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Abstract

We study the dynamics of the gravity field, on arbitrary spacetime
x*, according to the quantum fields theory. Therefore, we suggest a
canonical momentum 7; as a conjugate momentum for the canoni-

ﬁn“. We derive both the canonical gravity

cal gravity field &/ = ee
field and its conjugate momentum from the holonomy U (v, A) of the
complex selfdual connection A%. The canonical momentum 7; is rep-
resented in the Lorentz group. We use it in deriving the path integral
of the gravity field according to the quantum fields theory. We discuss
the situation of the free gravity field (like the electromagnetic field).

We find that this situation takes place in the background spacetime



approximation, the situation of low matter density(weak gravity). We
search for a theory, in which, the gravity field becomes a dynamical
at any energy on arbitrary curved spacetime x*. For that purpose,
we suggest a duality e/ < 37X where the field 27 = e A€’ is the
Area field. That duality allows us to treat both fields e/ and £!7 as
a dynamical on arbitrary curved spacetime. We find that the gravity
field changes to the area field (¢! — /%) in the spacelike region,
while the area field changes to the gravity field (375 — e) in the
timelike region. We find that the tensor product of them, in selfdual
representation, satisfies the reality condition. Finally, we derive the
static potential of exchanging gravitons in scalar and spinor fields, the

Newtonian gravitational potential.

key words: Conjugate momentum, path integral, free gravity propagator,
gravity-area duality, area field.

1 The canonical conjugate momentum 7’ and
the path integral

We search for conditions to have a dynamical gravity field. The problem of
the dynamics in the general relativity is that spacetime is itself a dynami-
cal. It interacts with matter, it is an operator dz*. Therefore, we have to
consider it as a quantum field like the other fields. But if spacetime is itself
a dynamic, where do the fields exist? This problem is solved by considering
that fields exist on each other, not on spacetime[l]. Both the dynamical
curved spacetime x# and the gravity field e/ have the same entity, it is the
gravity. Thus, we study only one of them as a gravity field: é/. We will
see that it is substantially different in the background spacetime, the gravity
field becomes like the usual quantum fields.

As usual in the quantum fields theory, we have to find the canonical con-
jugate momentum 7! (z)(represented in the Lorentz group). We find that it
acts canonically on the local-Lorentz vectors VZ(x) on a closed 3D surface
0 M immersed in arbitrary curved spacetime z* of a manifold M. The closed
surface M is parameterized by three parameters X!, X2 and X3. In a cer-



tain gauge, we consider that they carry the spatial indices of the local-Lorentz
frame X7 : X% X' X2 X3. This local-Lorentz frame is tangent-space on the
curved spacetime z#. We find that the path integral of the gravity field is
independent on this gauge.

Therefore, the exterior derivative operator, on the surface dM, leads to a
change along the norm of that surface, so it causes the change in the time
dX? direction. That allows the 3D surface 6M to extend and have the 4D
local-Lorentz frame X!, which, in our gauge, parameterize the four dimen-
sions z* coordinates of the curved spacetime in the manifold M. With that
the gravity field propagates from one surface to another by the extension of
those surfaces.

To study the gravity field propagation, we suggest canonical states |él > and
‘7?1 > represented in Lorentz group. We use them in deriving the path inte-
gral. We find that there is no propagation on the dynamical spacetime z*.
But in the background spacetime, we find that the gravity field propagates
freely like the electromagnetic fields.

The holonomy of the complex connection A in the quantum gravity is[1,
2]

U(y,A) = TrPe' 4, (1.1)
where the path ordered P is defined in

Sn—1
daxt

peih A = ni:%/ld&]ld@... / dsniA (7 (sn))-iA (7 (1)) = 4" (8) = — =,

where 7(s) is a closed path in the curved spacetime z#. In irreducible self-
dual representation of the Lorentz group, we write A = A'r?, where 7° are
Pauli matrices. The element U(~, A) is invariant under local-Lorentz trans-
formation V! — L(z)V7 and under arbitrary changing of the spacetime
coordinates dz* — A", (z)dz”, therefore the quantum gravity is studied us-
ing it[1].

The complex connection A’ is selfdual of the local-Lorentz spin connection
w(z)[1]:
Al (z) = (P') Wi (2),

1J 7K



where P! are the selfdual projectors. We can write the holonomy U(y, A)
using the real spin connection wﬁj dz* of the local-Lorentz frame, we get

U(vy,w) = TrPe' $yel,

We expect that it has the same properties of U(y, A); satisfies the symme-
tries of GR.

For the free gravity field, we impose the relation:

)IJ 1J K

(wu)” =7K e,

where the conjugate momentum 7’7 () is represented in the Lorentz group
and acts on its vectors. Thus, we consider it as a dynamical operator. By
inserting it in the holonomy U(vy,w), we get

U(y,m,e) = TrPexpi% (mx"y) effdac“.

