

=τ(χp, q)

=χ̄p(q) · τ(χp)

=χp(q) · τ(χp)

=
(q
p

)
2
· τ

which holds again due to χp a real character and the property on τ(χp, v)
established earlier. Both reformulations of the same particular quantity give
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the relationship

(−1)
p−1
2 ·

q−1
2 ·

(p
q

)
2

=
(q
p

)
2

which can be polished to give the standard formulation of Quadratic Reciprocity;(p
q

)
2
·
(q
p

)
2

=(−1)
p−1
2 ·

q−1
2

1.5.1 Gauss Sums and some Cubic Symbols

Here, some Cubic Reciprocity will be dealt with.
Let

p ≡ q ≡ 1 (mod 3)

be primes. Let

π, θ ∈Z(ζ3)

such that

| π |2=p

| θ |2=q

which are guaranteed to exist since Z(ζ3) is a PID and primes of the form 3k+1
split into two quadratic integers within this ring. Let( θ

π

)
3

=θ
Nπ−1

3 (mod π)

=θ
p−1
3 (mod π)

∈{1, ζ3, ζ2
3}

be the Cubic Residue Symbol and its image in Z(ζ3). Then there is a
reciprocity law along the lines of(h(π)

θ

)
3

=
( q
π̄

)
3
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where h satisfies

h(π) =
π̄

π

where π−1 is taken to be the multiplicative inverse of π modulo θ when present
within the residue symbol, and π̄ is the conjugate of π.

There is some ambiguity due to the presence of 6 units within Z(ζ3), precisely

{±1,±ζ3,±ζ2
3}

which can change the value of composition of h; the character
( ·̄
·

)
, and the

residue symbol (character),
( ·
θ

)
3
. For now the unit ambiguity will be ignored.

Proof

Since p is a 3k + 1 prime, there exists a pair of cubic Dirichlet Characters
of modulus p, conjugate to each other, such that

χp(α) =ζ3

for α a generator of (Z/pZ)×. Similar to the quadratic character, the cubic
residue symbol with a bottom index of either π or π̄, and top index of α coin-
cides, with some ambiguity, with χp.

This proof will also be like that of the proof of the Law of Quadratic Reci-
procity, by using a Gauss Sum to try to dislodge two different residue symbol
expressions.

Let

τ(χp) =
∑

n∈Z/pZ

χp(n)ζnp

where χp is a cubic character. Since τ is a Z-linear combination of roots of unity
of the form

χp(n) · ζnp =ζk3 ζ
n
p

=ζk
′

3p
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this implies

τ(χp) ∈Z(ζ3p)

Now, any element σk of the group

Aut(Q(ζ3p)/Q(ζ3))

which sends

σk : ζ3 7→ζ3
σk : ζp 7→ζkp

acts on τ as

σk(τ) =σk
( ∑
n∈Z/pZ

χp(n)ζnp

)
=

∑
n∈Z/pZ

χp(n) · σk(ζnp )

=
∑

n∈Z/pZ

χp(n)ζk·np

=χ̄p(k) · τ

Any σ in Aut(Q(ζ3p)/Q(ζ3)) fixes χp(n) for any n since χ is a cubic character.
The last equality holds due to the properties established on τ(χ, v) earlier. Since
τ is a Gauss Sum of a cubic character, then by cubing τ and acting on it by a
σ, it yields

σk(τ3) =
(
σk(τ)

)3

=
(
χp(k)τ

)3

=τ3

Which implies

τ3 ∈ Z(ζ3)

Precisely, τ3 is an Eisenstein Integer.
Let

τ3 =ε
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Then we have

| ε |2=| τ3 |2

=p3

where the last equality holds due to the absolute value property on τ . The field
norm of Z(ζ3), N, coinciding with the norm squared of a complex number as
well as Z(ζ3) being a PID both imply

τ3 =π̄l · πr

r + l =3

r, l ∈Z+

If one of r, l is zero and the other 3, then τ would have to be of the form

τ(χp) =ζk3π

which would be completely fixed under any

σ ∈Aut(Q(ζ3p/Q(ζ3))

which is a contradiction since

σα(τ) = χ̄p(α)τ(χp)

=ζ2
3τ(χp)

where α is a generator of (Z/pZ)× and χp(α) was chosen to be ζ3. Hence, since
there exists a σ that does not fix τ(χp), this implies

τ(χp) =π̄π2 or π̄2π

=pπ or pπ̄

One point of ambiguity is deciding this.

With a fuzzy picture of what τ3(χp) looks like in Z(ζ3), it is now time to work
with the power map

fq : α 7→αq
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in some suitable quotient ring, where q is a 3k + 1 prime satisfying

Nθ =q

θ ∈Z(ζ3)

The ring of choice of course is

R =Z(ζ3p)/θZ(ζ3p)

All within R, where q = 0, the map fq acts on τ(χp) as follows;

fq(τ(χp)) =τ q(χp)

=
(
τ3(χp)

) q−1
3 · τ(χp)

=
(p · π

θ

)
3
· τ(χp)

where whatever prime that pops out from the cubing of the Gauss Sum shall be
denoted as π and its conjugate as π̄. Just like with the Quadratic Character,
the power map dislodges an expression involving the residue symbol. Simulta-
neously, fq acting on τ also yields

fq(τ(χp)) =
( ∑
n∈(Z/pZ)×

χp(n)ζnp

)q
=

∑
n∈(Z/pZ)×

χqp(n) · ζn·qp

=
∑

n∈(Z/pZ)×

χp(n)ζn·qp

=χ̄p(q) · τ(χp)

=
(Nθ

π̄

)
3
· τp or

(Nθ

π

)
3
· τp

where the ambiguity in the last line is due to uncertainty of which Eisenstein
prime, π or π̄, should be used as the modulus. The goal of determining this is
somewhat irrelevant for now. Now, by refining the top index premier dislodged
residue symbol

p · π =π̄ · π2

=π̄ · π
3

π
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it yields a nicer expression within the residue symbol(p · π
θ

)
3

=
(π3

θ

)
3
·
( π̄
π

θ

)
3

=
(π
θ

)3

3
·
( π̄
π

θ

)
3

= ·
( π̄
π

θ

)
3

=
(h(π)

θ

)
3

and by equating the two results of the image of τ(χp) under fq within the
quotient ring Z(ζ3p)/qZ(ζ3p) and double checking using the Law of Cubic Reci-
procity, it gives (h(π)

θ

)
3

=
( q
π̄

)
3

for primes p, q of the form 3k+ 1. Regardless though of which prime appears in
the bottom index of the RHS just above, what is of interest are polynomials of
the form

L(X) =(1−
( q
π̄

)
3
·X) · (1−

( q
π

)
3
·X)

where q is a prime of the form 9k + 1 in order to rid the residue symbol of
the unit problem and the ambiguity of choosing the ’proper’ character. Also of
interest is replacing q by a composite number n of the form 9k+1 with no prime
factors of the form 3k+ 2. This too eliminates any ambiguity of units throwing
off the value of the residue symbol, although there is still some ambiguity when
it comes to properly choosing the proper character symbol to place within the
product representation of the polynomial ELp,n(X).