~

1J

In the free gravity field, we expect that the momentum 7//¥ is antisymmetry.

Thus, we can write it as

7K — ) LI
This is our starting point in studying the dynamics of the quantum gravity.
By that, the holonomy becomes

Uy,me)=TrP expz’j{ (WKIJ) expdat =TrP expi% (eLKIJ) Trerdat.

v v

We write it as

Sn—1

0 1 S1
Z/dsl /dSQ... / dSn (Z.gLKIJﬂ'LeKH’yH) (Sn) (1.6L1K1JJ17TL1€K1M1’.)/H1) (Sn—l)
n=07 0

0

Lnflanl ']n72

(zs JﬂLn,leKn,mn,l"Y”"*l) (31)7

where (ie"™ jmrex, ") (sn) = i€ ymr (s1) exp (Sn) A (sn), with the tan-
gent 3* (s) = %= on the closed path 7(s) in the manifold M.



By using the properties
eryppel /il = 9 ((5?551 — 5@1(551) and ey et Bl = —6(5{1,

the integrals of the holonomy U (7,7, e) become over terms like
...Wl(sj)ei(si)"y“ (55)ds;...m5(s5)el (sp)Y” (s1)dsg... with i # j and i # k.

This holonomy satisfies the general relativity symmetries; invariance under
local Lorentz transformation V! — L?;(2)V” and under arbitrary changing
of the coordinates dz* — A*,(x)dx”. Therefore, we use it in quantum gravity.

Let us suggest another term: fv WKelIf dz*. We expect that it satisfies the
general relativity symmetries if it is integrated over a closed 3D surface 6 M
instead of the closed path 7(s). This is because

1 1
ed*z = Zd%“ A dzt = Z—leaﬂ,,pgdx” A dxf A dz® A dat /3!
is invariant element, thus we can replace wKef dx* with

ﬂKeK”d?’x# = WKGK“eaw,pod:c” A dxf A dz? /3L

With integrating it over a three dimensions closed surface dM, it becomes
invariant under GR transformations because in the free gravity there are no
sources for the gravity field. As a sequence of that, the flux of the Lorentz
vectors is invariant under arbitrary changing of the closed surface 6 M.

The determinant e of the gravity field eﬁ is defined in e = /—g with writing
the metric g, (x) on the curved spacetime z* as

9 () = nueﬁei .

In arbitrary transformations, we have invariant element:
— >
Vi in = \/g_gil...in'
Therefore,

€€ uvpoedx” N dx? A dx? /3! = d?’:cu



is a co-vector, as d,. By that, the integral

U(6M,7,e) :expi%

mel“eewpadx” A dxP A dx? /3! = expi% 7T[€]‘ud3l’u
§M

oM

satisfies the same conditions of the holonomy U (v, A); invariant under local
Lorentz transformation V! — L% (2)V”/ and under arbitrary changing of the
coordinates dz* — A*,(x)dxz”. That relates to the fact that the integrals of
free vector fields over a closed surface dM, in a manifold M, are invariant if
there are no sources for those fields. It is the conservation. The spin connec-
tion w* and so mre*, as vectors, satisfy this fact in the free gravity.

The equation of motion of the gravity field e’ is

Del = de! + wljne’ = 0.

. . . 1J I1J K
With our imposing (w,)"” = mx'"e,,

it becomes
de! = —mnt e nel.
But the tensor

1
N o J_ N_Jgu v _ L (N_J _ N_J\ 7. v
e’ Nel =e, e, dx' Ndz —2(euey eyeu)das A dx

measures the area in the manifold M. Therefore, the changes of the gravity
field around a closed path (rotation) relate to the flux of the momentum 7
through the area determined by that closed path. It is like the magnetic field
generated by straight electric current. Therefore, we have

eV Nel = Area,

de! = —mntjeN Nel — fluz throw this Area.

1JK

For that reason, we suggested that the conjugate momentum = is anti-

symmetry.

Now, in the integral

expz’j{ WIeI“eawpgdx” A dxP A dx? /3!,
§M



we define the canonical gravity field é as

eldPX = 'dX dX?dX? = eltes,y odr’ A da? A dz? /3!,
or

el = eein“ (Xi),
where n#(X?) is the norm to the surface § M. By that, the holonomy U(§M, 7€)
becomes

Uspi(OM, 7, €) = expijg el d*X,

M

where the parameters X! : I = 1,2,3 parameterize the closed 3D surface
OM in the manifold M. As mentioned before, in certain gauge, we con-
sider that the indices I = 1,2, 3 are the spatial indices of the local-Lorentz
frame(l = 0,1,2,3). Therefore, the exterior derivative, on the surface M,
is along the time dX° The time dX° is the direction of the norm on the
surface M (X', X2, X3). We will see that the result of the path integral is
independent on this gauge.

As we suggested before, the integral exp1 f(SM nreld3X satisfies the same
conditions of the holonomy U(v, A); invariant under local-Lorentz transfor-
mation and under arbitrary changing of the coordinates, thus we consider it
as a canonical dynamical element.

Comparing it with

(6| 7) = expi / X 6(X)m(X) /.

a canonical relation in the scalar field ¢ theory on flat spacetime. For h =1,
we suggest canonical states |é/) and |7') with

(" | 7r1>5M = expi/ (X)) (X)dPX,
sM

where 7; is the canonical conjugate momentum of é/. We can write this
relation on the surface dM as

e | 7T1 H< (xn + dxy) | T (a:n)>6M7



with
(&' (zy + dzy,) | 7 (:pn)>5M = expié! (x,+dx,)m(2,)d> X — expié! (z,)m(2,)d> X,

In general, for two points in adjacent surfaces dM; and d Mo, let us rewrite
it as

<éI (y + dzy,) ‘ T (:Un)> = expié! (z, + do,)mr(z,)d* X. (1.2)
Here the variation
e (2, + dw,) — &' ()

is exterior derivative along the time dX° direction, the direction of the norm
on the surface 0 M;. It leads to the propagation. That allows the extension
of the surface: M (X!, X2 X3) — M (X% X' X% X3).

We need to make éd* commutes with é/d3X. For that we write

—ed't = edit A €,,,0d3" N d3P A d3° /4

Epvpo OT7 0FP 077 F
4! 0X'0X7 90Xk 3!

The indexes i, 7 and k, in our gauge, are the local-Lorentz indices for I =

1,2,3. As we assumed before; X! : I =1,2,3 parameterize the closed sur-
face 0 M in the manifold M.

1
= edzt N X = Zéds&“ﬁﬂdSX.

We can rewrite it(in our gauge) as:

1 Ox#

1
4 3
—ed*xr = —edm”n“d X = —46—0

n,d’XdX° = ieegnudB’XdXo.
Comparing it with the term

P X = eI“esu,,pada:” A dxf N dax? /3! = eel”nud‘gX,
we find that it commutes with it:

[6e!,d® X, el d® X dX°] = 0 — [éfd?’X, éd%} —0,

I 5J

where [éﬂ, éy} = 0 . Thus, the operator éd*# takes eigenvalues when it acts

on the states !él>.



The action of the gravity field is[1]
1
Sle,w) = —— /51JKL (e el AR (W) + X" Ae et Aeh).
167G
We consider only the first term:
S(e,w) = c/sUKLeI Ael A REE(w),
where C' is constant. The Riemann curvature is
REE(W) = dw™F + w3 A wME
By using the relation we imposed before:
(w)” = il ek,
the action becomes
S(e, 7T) = C/ [E]JKLGI VAN €J Ad (WMKLGM) + €IJKL€I AN €J N (7TK1KM) €K1 VAN (7TK2ML> GKQ},

or

S(G, 7T) = C/ [E[JKL@I A BJ Ad (WMKLGM) + EIJKL (7TK1KM) (7TK2ML) GI N BJ A GKl A GKQ] .
(1.3)

We get the term d (WMKLeM) from

Y

€]JKLd (GI A GJ A 7TMKL€M)
by assuming that its integral is zero at the infinities. We have
€[JKLd (61 VAN 6J A ’/TMKLeM) —=E€I1JKL (del) N BJ A 7TMKL€M — €[JKL€[ A (de‘]) VAN 7I'MKL€M

+ E[JKLGI N €J Ad (WMKLGM) .

By the rearrangement:

—erkre’ A(de”) A (ma™teM) = —epskr (de”) Ael A (my e

= EJIKL (d6J> A GI VAN WMKLGM,



it becomes
erirLnd (eI Ael A WMKLGM) = 2¢17KL (del)AeJAWMKLeM+5[JKLe[/\eJ/\d (WMKLGM) .
Therefore, we can rewrite the action as
S(e,m) = c/ [—QsUKL (deI) Ael A (WMKLeM) + E1IKL (ﬂ'KlKM) (7TK2ML) el Nel AefT A eK"’}.
From the equation of motion of the gravity field:
0=Del =del +wljne! =de! +nnlje™ Ne,
we get
de! = —mnTseN Ae’.
Inserting it in the last action, it becomes
S(e,m) = C/QEIJKL<7TNIB)6N AeP AelA (WMKLeM)
+erikr (7TK1KM> (WKQML) el Nel ANefrn eKQ,
or
S(e,m) = c/ 281 JKL (WNIB) (ﬂ'MKL) eMaeP Ael A eM
+emrn (T m) (™) el Ae? et Aeke
By rewriting it like
S(e,m) = 0/251JKL (WNIB) (WMKL) eBre’ neV AeM
+ KL (WKIKM) (7TK2ML) el Nel Aeft A €K2,

and replacing Bz= I, N — K;, and M — K5 in the first term, we get

S(e,m) = 0/25BJKL (WKlBI) (WKQKL)(&I Ael A el a ek

+emrrn (T m) (™) el Ae? et Ak

10



And by the replacing
el Nel Neft N ef2 o I TER D Ao A2 A e?)
we get
S(e,m) = C/PEBJKL (7TK131) (WKQKL) N R 8¢/ (7TK1KM) (WKQML) EUKlKQ}
xe? Nel Ae? A el