1.5.2 Gauss Sum’s and some Quartic Symbols

Just like with Cubic Gauss Sums and some Cubic Residue there is ambiguity.
It can be shown using very similar methods that( π̄

π

θ

)
4

=
(Nθ

π̄

)
4

or
(Nθ

π

)
4

=
(h(π)

θ

)
4
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for π and θ Gaussian Primes with non-square prime norms p, q, respectively,
with residue symbol defined as

( ·
θ

)
4

=
(
·
)Nθ−1

4 (mod θ)
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2 Eisenstein Series

2.1 Introduction to Eisenstein Series

The classical Eisenstein Series are defined as

G2k(τ) =
∑

(m,n)∈Z2\(0,0)

1

(m+ nτ)2k

where k is taken to be a fixed positive integer greater than or equal to 1 and
G2k(τ) is taken to be a function of τ . This sum definition is a sum over the
complex lattice Λ;

Λ ={m+ nτ | m,n ∈ Z}

When k is strictly greater than 1, the G2k(τ) satisfies

G2k(
aτ + b

cτ + d
) =(cτ + d)2k ·G2k(τ)

when a, b, c, d are integers satisfying ad−bc = 1. When k is 1, it does not satisfy
the above transformation formula due to conditional convergence of the sum. It
is interesting to see that G2k(τ) admits a fourier series. Particularly,

G2k(τ) =2ζ(2k) + 2
(2πı)2k

(2k − 1)!
·
∑
n≥1

σ2k−1(n)e2πınτ

where

σ2k−1(n) =
∑
d|n

d2k−1

for d | n meaning ’d divides n’ and ζ(s) Riemann’s Zeta Function.

Proof

Using the formula ∑
n∈Z

1

τ + n
=πcot(πτ)
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where the sum is taken as∑
n∈Z

1

τ + n
= lim
T→∞

T∑
n=−T

1

τ + n

to assure convergence. Using the exponential form of πcot(πτ), it yields the
fourier series

πcot(πτ) =− πı− 2πı

e−2πıτ − 1

=− πı− 2πı
∑
n≥1

e2πınτ

which gives the equality∑
n∈Z

1

τ + n
=− πı− 2πı

∑
n≥1

e2πınτ

By differentiating both sides 2k − 1 times, for k a positive integer, this yields

d2k−1

dτ2k−1
(
∑
n∈Z

1

τ + n
) =

∑
n∈Z

d2k−1

dτ2k−1
(τ + n)−1

=(−1)2k−1(2k − 1)! ·
∑
n∈Z

1

(τ + n)2k

=
d2k−1

dτ2k−1
(−πı− 2πı

∑
n≥1

e2πınτ )

=− (2πı)2k ·
∑
n≥1

n2k−1e2πınτ

The right hand side of the first equality, particularly the sum

(−1)2k−1(2k − 1)! ·
∑
n∈Z

1

(τ + n)2k

is beginning to look like the definition for G2k(τ). Refining some scalars on the
sum yields a fourier series∑

n∈Z

1

(τ + n)2k
=

(2πı)2k

(2k − 1)!
·
∑
n≥1

n2k−1e2πınτ

=f2k(τ)
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which is beginning to look like the fourier series mentioned for G2k. Since

cot(−z) =− cot(z)

it follows the (2k − 1)th derivative of cotangent is an even function if k is an
integer, and so is any scalar multiple of it; aka f2k(τ) = f2k(−τ). Remember
this. By breaking up the sum

G2k(τ) =
∑

(m,n)∈Z2\(0,0)

1

(m+ nτ)2k

=
( ∑
m∈Z\0

f2k(mτ)
)

+
( ∑
n∈Z\0

1

n2k

)
=2ζ(2k) + 2

∑
m≥1

f2k(mτ)

Using the fourier series of f2k(τ), this gives us∑
m≥1

f2k(mτ) ≡
∑
m≥1

∑
n≥1

n2k−1e2πın·mτ

≡
∑
n≥1

c2k−1(n)e2πınτ

where

c2k−1(n) =
∑
d·k=n

d2k−1

=σ2k−1(n)

is the Sum of Divisors function of power 2k − 1, and the equivalence, ≡,

was used to indicate an ommision of the scalar
(2πı)2k

(2k − 1)!
. Putting all the pieces

together, this is enough to show

G2k(τ) =2ζ(2k) + 2
(2πı)2k

(2k − 1)!
·
∑
n≥1

σ2k−1(n)e2πınτ
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2.2 Twisted Eisenstein Series

It is most natural to follow up on the classical Eisenstein Series with their twisted
cousins.
Let the Eisenstein Series of a primitive Dirichlet Character χp of modulus p be
defined as the Fourier Series

G2k(χp, τ) =
2 · τ(χ̄p)

(2k − 1)!
·
(2πı

p

)2k

·
∑
n≥1

σ2k−1(n)χp(n)e
2πınτ
p

where τ(χ̄p) is a scalar defined by

τ(χp) =
∑

n∈Z/pZ

χp(n)ζnp

ζp =e
2πı
p

which is also known as the Gauss Sum of the character χp.
Then this twisted Eisenstein Series admits the definition

G2k(χp, τ) =p−2k
∑

n∈Z/pZ

χ̄p(n)G2k(
τ + n

p
)

where G2k(τ) is the classical Eisenstein series of weight 2k.

Proof

The proof is straightforward. All it takes is to expand

p−2k
∑

n∈Z/pZ

χ̄p(n)G2k(
τ + n

p
)
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as a double sum by rewriting G2k as a Fourier Series. It looks like

p−2k
∑

n∈Z/pZ

χ̄p(n)G2k(
τ + n

p
) =p−2k

∑
l∈Z/pZ

χ̄p(l) ·
(

2ζ(2k) + 2
(2πı)2k

(2k − 1)!
·
∑
n≥1

σ2k−1(n)e2πın·( τ+lp )
)

=p−2k
∑

l∈Z/pZ

χ̄p(l) ·
(

2
(2πı)2k

(2k − 1)!
·
∑
n≥1

σ2k−1(n)e2πın·( τ+lp )
)

=p−2k · 2 (2πı)2k

(2k − 1)!