1JL {_:KIJL

By using the relation 7'7* = mx we imposed before, the action

Se,m) = C/[QEBJKL (mrpr) (e, ™) 790 =2 (mcag) (wp ™) +2 (w0 w) (mc™)]
xe’ Ne' Ne? A e
becomes
S(e,m) = ¢ / 127 e enen s (e, <5) K05 12 () (VI @ A et A G A G

: _ _ _ JKML __
By using ENK\BI — —€IK{BN — €IK|NB;, €ILKM — —EILMK and € =

—g/IME "that action becomes
B N KL IK 1 JK I LMK 1 2
S(e,ﬂ') = C/ [28 JKLT E€IKiNB (7TK2 ) (—5 ] 2) + 27 €]LMK7TJ6J } 60 Ne Ne A 63,

and by setting
€]K1NB€IK1JK2 = -2 ((5]{[552 — 5%5][52) and €]LMK€JLMK = —6(5}],

it becomes

S(e,m) = c/ [45K2JKL7TJ (WKQKL) - 127r17r1] e Nel ANe? A el
Or

S(e,m) = c/ [45K2JKL7TJ (i) —127%) @ Ael AeP A€,
then

S(e,m) = c/ [—45JK2KL7TJ7TI€IK2KL - 127r2} O Nel Ae? Aed.

11



Finally, the action becomes
Sole,m) = c/ (247 —127%]  Ne' AP A€ = c/ 1222 Aet Ae? AP
= c/ 127%ed z.

In the background spacetime, we have e — 1 + de, therefore this action
becomes

So(de, ) — /1207‘['2d4.%’ + ...

To find its meaning, we compare it with the scalar field Lagrange in the flat
spacetime:

Ld*z = (m0yp — H(¢, 7)) d*x with H(¢, 7)d*x = Gw? + % (V) + %m2¢2) d*x.

For A = 1, we conclude that the term
/ 12er?d*z = 0

is the energy of the gravity field in the background spacetime. As we will find
in the result of the path integral, in the background spacetime limit, we have
to replace ¢ with —c¢ when we compare our results with the electromagnetic
field. Thus, in the background spacetime, we expect the replacement:

S(e,m) — —/1207r2d4a: = —/Hd4x.

This is not surprise, because the general relativity equation (Einstein field
equation) is derived to satisfy the energy-momentum conservation on arbi-
trary curved spacetime, that equation is

1
R = 5 Ry = 87GT,.

It satisfies the energy-momentum conservation V,T*” = 0. But, as we know,
in the quantum field theory in the background spacetime limit, we have to
write the canonical law of the conservation as

O (Thatter + Tire =0,
12

matter gravity

12



therefore we write
—1 1 )
T+ — | Ruw — QRQW = T,, (matter) + T, (gravity) = constant.

Thus, we conclude the relation:

. 1 1
T, (gravity) = %0 (RW — ERQW) .

Therefore, we have to replace ¢ with —c . We will see this, when we compare
the result of the gravity path integral with the electromagnetic field on the
background spacetime.

Now, we derive the path integral as usual in the quantum fields theory. As
we saw before, in our gauge, the operator éd*z takes eigenvalues when it acts

on the states |él>. By using (1.2), we get the amplitude

(' (x + da)| € |rp (x)) — (&' (x + da)| 2784 |1 ()
= exp (i12e7” (z) e (z + dz) d*z + ie’ (z + dz) 7/ (2)d*X)

— exp (i12en” (z) e (z) d'z + ie" (z + dz) m1(2)d*X) |

where we let the momentum m; acts on the left. The amplitude of the
propagation between two points = and x + dx of adjacent surfaces dM; and
5M2 18

(1 (z + da)| 127 ed’s ‘él <x)>5Mﬁ5Mz

= JTLdr! @ o+ da)| €920 (@) (0) | €0 2))
= 1;[ dr! exp [i12¢7? (z) e (x4 da) d*x + ié" (x + d)m (2)d> X ] exp (—ié! ()7 (z)dPX)

- [ 1;[ dr! exp [i12er? (z) e (z) d*z + i (e (z + dx) — & (x)) m/(x)d>X].

13



The exterior derivative

~1 =l 3v 0e! () o 0 _ sl 3
(e'(z + dz) — &' (2)) I’X = X0 d°XdX" =de (x)d° X

is along the time dX?° direction, the direction of the norm on the surface
SM (X', X% X3), therefore it leads to the propagation from one surface to
another.