∑
l∈Z/pZ

χ̄p(l) ·
(∑
n≥1

σ2k−1(n)e2πın·( τ+lp )
)

=
2

(2k − 1)!
·
(2πı

p

)2k

·
∑
n≥1

σ2k−1(n)e
2πınτ
p

∑
l∈Z/pZ

(
χ̄p(l)ζ

n·l
p

)
=

2

(2k − 1)!
·
(2πı

p

)2k

·
∑
n≥1

τ(χ̄p, n)σ2k−1(n)e
2πınτ
p

=
2 · τ(χ̄p)

(2k − 1)!
·
(2πı

p

)2k

·
∑
n≥1

σ2k−1(n)χp(n)e
2πınτ
p

Where in the second line, The constant coefficient ζ(2k) drops due to the or-
thogonality property of a non-trivial Dirichlet Character χ, and in the last line
the property of

τ(χ̄p, v) = χp(v) · τ(χ̄p), v ∈ Z

was used.
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2.2.1 Twisted Eisenstein Series as a Lattice Sum

The twisted Eisenstein Series admits the lattice sum

G2k(χp, τ) =
∑

(m,n)∈Z2\0

χ̄p(m) · χp(n)

(m+ nτ)2k

Proof

The approach taken here is to find a Fourier Series∑
(m,n)∈Z2\0

χ̄p(m) · χp(n)

(m+ nτ)2k
=
∑
n≥1

c2k−1(n)e
2πınτ
p

and show that

c2k−1(n) =
2 · τ(χ̄p)

(2k − 1)!
·
(2πı

p

)2k

· σ2k−1(n)χp(n)

which would imply the Twisted Eisenstein Series Lattice sum representation.
This is best accomplished by an approach done for the lattice sum of the Clas-
sical Eisenstein Series. For starters, consider∑

m∈Z

χ̄p(m)

m+ τ
=
∑

l∈Z/pZ

∑
m∈Z

χ̄p(l) ·
( 1

p×m+ l + τ

)
=
∑

l∈Z/pZ

χ̄p(l)

p

∑
m∈Z/pZ

1

m+ ( τ+l
p )

=
∑

l∈Z/pZ

χ̄p(l)

p
· πcot

(
π · (τ + l

p
)
)

=
∑

l∈Z/pZ

χ̄p(l)

p

(
− πı− 2πı

∑
m≥1

e2πım( τ+lp )
)
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A quick breath of fresh air is good. Okay, back to summation; I left off at∑
l∈Z/pZ

χ̄p(l)

p

(
− πı− 2πı

∑
m≥1

e2πım( τ+lp )
)

=
∑

l∈Z/pZ

χ̄p(l)

p

(
− 2πı

∑
m≥1

e2πım( τ+lp )
)

=−
(2πı

p

)
·
∑

l∈Z/pZ

∑
m≥1

χ̄p(l)ζ
m·l
p e

2πımτ
p

=− τ(χ̄p) ·
(2πı

p

)
·
∑
m≥1

χp(m)e
2πımτ
p

Whew! This was a lot for me to type out. Okay. This gives a Fourier Series for∑
m∈Z

χ̄p(m)

m+ τ
=− τ(χ̄p) ·

(2πı

p

)
·
∑
m≥1

χp(m)e
2πımτ
p

and by differentiating 2k − 1 times and adjusting the RHS by a scalar, these
steps yield∑

m∈Z

χ̄p(m)

(m+ τ)2k
=

τ(χ̄p)

(2k − 1)!
·
(2πı

p

)2k

·
∑
m≥1

m2k−1χp(m)e
2πımτ
p

=f2k(χp, τ)

while noting

f2k(χp,−τ) =
∑
m∈Z

χ̄p(m)

(m− τ)2k

=
∑
m∈Z

χ̄p(m)

(−m+ τ)2k

=χ̄p(−1) ·
∑
m∈Z

χ̄p(−m)

(−m+ τ)2k

=χ̄p(−1) ·
∑
−m∈Z

χ̄p(m)

(m+ τ)2k

=χ̄p(−1) · f2k(χ̄p, τ)

which is the same as saying ’f2k’ is odd if χ̄p(−1) = −1 or even if χ̄p(−1) = 1.
Either way, it won’t matter. To cap off the proof, we need to compare the
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original ’weighted’ lattice sum to that of a sum over f2k(τ), which looks like∑
(m,n)∈Z2\0

χ̄p(m) · χp(n)

(m+ nτ)2k
=
∑
n∈Z\0

χp(n) · f2k(χp, nτ)

=
∑
n≥1

(
χp(n) · f2k(χp, nτ) + χp(−n) · f2k(χp,−nτ)

)
=
∑
n≥1

(1 + χ̄2
p(−1)) · χp(n) · f2k(χp, nτ)

=2
∑
n≥1

χp(n) · f2k(χp, nτ)

=
2 · τ(χ̄p)

(2k − 1)!
·
(2πı

p

)2k

·
∑
n≥1

∑
m≥1

m2k−1χp(m · n)e
2πınmτ

p

=
2 · τ(χ̄p)

(2k − 1)!
·
(2πı

p

)2k

·
∑
n≥1

χp(n)σ2k−1(n)e
2πınτ
p

=G2k(χp, τ)

where the last equality holds since the fourier series are identical. This completes
the proof.

2.3 Slightly more twisted Eisenstein Series

Consider a similair Eisenstein series defined by the lattice sum

G2k(ψq,Z(α), τ) =
∑

m,n∈Z2\(0,0)

ψ̄q(m+ nα)ψπ(m+ nᾱ)

(m+ nτ)2k

where α is an imaginary quadratic of the form

α =
−1 +

√
−D

2
if D ≡ 3 (mod 4)

α =
√
−D if D ≡ 1 (mod 4)

and ψq is a multiplicative character of modulus q, whether it be a quadratic
integer or a rational one, on the multiplicative group

ψq : (Z(α)/(q))× →C×

satisfying

ψq(γ)ψq(β) =ψq(γβ)
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If the Minimial polynomial of α

f(X) =X2 +D if D ≡ 1 (mod 4)

f(X) =X2 +X +
D + 1

4
if D ≡ 3 (mod 4)

is reducible in Fp and the modulus of the character ψ is an irrational prime
in Z(α) with field norm equal to p, then this twisted Eisenstein series can be
rewritten as

ω · (cτ + d)−2kG2k(ψπ,Z(α),
aτ + b

cτ + d
) =G2k(χp, τ)

for some non-zero scalar ω, the quantity π being precisely the modulus of the
character ψ, and the transformation above satisfies(

a b
c d

)
∈SL(2,Z)

Proof

Consider the matrix and its’ associated linear transformation

γ0 =

(
ᾱ α
1 1

)
where α is a solution to f(X) Modulo p . γ0 has a non-zero determinant in
characteristic p, as long as p does not divide the discriminant of the field

K =Q(α)

γ0 acts on τ as follows;

γ0 ◦ τ =
ᾱτ + α

τ + 1

and within the Eisenstein series, the behavior of the lattice sum looks like

G2k(ψπ,Z(α), γ0 ◦ τ) =(τ + 1)2k ·
∑

m,n∈Z2\(0,0)

ψ̄q(m+ nα)ψπ(m+ nᾱ)(
(m+ nα) + (m+ nᾱ)τ

)2k
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One would like to stop here, rearrange the order of summation, and match it
with that of G2k(χp, τ). Bad news is, the determinant of γ0

| γ0 |=ᾱ− α

=
√

∆K

is not equal to 1. But it is non-zero in characteristic p, which means it can be
modified to give something that can be worked with to rearrange the summation
and match it with G2k(χp, τ). The modified version of γ0, call it γ, is precisely

γ =

(
λα+ 1 α
λ 1

)
where the quantity λ is an integer satisfying

λ−2 ≡∆K (mod p)

The transformation γ was found by taking the transformation γ0, multiplying
the left column by a non-zero element of Z/pZ such that the determinant of
this modified transformation was at least 1 modulo p. From there, an element
of SL(2,Z), the γ presented, was found such that the entries were equivalent to
the modified transformation modulo p. What this all looks like is the following;

χ̄(λ)(λτ + 1)−2k ·G2k(ψπ,Z(α), γ ◦ τ) =G2k(χp, τ)

Where the replacement of the characters is justified since the fields Z/pZ and
O/(π) are isomorphic; both are fields of characteristic p. The only α that will
serve purpose for the remainder of this piece is specifically those for which the
ring of integers

OK =Z(α)

is a Principal Ideal Domain.
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2.4 Eisenstein Series of Weight 2

Consider the Eisenstein Series

G2(χp, τ) =2τ(χ̄p) ·
(2πı

p

)2

·
∑
n≥1

χp(n)σ1(n)e
2πınτ
p

and the accompanied indefinite integral∫
G2(χp, τ)dτ =G0(χp, τ) + c

where c is a constant of integration and G0(χp, τ) is defined as

G0(χp, τ) =2τ(χ̄p) ·
(2πı

p

)
·
∑
n≥1

χp(n)
σ1(n)

n
e

2πınτ
p

Let η(τ) be defined as

η(τ) =e
πıτ
12 ·

∏
n≥1

(
1− e2πın

)

Then the accompanied indefintie integral is satisfies∫
G2(χ, τ)dτ =− 4πı

p
·
∑

p≥n≥1

χ̄p(n)ln
(
η(
τ + n

p
)
)

+ c

where the sum on the RHS is a sum over n and c is a constant of integration
that may or may not differ from the previous c constant.

Proof

The proof will follow by finding the Fourier Series of

−4πı

p
·
∑

p≥n≥1

χ̄p(n)ln
(
η(
τ + n

p
)
)

To start, recall

1

1−X
=
∑
n≥0

Xn =⇒ − ln(1− x) =
∑
n≥1

Xn

n
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for suitable X. The logarithm of η(τ) has the following Fourier series;

−ln
(
η(τ)) =− ln

(
e
πıτ
12 ·

∏
n≥1

(1− e2πınτ )
)

=− πıτ

12
+
∑
n≥1

−ln
(
1− e2πınτ

)
=− πıτ

12
+
∑
n≥1

∑
l≥1

e2πınlτ

l

=− πıτ

12
+
∑
n≥1

∑
l≥1

n ·
(e2πınlτ

l · n

)
=− πıτ

12
+
∑
n≥1

a(m) ·
(e2πımτ

m

)

where the coefficients a(m) are σ1(n).
It doesn’t take much from here to show the equality between the Fourier series.
Now, by twisting the coefficients by a character

−
∑

l∈Z/pZ

χ̄p(l)ln
(
η(
τ + l

p
)
)

=
∑

l∈Z/pZ

χ̄p(l) ·
(
− πı

12

(τ + l

p

)
+
∑
n≥1

σ1(n)

n
e2πın( τ+lp )

)
=−

( ∑
l∈Z/pZ

χ̄p(l)
πıτ

12p

)
−
( πı

12p

∑
l∈Z/pZ

χ̄p(l) · l
)

+
∑
n≥1

σ1(n)

n
e

2πınτ
p

∑
l∈Z/pZ

χ̄p(l)ζ
n·l
p

=c+
∑
n≥1

τ(χ̄p, n) · σ1(n)

n
e

2πınτ
p

=c+ τ(χ̄p) ·
∑
n≥1

χp(n)σ1(n)

n
e

2πınτ
p

Now that a Fourier series is obtained for the particular sum of logarithms of η’s,
it is safe to come to the conclusion

G0(χp, τ) ≡− 4πı

p

∑
l∈Z/pZ

χ̄p(l)ln
(
η
(τ + l

p

))
where the equivalence indicates the difference

G0(χp, τ)− −4πı

p

∑
l∈Z/pZ

χ̄p(l)ln
(
η
(τ + l

p

))
=C

is a constant C.
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3 Application to Dedekind Zeta function residue

3.1 Preface

A lot of the upcoming material found in this portion of this piece is going
to utilise the previous portions. Particular statements, like how the Dedekind
Zeta function of the numberfields considered look like in terms of products of
L-functions, will be given without proof. The purpose of relating the previous
portions is to conceive expressions for particular numerical quantities in terms
of η-quotients and sums of η-quotients.

3.2 Biquadratic Fields

The types of biquadratic field considered here will be those of the form

K =Q(α,
√
p∗)

where the quantity α is the quadratic irrationality defined is taken from the set

S ={
√
−1,
√
−2,
−1 +

√
−3

2
,
−1 +

√
−7

2
,
−1 +

√
−11

2
,
−1 +

√
−19

2
,
−1 +

√
−43

2
,
−1 +

√
−163

2
}

and the quantity p∗ is defined as

p∗ =(−1)
p−1
2 · p

for p a prime where the minimal polynomial of the α in question is reducible
in the finite field Fp, but does not divide the discriminant of Q(α). The set S
is precisely the set of imaginary quadratics for which the ring Z(α) is a UFD,
which implies the Dedekind Zeta function of the field

k =Q(α)

can be written as

ζk(s) =
∑

I⊆Ok

| Ok/I |−s

= w−1
k

∑
α∈Ok\0

| α |−2s

where the former sum is precisely a sum over the non-zero ideals of the whole
integer ring Ok and the latter sum is a sum over the non-zero elements α, and
the former norm is the Ideal norm and the latter is the absolute value of
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the complex number α. The Dedekind Zeta functions, ζk(s) and ζK(s), can be
written as a product of Dirichlet L-functions. The Dirichlet L-functions of a
Dirichlet character χ are defined as