Thus, we write the amplitude as

(1 (z + da)| P70 ()= / [ dn" exp [i12en? (2) € (2) d*x + imp(2)de’ (x)d* X].
1

The path integral is the integral of ordered product of those amplitudes on
all spacetime points(over all ordered 3D surfaces), thus we write it as

Wer = /H Dé!'Dry expi/ (1207r2ed4x + Wldéldg’X)
I
= /H Dé' D expi/ (1207r2eo ANel ANe2 Aed + mdéld?’X).
I

In selfdual representation, we consider that the propagation is in the direc-
tion of expanding of the surface 0 M (positive direction).

There is no problem with Lorentz non-invariance in () 13 X g X Y because

0X0
the equation of motion we find in the result of the path integral is
a~]
e'(z) x —!
0X0
thus we have
oel (x)

1 d2XdX? x —mrld®XdXPO.

0X"°

This is Lorentz invariant. This is like the equation of motion of the scalar
field ¢; m = Jy¢ which solves the same problem.

In our gauge, we have

e

it dXdX? = 72dXO AN dXT A dXE AN dX? = 7T2626 e
= 7r2€2 e3P Pty = wled .

e

1
v
1
€

i ‘gda:“ Adx’ A dx? N dx®
2.3
p-o

14



It is invariant element, we find it in the path integral.

The path integral
Wer = /H Dé' Dr; expi/ (1207‘(’260 ANel Aet AP+ Wfdéld3X)
I

vanishes unless

0
5o (12677260 ANet Ae? Aed + mdéldSX) = 2ente® Ael AePAe3+-deld* X = 0.
r

Thus we get the path(equation of motion):

A=~ (AN AS) T A PX, (1.4)
24c
or
1 .
alrd = (24—)2 (" net Ae* Ae?) 2de' B Xde PX. (1.5)
C

By using it we get

1 _
12em2e® Net A A e+ mde! B X = 18 (60 Ael Ae? A 63) ! (dé;d?’X) (délng)
c
1

— 55 (A NS ) (derdX) (de' X))

By setting it in the path integral, it becomes

Wer = /H DéIExp% (" Anet Ae* A 63)_1 (dérd®X) (de"d*X).
I

The canonical field &' is defined in
XX = eMreg,pdr? A da? A dx® /3.
By applying the exterior derivative, we get

(45 a5 = (D,0e"") ey A di” A di? A di” 3,

15



where D is the co-variant derivative defined in
DV =av! +w!;Anv7.
Thus, the term

(de;d*X) (de' d*X)
eOANel Ne2 Ned ]

(60 Ael Ae? A 63)71 (dé;d3X) (déld?’X) =
in the path integral, becomes
(ﬁmé’f ) €2 e diM A d2¥ A 2P A di® (f?uzé”‘/> E2 yordi? A di¥ A di? A di”

313160 &1 &2 &3 dika A\ dive A dies A\ dis

Let us define the inverse:

0 0 0 9,

0,123 v o)1 A nl A ntd
e e ececdr? Ndz” A dxP A dx =EYEY ESYE. AN——AN—N—.
( prvEpTe ) 0 7172 9’ 9k’ O Ot

We write it in the form
1
0,1,2.3 v _ 3
e e e e dxt Ndx” N daP A\ dz? = Zed x, N\ da".

(Actually, we have to write the tensors ¢"?? and ¢,,,, like e 1etr? and
e€,upo but here we neglect that, because it gives the same results).

Also, we can write
EY EY B B 0y NOy Ny Ny = ED, N O,
with inner product like
sy (13 1 3u 73 1 v
(E@,, A0 ) (Zed LA dx“) = ZEe&,/\@ A’z Ndx" = ZEG (5u) O,dx" = Fe = 1.
In general, we can write it like
(Ed, NO*) (ed’wy N da) = Eed, NO* &y Nz = Eeby,d,da" = 8,
In the path integral, we set the replacement:
(D, el) e€mpodat Ada? Adx Adz® /3! — (D, ef) eda* Ad*x, = — (D, €f) ed*z, AdaH,

16



and
(Du2 el"l> €€y ot At N dz” N A dx"//S! - — (Du2 el"l) ed®x,y Ndxh,
Let us assume the following replacing:
dgxu Adz" = —dz, N >zt — d3xu A dz" = —dx, A .
There is no problem with this trick because in any 4D spacetime we have the
contraction (d°z, A dz”) = o%d'x.
Therefore, we set the replacement:
— (D, e) ed*z, N dz" — (D, el) edx, N d>zH".
By that, the term
(D) e2ppodi® A di” A di? A di” (Dyue™ ) eeynpordi® A di’ A di? A di”

13160 61 62 83 (Jqm3 T3 7:03 7:03 ’
313leY e 65 en daks N divs A\ dzes A da

in the path integral, becomes

— (B0, NO*) (D ef) edz,, A d*zh) <<Du261“/> ed’z, A d:v’”)

= (D"ery) <Du261“,) e (0, NO¥) (dPxpy A da) (dPay A dat?),
where we used

—dx, N dPPr" = P2 A dz, then d°x,, A dz".
Thus we can write

(dejd3X) (déld3X)
eONel ANe2 Aed

= (D"er) (Duse™ ) € (9 1 0™) (@, A dat) (daye A da)
We can choose the contraction:
(0, NO) (PPay, Ndat) (Pzy A dat?) = (0, A O Py, A dat) (P A dz?)
= 8" (9, Nda") (Pap A da?) = 8% (—dz" A D,) (—dz#> A dPx)
= &% da" A 0,dx'> A dPz,y = 8 h2dat A dPx,.