L(χ, s) =
∏
p

1

1− χ(p)
ps

=
∑
n≥1

χ(n)

ns

The explicit formula for the Dedekind Zeta functions are

ζk(s) =ζ(s) · L(χd, s)

ζK(s) =ζ(s) · L(χd, s) · L(χp, s) · L(χd · χp, s)

for d the discriminant of k, and with χd and χp primitive, quadratic characters
of modulus d and p respectively. Of interest is the value

L(ψ, 1)

for an arbitrary, primitive quadratic character ψ. Until further notice, assume
the modulus of ψ is a prime; call it q. The quantity L(ψ, 1) can be given by

L(ψ, 1) =− ln(c)

τ(ψ)

where the quantity τ(ψ) is the Gauss sum of the quadratic character ψ and
the constant c is defined by the quotient of cyclotomic integers

c =
∏

q−1≥l≥1

(1− ζlq)ψ(l)

where the quantity ζq is a q’th root of unity taking the value

ζq =e
2πı
q

Proof
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The value of the L-function at s = 1 is defined as

L(ψ, 1) =
∑
n≥1

ψ(n)

n

The approach to show L(ψ, 1) takes on the expression claimed, it is necessary
to consider the function

−ln(1−X) =
∑
n≥1

Xn

n

where the RHS is well defined for suitable X. Consider the properties

τ(ψ, v) =ψ̄(v)τ(ψ)

=ψ(v)τ(ψ)

where the latter holds since the character ψ takes on purely real values; ±̄1 =
±1. These properties can be used to manipulate the McLaurin series of −ln(1−
X) to yield ∑

q−1≥l≥1

−ψ(l)ln(1− ζlq ·X) =
∑
n≥1

Xn

n

∑
q−1≥l≥1

ψ(l) · ζl·nq

=τ(ψ) ·
∑
n≥1

ψ(n) · X
n

n

The sum of the logarithms of the linear factors can be turned into the product

−
∑

q−1≥l≥1

ψ(l)ln(1− ζlq ·X) =− ln
( ∏
q−1≥l≥1

(
1− ζlq ·X

)ψ(l)
)

By taking X to be 1 and normalizing the RHS by a factor of τ(ψ), this gives

−
ln
(∏

q−1≥l≥1

(
1− ζlq

)ψ(l)
)

τ(ψ)
=
∑
n≥1

ψ(n)

n

=L(ψ, 1)

When the character ψ is an even quadratic character, the quantity c is a
unit in the Quadratic integer ring OF where F is the real quadratic field with
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discriminant ∆F . If the character ψ is odd, then the quantity c is a q’th root of
unity. The value L(ψ, 1) contains information about the integers of F ; namely
Class Number and the generator of the unit group O×F , if F is a real field.

When F is an imaginary quadratic field with an integral basis

OF =Z(α)

then the following relationship holds if the class number hF is equal to 1;

| (2π) · η(α)2 |=exp(−wF · ζ ′F (0))

where η(τ) is the Dedekind Eta function mentioned in the section on Eisenstein
Series. A refined expression can be given as

| η(τ) |=(2π | ∆F |)−
1
4 ·
( ∏

∆F≥l≥1

Γψ(l)(
l

∆F
)
)wF

8

where Γ(n) is the classical Gamma function. This can be found quite easily
with a lack of rigor, but a proof can be established using the Kronecker Limit
Formula.

By itself, this formula for η(α) only works when α is from the set S, up to an
integer term. While it is not clear what can be done for all the other imaginary
quadratic irrationalities, it is possible to coax the quantity

L(χp, 1) · L(χp · χd, 1)

for particular p and d. Recall the expressions for the Dedekind Zeta function of
the biquadratic field of K with restrictions on α and p∗; K is the field

K =Q(α,
√
p∗)

The Dedekind Zeta function of K can be expressed in two ways; one which was
given as

ζK(s) =ζ(s)L(χd, s)L(χp, s)L(χp · χd, s)

The method of extracting a Kronecker Limit formula for L(χp, 1) · L(χp · χd, 1)
relies on rewriting ζK(s) as

ζK(s) =ζk(s) · L(k, χp, s)
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where the function L(k, χp, s) is defined as

L(k, χp, s) =
∏
π

1

1− χp

(
|π|2
)(

|π|
)2s

=w−1
k ·

∑
ω∈Z(α)\0

χp(| ω |2)

| ω |2s

=L(χp, s) · L(χp · χd, s)

where the product in the first line runs over all the prime elements π of Z(α)
and the latter runs over all the non-zero elements ω of Z(α). This is equivalent
to using prime ideals p and ideals o in place of π and ω since

hk =1

implies the ring Z(α) is a PID . By taking s to be 1, the product of the L-values
admits the sum

wkL(χp, 1) · L(χp · χd, 1) =
∑

ω∈Z(α)\0

χp(ω · ω̄)

ω · ω̄

Alternatively, this quantity can be expressed as the following;

wkL(χp, 1) · L(χp · χd, 1) =
(−4πχp(−

√
∆k)

p ·
√
| ∆k |

)
· ln
( ∏
p≥l≥1

η2χp(l)
(γ−1 ◦ α+ l

p

))

For η(τ) the Dedekind Eta function, the quantity γ−1 ◦ α a linear fractional

transformation γ−1 on the quantity α, and the instance of
√

∆k appearing
within the character χp is taken to be a solution in Fp to the equation

x2 =∆k

There is some ambiguity for the η quotient when the character χp is odd; this
can be attributed to the non-vanishing quantity;

c =
−1

p

∑
p≥l≥1

χp(l) · l

6=0
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More will be elaborated in the proof

Proof

A quick recap on the criteria for the primes p considered for an α in S; it doesn’t
divide the discriminant ∆k for k the quadratic field Q(α) and the minimal poly-
nomial of α must be reducible in Fp. Consider the weight two Eisenstein series
of a real, non-trivial character ψ of modulus ’π’

G2(ψπ,Z(α), τ) =
∑

(m,n)∈Z2\(0,0)

ψπ(m+ nα) · ψ(m+ nᾱ)

(m+ nτ)2

for π an element of Z(α) with field norm of p. The character ψπ is ’the same’
as the character quadratic character χp related by

ψπ(m+ nα) =χp
(
m− n(a · b−1)

)
given that π is of the form

π =a+ bα

and the quantity b−1 is the multiplicative inverse of b in the ring Z/pZ. The
product −(a · b−1) is the root chosen within the characters for α, taken from
the solution to the equation

X2 − Tr(α) ·X+ | α |2≡0 (mod p)

with the quantity ᾱ appearing within the characters is taken as the other solu-
tion of the equation.