17



Thus we can write the term in the path integral as

(dérd*X) (de'd*X)
eONel Ne2 A e?

— (D"er,) <DM2€]M,> ed, ordxt N d*z

= (D,eg D e edat A Pz, = — D,er DY e edx,y A dat
" 7 " 7
= —(D,eg DY) edt dre = — D,ey;,) (DVel*) ed*s.
H % 12
We can also choose another contraction:

er el ) e (9, Ty N\dx T Ndx
(D er) (Duse™ ) € (9 1 0™) (@, A da) (de A da)

(D"ep,,) (Dm,e[“'> e (0, A0z, Ndat) (dPzy A dzh?)
= (D"er,) <Dme“‘l> e (67,0, Ada?) (dPx A dat?)

— 5% 58 (DPey,) <Du26”"> e (dz, A de™) |
Thus, we get
(dé;d*X) (de'd*X)
O Nel Ne2 Ned

— (D"er,) (Du/el“l> ed*x.

By the two possible contractions, we can write the final result as
_ —1
(eo Ael Ae? A 63) ! (dé;d?’X) (déld3X) =5 (Due?D“ei — Du(ﬁDyeI“) ed*z.

This Lagrange is like the Lagrange of electromagnetic field, but with opposite
sign. It is also independent on the gauge we chose for the surface M. It is
invariant under local Lorentz transformation V! — L ;(2)V” and under any

m
coordinate transformation V# — gfw v,

The path integral of the gravity field becomes, after the replacement ¢ — —c:

1
Wer = /H De! exp — ( D,ﬁ?D“@lI, + Due?DVeI“) edz,
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with the free gravity field Lagrange
11

Ld'z = T3 (=D,€/ D" e}, + D,e/D,e™") ed"x. (1.6)

We determine the constant ¢ in the Newtonian gravitational potential ¢ > 0.

In the background spacetime, weak gravity; D, — 0, and e — 1 + de, we
have

L — 4%30% (—@Le?@“el{ + Qﬁ?&,e”‘) ,
or
Lo = LlmJeI (g"”@2 — 8“8”) el.
48¢ 2 ’ Y

Without background spacetime approximation, in strong gravity field, we
have a problem with the determinant e in the path integral:

2 M1V pTO

1 1
Wsr = /H D€I€$p4—80 = (—D,ﬁ?D“@i + Due?DyeI“) eV el e2ederviro iy,
I

with 19123 = —1, we rewrite

) 1
Wer = /H Delexpfgc - (—DueﬁD“ei + Due?DVeI”) (—npxr) etel efelermirogiy /41,
I

2 M1 V1L p O

Always there is a gravity field eff which is different from eﬁ and el, thus the
integral over it yields delta Dirac:

' 1
/H Delexpé = (=D,€’D"e}, + D,eD,e™) (—npx1) er el ek eke P die /41,
c
T

9 pvtp Yo

— 6 (—D,€/D"el, + D€' D,e™")
— —D,eyD!el + D,evD,e'" =0,

it yields

=0 — S(W,e):c/127r26d4$:0 — H(me)=0.
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This path integral is trivial, there is no propagation, because there is no
gravity energy H (m,e) = 0. Like Wheeler-DeWitt equation H¢ = 0. The
reason of that is because the gravity field efL has the entity of spacetime. It is
impossible for spacetime to be a dynamical on itself, to propagate over itself.

But if we write e}, (z) — 0/ 4 A/ (z), the path integral exists. The propa-
gation is possible. Thus, the dynamics of the gravity is takes place only on
the background spacetime. This is the situation of the weak gravity (low
energy densities). In this situation, the gravity field becomes dynamical as
the other fields.

Latter, we will search for conditions allow the gravity field to propagate
over curved spacetime x*, for that purpose we impose the duality; Gravity-
Area.

The path integral of weak gravity field in the background spacetime is
w = /HDe expi / Eﬁeu (nrs9" 0 — 0" e)d'x. (1.7)

Thus, the gravity field propagator, g = n and k,e*’ =0, is

, A4k n[]gw/eik(acg—zl)
A?J(Ig—xl) :48C/ (27‘(‘)4 L2 — e s

or
, d4]€ gpag,uueik(zg—acl)
Ab¥ (1 — x1) = 48c/ o) ER— (1.8)

We will use this propagation in the gravity interaction with the scalar and
spinor fields.

2 The need for the duality Gravity-Area

We search for conditions to have a dynamical gravity field in arbitrary curved
spacetime without spacetime background approximation. We found that the
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curved spacetime path integral Wgr is trivial. There is no propagation with-
out spacetime background. We can solve this problem by assuming that the
fields exist on themselves, not on spacetime[l1].

As we saw in the path integral of the gravity field on curved spacetime,
we have a problem in the gravity fields e® A e! A e A e3. All of them must
be different, the integral over one of them yields delta Dirac. This is trivial
path integral Wgsp. Therefore, there must be a new field, it is the area field
YK = K A e/ by that, the path integral of the gravity field takes place.
This means that the gravity field becomes a dynamical on the area field, not
on spacetime.

According to the general relativity, the length, the area and the volume
are another form of the gravity. We can illustrate that, by the duality
gravity <+ areas and volumes. We try to find this duality using the trivial
path integral Wgr, by suggesting conditions allow the gravity field(the dy-
namical spacetime) to propagate on arbitrary spacetime. That propagation
is e! <> 37X it means that they propagate when they change to each other.
Also we find that the tensor product of them |e’) ® |[S/X), in selfdual rep-
resentation, satisfies the reality condition.

Starting from the full Lagrange (1.6):
11
48c 2

where the covariant derivative D is defined in

Ld*z = (—D,e/D"el + D,eD,e") ed'x,
Del =del +wljne’.

By using our assuming:
ML

the covariant derivative becomes
Del = de! + (WKIJ) e ne’.

The Area field is anti-symmetry field:

1
I _ L. g I,
Euv_ 5 (eﬂey el,e“).
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By inserting it in the covariant derivative, it becomes
Del = de! + (WKIJ) YES — de! + 78y .

And by using our assumption

7TIJK — WLELIJK,

the derivative becomes

Del = de! + 75 = de! + 7 e, = de’ + K N ey

By that, we have two fields e/ and ¥% in the Lagrange. They are insepara-
ble, therefore we suggest a duality e < X57.
The full Lagrange of the gravity field is

11
Ld*z = 1802 (—Due?Dﬂei + D,ﬁ?DVeI“) ed*z,
c

where

—D,e"D*e!l + D,e“D,e™ = —D e (D"eI - D eI")

w1 v pu=I1=v p=I v v :

It becomes

v JsKLv I IIhK1L m I TIhKi L
— (a,uel + kLT X, ) ((9“61, ety Y — Ovet — e 17rJ12K1L1V“) ,
or

JKL I I ThKLL

- (@Le? + ErIKLT Eu “) (8’*6,, — O, et 4 21 17TJ12’;(1L1V) )
We write it as

. v w I Ipy 11 K11y v ©

(auel) (8 e, — Oye ) 2e (auel) T EKlLlu

KLv_J auel{ — Oye' Ih KL KL
_25[JKLEN m — | — 2¢ 5[JKL2

v_J 1%
5 um T‘-JlEKlLlV'

To complete it, we need to replace the momentum 7/ with its value. We had
before (1.4) and (1.5):

-1 1 Y Y
rlr! = (480)2 3 (Duel D“el{ - D#el Dl,e‘]“) )
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We consider only the term:

-1 1
AT -
(48¢)° 2

(8”61”8“65) .

Let us expect the contraction:

QEIJlKlLl (aﬂey) 7.‘-Jl Zl;(lLlu — €IJ1K1L1 (8116;) (auele) Zﬁ;(lLlV'

(48¢)*
By inserting it in the Lagrange terms, we get

2
—2€IJ1K1L1 (a‘ue?) (8‘“(3le> E?(lLlV

— (0€}) (0"el, — D,e™) + (89

1 I1J1K1L KLv J o
Tt KL (07e5) (97€5,) T, 1.0

Thus, the Lagrange

11

4 —_— — —
Ld'z = 25 (

—D,eyDtel + D#eﬁDyeI“) ed*z,

becomes
1 —1

Ld'z —-——
48¢c 2

1
(aﬂe?) (auei) €d4$ + —81J1K1L1 (aﬂe?) <8M€PJ1) E%1L1V€d4$

(48¢)°

1
IJ1K1L J P KL~pv 4
gt 1€[JKL (806p) (aaejl) E,uu EKlLled X,

+ -
2 % (48¢)°
where we used the gauge (%el b=

Now, we use the selfdual projection. We can write any real anti-symmetry
tensor 77 in two unmixed representations, selfdual and anti-selfdual. In
general relativity the selfdual is chosen. Its projector is[1]

(P =585+ (P)yy =50 i i=1for I =123

We see that these projectors satisfy
2i (P))" (B)*" —2i (P)" (B)"" — £!7KT,
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It is a projection from I # J and K # L in the left to I # J # K # L in
the right.