The integral of G2(ψπ,Z(α), τ) has the following Eisenstein series;∫
G2(ψπ,Z(α), τ)dτ =

∑
(m,n)∈Z2\(0,0)

−ψπ(m+ nα) · ψ(m+ nᾱ)

n · (m+ nτ)

=G0(ψπ,Z(α), τ)
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Evaluating at τ equal to α and refining the lattice sum gives∑
(m,n)∈Z2\(0,0)

−ψπ(m+ nα) · ψ(m+ nᾱ)

n · (m+ nα)
=(ᾱ− α) ·

∑
ω∈Z(α)\0

ψπ(| ω |2)

(ω − ω̄) · ω

=−
√

∆k ·
∑

ω∈Z(α)\0

ψπ(| ω |2)

(ω − ω̄) · ω

=−
√

∆k ·
∑

ω∈Z(α)\0

ψπ(| ω̄ |2)

(ω̄ − ω) · ω̄

=−
√

∆k

2
·
∑

ω∈Z(α)\0

( ψπ(| ω̄ |2)

(ω̄ − ω) · ω̄
+

ψπ(| ω |2)

(ω − ω̄) · ω

)
=−

√
∆k

2
·
∑

ω∈Z(α)\0

(ψπ(| ω |2)

ω − ω̄

)
·
( 1

ω
− 1

ω̄

)
=−

√
∆k

2
·
∑

ω∈Z(α)\0

( ω̄ − ω
ω − ω̄

)
·
(ψπ(| ω |2)

| ω |2
)

=

√
∆k

2
·
∑

ω∈Z(α)\0

ψπ(| ω |2)

| ω |2

To tidy things up, the evaluation at α should be given by( 2√
∆k

)
·G0(ψπ,Z(α), α) =

∑
ω∈Z(α)\0

ψπ(| ω |2)

| ω |2

=wk · L(χp, 1) · L(χp · χd, 1)

This equality is not entirely true; there is an extra step to be taken when χp is
odd, which will be elaborated on further down the line.

For now, recall from the portion on Eisenstein series where the existence of
a single linear fractional transformation γ was shown to relate G2k(ψπ,Z(α), τ)
to G2k(χp, τ) for all positive integer k and fixed triplet (ψπ, χp, α), with re-
strictions on the modulus p not dividing the discriminant ∆k and such. The
relationship was given, in an equivalent form, as

(λτ + 1)−2k ·G2k(ψπ,Z(α), γ ◦ τ) =χp(λ) ·G2k(χp, τ)

where γ was the linear fractional transformation

γ =

(
λα+ 1 α
λ 1

)
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where λ is the quantity

λ ≡
(
ᾱ− α

)−1
(mod p)

≡(−
√

∆k)−1 (mod π)

and the α’s/λ’s appearing within the entries of γ are integers defined using the
modulus π of ψ. By choosing the weight k to be 2 and integrating both sides
of the relationship on the Eisenstein series, this gives∫

G2(ψπ,Z(α), γ ◦ τ)
dτ

(λτ + 1)2
=

∫
G2(ψπ,Z(α), z)dz

=G0(ψπ,Z(α), z) + C

=χp(λ)

∫
G2(χp, τ)dτ

=χp(λ)G0(χp, τ) + C

where in the first line, the substitutions

z =γ ◦ τ
dz

dτ
=

1

(λτ + 1)2

This allows the weight 0 integrals to be related as

G0(ψπ,Z(α), τ) =χ̄p(λ)G0(χp, γ
−1 ◦ τ)

=− 4πı

p

∑
p≥l≥1

χ̄p(λ · l)ln
(
η
(γ−1 ◦ τ + l

p

))
+ C

This works in general for a character χ. When χ is even, the constant of
integration C is to be set to zero. If it is odd, then the constant should be set to
zero but the η quotient in the logarithm should be modified. This gives a way
to evaluate the η quotient in terms of powers of units in some ring of integers
and vice-versa.

3.3 Other units

In the cyclotomic fields, there is an advantage of using the Galois Group and
the Cyclotomic units

1− ζl

1− ζ

37



to conjure the units in the intermediate abelian extensions of said cyclotomic
fields. But what about the generators of the unit group

O×K

where K is a pure cubic field? Not only are there no roots of unity present in
K, but the automorphism group

Gal(K/Q)

is the trivial group. A method like done for real quadratic fields can be used.

3.3.1 Pure Cubic Fields

Let K be the pure cubic field

K =Q( 3
√
p)

where p is a prime of the form 3k+ 1. The method of 9k+ 1 will be worked out
first, and afterwards the method of 3k + 1 not congruent to 1 modulo 9 will be
given.
Let the Dedekind Zeta function of K be defined as follows

ζK(s) =
∏
p

(
1− 1

| p |s
)−1

=ζ(s) · L(ρK , s)

where the product runs over the prime ideals p of the ring of integers of K, ζ(s)
is the classical Zeta function and L(ρK , s) is defined as

L(ρK , s) =
∏
π

(
1− ψ̄β(π) · ψβ(π̄)

(π · π̄)s
)−1

where the product runs over the Primary primes π of Z(
−1 +

√
−3

2
) and

ψ is the cubic character of a prime modulus β with field norm p. Until further

notice, ω will be used in place of
−1 +

√
−3

2
. A prime in Z(ω) is primary if it

is of the form 3k + 2, not a unit multiple of 1− ω, or if it is of the form

π =m+ 3n · ω

It can be shown every prime π and its conjugate π̄ can be written as m+ 3nω
for integers m,n, and any product of primary primes is of the form m + 3nω.
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This is because of the explicit representation the cubic gauss sum of a prime
modulus p takes when cubed in characteristic 3:

τ3(χp) =p · π
=pm+ pnω

≡
∑
p≥l≥1

χ3
p(l) · ζ3l

p (mod 3)

≡
∑
p≥l≥1

ζ3l
p (mod 3)

≡− 1 (mod 3)

which was used for cubic reciprocity. It is straightforward to check that If p
is of the form 9k + 1, then any unit multiple of π works within the character
ψ̄β(π)ψβ(π̄) and there is no need to talk about primary primes. By the Class
Number Formula , the value L(ρK , 1) can be given by

Ress=1ζK(s) =
4πhK ln(εK)

2
√
| ∆K |

=L(ρK , 1)

where hK is the class number of K, εK is the smallest generator of O×K that is
greater than 1 in the real embedding of K, aka the fundamental unit, and ∆K

is the discriminant of K. This can be simplified as

L(ρK , 1) =
2πhK ln(εK)

p
√

27
if p = 9k + 4, 9k + 7

L(ρK , 1) =
2πhK ln(εK)

p
√

3
if p = 9k + 1

which can be rewritten as the sum

2L(ρK , 1) =
∑

α∈Z(3ω)\0

ψ̄β(α) · ψβ(ᾱ)

α · ᾱ
if p = 9k + 4, 9k + 7

6L(ρK , 1) =
∑

α∈Z(ω)\0

ψ̄β(α) · ψβ(ᾱ)

α · ᾱ
if p = 9k + 1

where the presence of the scalars 6 and 2 is attributed to the number of units
in Z(ω) and Z(3ω), respectively. Like done with real quadratic fields, the unit
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will be found by taking advantage of the Eisenstein Series

G0(ψ,Z(ω), τ) = −
∑

(m,n)∈Z2\(0,0)

ψ̄β(m+ nω) · ψβ(m+ nω̄)

n · (m+ nτ)

in the 9k + 1, and something else in the other 3k + 1 cases. For the 9k + 1
primes, the fundamental unit εK can be written as

ε3hK =
∏
p≥l≥1

ηa(l)
(γ−1 ◦ ω + l

p

)

where the exponents a(l) is

a(l) =− Tr
(
χp(λ · l)

)
=−

(
χp(λ · l) + χ̄p(λ · l)

)
and γ is the linear transformation with entries λ and ω defined by

ω2 =− ω − 1 (mod p)

λ =(ω̄ − ω)−1 (mod p)

For the other 3k+ 1 cases, it is not as straightforward. It is necessary to take λ
to be divisble by 3 so that the following matrix, which is not the γ relating the
Eisenstein Series, satisfies (

λ

3
λω + 1

1 3ω

)
∈SL(2,Z)

Once the criteria on λ has been satisfied, it is then possible to express the
fundamental unit in K for all the other prime 3k + 1 cases as

εhK =
∏
p≥l≥1

ηb(l)
(3 · (γ−1 ◦ ω) + l

p

)

where the coefficients b(l) are defined as

b(l) =− Tr(χp(l))

=− (χp(l) + χ̄p(l))
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Unlike with the 9k+ 1 primes, the presence of λ within the characters of b(l) is
omitted for all the other 3k + 1 primes. The usage of 3ω rather than ω forces
b(l) to be

b(l) =− Tr
(
χp(3) · χ̄p(λ · l)

)
=− Tr(χ̄p(

λ

3
· l))

=− Tr(χp(−λ3 · l))

Since χp is the non-trivial cubic character and λ3 is a perfect, non-zero cube in
Z/pZ, the factor of 3λ can be disregarded completely. Also, since every prime

p of the form 3k + 1 is also of the form 2n+ 1, the quantity (−1)
p−1
3 is always

an even power of −1; hence the factor of −1 can also be disregarded.

3.3.2 Pure Quartic Fields

Consider the field

K =Q( 4
√
p)

for p a positive prime of the form 4k + 1. Like with the cubic cases, it will be
necessary to split them into 8k + 1 primes and 8k + 5 primes. The Dedekind
Zeta function of K is of the form

ζK(s) =
∏
p

(
1− 1

| p |s
)−1

=ζ(s) · L(χp, s) · L(ρK , s)

where L(ρK , s) is the L-function defined by the Euler Product

L(ρK , s) =
∏
π

(
1− ψ̄β(π) · ψβ(π̄)

(π · π̄)s
)−1

where the product runs over all of the primary primes π in the ring Z(ı), β is a
Gaussian prime with norm p, and the character ψβ is the quartic, multiplicative
character on O/(β). If p is of the form 8k + 5, then the product excludes the
ramified prime 1 + ı. In the 8k+ 1 case, the ramified prime is included. Let the
group O× be generated by the units

O× = < εk, εK >

where εk is the fundamental unit in the integer ring of the intermediate quadratic
field

k =Q(
√
p)
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and εK is a unit in the integers of OK such that the unit group is indeed spanned
by the two chosen generators. It is true that any quantity ε

′
of the form

ε
′

K =εnk · εK

will make do in place of εK . This will not matter, since εk is invariant under
either choice of real embedding of K into R. Denote the quantity ε∗K as

ε∗K =
εK,+
εK,−

where εK,± is εK in one of the two embeddings of K into R such that ε∗ is

positive and greater than 1. Regardless of choice of ε
′

K , this particular quotient
is fixed! Alternatively, it can be expressed as the quotient

ε∗K =exp
(RegK

Regk

)

where RegE is the Regulator of the field E.
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Using the Class Number Formula , this invariant quantity can be ex-
pressed as

(ε∗K)hK/k =ζnm ·
∏
p≥l≥1

ηc(l)
(2(γ−1 ◦ ı) + l

p

)
if p ≡ 5 (mod 8)

(ε∗K)2hK/k =
∏
p≥l≥1

ηd(l)
(γ−1 ◦ ı+ l

p

)
if p ≡ 1 (mod 8)

where the ζnm is some root of unity, the coefficients c(l), d(l) are given by

c(l) =− Tr(χp(8λ · l)
d(l) =− Tr(χp(λ · l)

and the numerical value hK/k is the quotient

hK/k =
hK
hk

where again, hE is the class number of a number field E.

3.3.3 Pure Sextic Fields

Let K be the field

K =Q(
6

√
(−1)

p−1
2 p)

where p is a prime of the form 3k + 1. If p is of the form 12k + 7 or 12k + 1 ,
then K has exacly 3 pairs of complex embeddings or 2 real embeddings and 2
pairs of complex embeddings, respectively. Let the unit group of K be defined
by the generators

O× = < εk2 , εK > if p ≡ 7 (mod 12)

O× = < εk1 , εk2 , εK > if p ≡ 1 (mod 12)

where the units εk1 and εk2 generate the unit groups of the intermediate quadratic
and cubic unit groups respectively. For p of the form 12k + 7, the intermediate
quadratic extension is imaginary and has a unit group of rank 0; hence there is
no k1 for the corresponding O×.
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The regulators of these fields were computed to be

RegK =Regk2 · RegK/k2 if p ≡ 7 (mod 12)

RegK =Regk1 · Regk2 · RegK/k1·k2 if p ≡ 1 (mod 12)

where the quantities RegK/k2 and RegK/k1·k2 are of the form ln(ε∗K). Similar
to the quartic case, the quantity ε∗K is a positive quantity greater than 1 which
involves a quotient of the non-trivial generator εK in the different embeddings
of K into C. This can be given as

ε∗K =
ε+ρK · ε

+ρ̄
K

ε−ρK · ε
−ρ̄
K

if p ≡ 7 (mod 12)

ε∗K =
(ε−K
ε+K

)3

·
( ε+K · ε+ωK · ε+ω̄K
ε−K · ε

−ω
K · ε−ω̄K

)
if p ≡ 1 (mod 12)

where the quantities ±ω, ±ρ, and their conjugate counterparts are given as

±ω =± −1 +
√
−3

2
ρ =∓ ı · ω

and the quantities εσK is the generator εK embedded into C using the σ embed-
ding. Each ε∗K can be expressed in terms of η quotients as well;(

ε∗K
)3h∗K =c

∏
p≥l≥1

ηa(l)
(γ−1 ◦ ω + l

p

)
if p ≡ 1 (mod 9)

(
ε∗K
)h∗K =c

∏
p≥l≥1

ηb(l)
(3(γ−1 ◦ ω) + l

p

)
if p ≡ 4, 7 (mod 9)

where the coefficients a(l) and b(l) are given by

a(l) =− Tr
(
χ̄p(λ · l)

)
b(l) =− Tr

(
χ̄p(243λ · l)

)
for χp the sextic character of modulus p, the constant c is 1 if p is of the form
4k + 1 and equal to some root of unity ζnm if p is of the form 4k + 3, and the
quantity h∗K is the quotient

h∗K =
hK

hk1 · hk2

where hF is the Class number of an algebraic number field F .
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3.4 Computations of η quotients

Here is a list of example η quotients organized by type of field/character. The
regulators for the respective quadratic fields were computed using Mathematica.

3.4.1 Quadratic Characters

η4
(

13+ı
50

)
· η4
(

23+ı
50

)
η4
(

3+ı
50

)
· η4
(

33+ı
50

) =
(1 +

√
5

2

)8
∏

13≥l≥1

η−2χ13(−4·l)
(−99 + 26l + ı

338

)
=
(3 +

√
13

2

)4

∏
13≥l≥1

η−2χ13(−2·l)
(−45 + 26l +

√
−3

338

)
=
(3 +

√
13

2

)12

∣∣∣ ∏
7≥l≥1

η−2χ7(l)
(−61 + 266l +

√
−3

1862

)∣∣∣ =
(5 +

√
21

2

)3

∣∣∣η6
(

8+
√
−2

18

)
η6
(

2+
√
−2

18

)∣∣∣ =5 + 2
√

6

∣∣∣ η4
(

5+
√
−7

64

)
η4
(

37+
√
−7

64

) ∣∣∣ =8− 3
√

7

∣∣∣η6
(

7+
√
−11

18

)
η6
(

1+
√
−11

18

)∣∣∣ =23 + 4
√

33

η2
(−7+

√
−11

50

)
· η2
(

23+
√
−11

50

)
η2
(

3+
√
−11

50

)
· η2
(

13+
√
−11

50

) =
(1 +

√
5

2

)4

45



3.4.2 Cubic Character

Here, χp is the non-trivial cubic character, or its conjugate and ω is the third

root of unity
−1 +

√
−3

2
. The matrix γ is rather tedious to calculate and so

only the first three 3k + 1 primes were used.∏
7≥l≥1

η−Tr
(
χ7(l)

)(57 + 49l + 3ω

343

)
=
(
4 + 2 · 3

√
7 +

3
√

72
)3

∏
13≥l≥1

η−Tr
(
χ13(l)

)(576 + 2821l + 3ω

36673

)
=
(
94 + 40 · 3

√
13 + 17 · 3

√
132
)3

∏
19≥l≥1

η−Tr
(
χ19(−5·l)

)(293 + 1501l + ω

28519

)
=
(14 + 5 · 3

√
19 + 2 · 3

√
192

3

)3

3.5 Quartic Characters

∣∣∣η2
(

231+2ı
325

)
η2
(

166+2ı
325

)∣∣∣ =6 + 3
√

5 + 2

√
20 + 9

√
5

∏
13≥l≥1

η−Tr
(
χ13(7·l)

)(198 + 377l + 2ı

4901

)
=3862 + 1071

√
13 + 6

√
828516 + 229789

√
13

∏
17≥l≥1

η−Tr
(
χ17(2·l)

)(−38 + 85l + ı

1445

)
=
(

33 + 8
√

17 + 4

√
136 + 33

√
17
)4
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3.5.1 Sextic Characters

The products remain the same as the cubic case, except for when p is also a
4k+3 prime, the absolute value of the product must be taken to account for the
nth root of unity factor. Technically, one could multiply each η(w) factor in the
quotient by η(−w̄) and square the expected unit. This will be relevant later on.
Also, there is a need to replace the cubic character with the sextic character.∣∣∣ ∏

7≥l≥1

η−Tr
(
χ7(6·l)

)(
wl

)∣∣∣ =

(527 + 300 · 3
√

7 + 150 · 3
√

72

2

)
+

6
√

189 ·
(230 + 125 · 3

√
7 + 60

3
√

72

2

)

∏
13≥l≥1

η−Tr
(
χ13(8·l)

)(
wl

)
=

36973 + 15840 · 3
√

13 + 6714 · 3
√

132+6
6
√

13 ·
(
4033 + 1722 · 3

√
13 + 727 · 3

√
132
)

∣∣∣ ∏
19≥l≥1

η−Tr
(
χ19(−5·l)

)(
wl

)∣∣∣ =

((79 + 22 · 3
√

19 + 10 · 3
√

192

3

)
+4

6
√

513 ·
(6 + 2 · 3

√
19 +

3
√

192

3

))3

where the sequence wl is the same as the entries in the lth η factor found for
the cubic characters. The only difference from the cubic case to the sextic case
is the factor c appearing within −Tr

(
χp(c · l)

)
of the exponent and the cubic

character being substituted with the sextic character.
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4 Closing remarks

In the not so distant future, it is expected to apply these methods using weight
1 Eisenstein Series to find the closed form of L-functions of particular elliptic
curves at s = 1. Also, there are conjectures as the behavior of the η-quotient

affiliated to the unit
(
ε∗K
)h∗K when the coefficients in the exponent are changed

from

−Tr
(
χp(c · l)

)
to

−Tr
(
χp(n · c · l)

)
for some n relatively prime to p. The conjectured behavior involves which em-
bedding the unit sits in after the transformation of the exponential coefficient,
up to some root of unity in the situation where the character χ is odd. Under
this conjectures as well as more knowledge of the L-functions of characters of
the form χ̄(π) · χ(π̄), it would allow one to rewrite particular η values in a neat
fashion.

Any feedback or criticism is welcome, as well as pointing out any mistakes.
My email is listed at the top of this submission for the diposal of the reader.

References

[1] Wikipedia contributors. ”Class number formula.” Wikipedia, The Free En-
cyclopedia. 10 Jan. 2017.

[2] Weisstein, Eric W. ”Heegner Number.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/HeegnerNumber.html

48