The second term is for the anti-selfdual. We consider only the selfdual repre-
sentation. Latter, we discuss the reason of that. Now, we consider only the
first term, thus

SIKL o (Pi)IJ (Pi)KL.

We use it in the determinant e:

_ 0,1 .2 3 uvpo o I _J_K _L_uvpo . _
€= €,6,€,6,E — —E1JKLE,E, €, € "7 [Al 1 gg1o3 = —1.
With the selfdual projection, we have
_ I J_K_L_pvpo /4] Oz % ) I J_K_L_pvpo /4]
€ = —E€IJKLE,E, €, €,E J4 — —2i (P)]J (Pi)gr€.ee, €€ /4l

We can rewrite

1 1 1
J K _L_pvpo __ — r.J __ 1_.J K _L_pvpo __ — . J __ I1_.J\ K L K
€V€p GUE == 5 (‘3“6” eyeu) Gp 605 = 5 (€M€V e, e ) B (Gp €, €, Gp

Thus, we can rewrite it using the area field %17:

J K _L_pvpo _ IJ\KL _pvpo
5 =M 0 etre

€,€,€, €,E o Dy

I
“w
therefore the determinant e becomes
2%, .
I J K L IJvKL
e = —€1JKLC,C, ¢, e e [Al — ] (P’)U (Pi) gep, X0 2 €77 (2.1)

Now, we can write the area field as a vector ¢ = 1,2, 3 in the selfdual repre-
sentation:

%= (P),, %

1J “uv
Thus, the determinant e becomes

i vpor 2i, oo
€= _Z (Z )NV (Ei)pa etP? or — Ezuyzipagu 7. (22)

We wrote it in this form to get rid of the gravity fields in the path integral.
As we saw before, the integral over one of them yields delta Dirac. It cancels
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the propagation.

By that, the full Lagrange of the gravity field

1 1
Ld*z — —— (0 el ed? INKiLL (g ov) (W s 7
* 48¢c 2 ( eI) ( ) crr (486>3€ ( “61> ( ePJl) KlLlue T
1
+ ngJlKlnguKL (30—65) (8"@?1) ZKLE%LIGCZ%,
becomes
Ld4 1 -1 a v a'u I 21 EZ E ,pra d4
x_>4_867( #61)( 61/) —I ipa€
1 i 22 i Voo
T (486)3 (QZpUl> (Oue7) (0"eps,) 30 <_ZZ L 2ipa€!? ) dr
2 IJ . i 2. -
e P By (00e)) (075, 25,2 (_4_2 S )d
or
21 1
Ld'z — =

4T802 (a 61) (8H€ ) (wazz’pgéfﬂupg/él!) e
4

+

(486)3 (pi)IJl (aue?) (8M€pJ1) Elyp (ELVEipgé“MVpU/Zﬂ) d41‘
49
(48 (48¢)°

It is quadratic in e!, therefore its integral is not trivial. Here we can consider
the area field ¥ as a background field that the gravity field propagates over
it. Or suggesting the duality e/ «+ ¥?, by it the amplitude of propagation of
e’ between z and = + dx is (¢! (z + dz) | ¥(z)).

) )y (B06) (0765, S (S, Sy 1) '

If we consider the first term, we can discover its behavior by testing one
wave; cos (k,z"). We have

(0u€f) (0"e)) — —€70,0"e], — —0,0" cos (kya*) = k k" cos (k,z"),
it yields

% T 2 .2 i vpo
ettt %exp/48 5 (kukeel) (), Sipret? /A1) d'e + ..

—>exp/4§ ;( kuk?) (erel) (4, Sipoet? J41) d'a + ...,
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then

) 2 1 - .
7S 2 2 v, I i vpo 4
e — exp/ 1803 (ko —k ) (efe) (EWEipagﬂ P7IAN) drr +. (2.3)
We consider that the area field is in the positive direction Re (Efwd:p“ A dx”) -
0, the direction of the expanding, then Re (X, ;,0e"77) > 0.

We find that in time-like region k2 — k% > 0, the gravity field is created,
while in the space-like region k2 — k2 < 0, it is annihilated e;, — X, Oppo-
sitely to the area field, as we will see. This is the duality eﬁ > Zf,p. It is like
to say, in the time-like region we find the gravity field and in the space-like
region we find the area field.

The time-like region is the region of exchanging energies (interactions), while
the space-like region is the region of the static fields, the situation of located
matter. Therefore spacetime, in which matter is located, is consisted of
quanta of area and volume. The duality eﬁ > Ef/p, as we will see, satisfies
the reality condition. It is like the right and left spinor fields.

3 The Lagrange of the Area field

We derive here the Lagrange of the area field. We find that in the background
spacetime it is like the electromagnetic field, but with opposite sign in the
Lagrange. We can get rid of that opposite sign by the replacement 9, — 9,
it is equivalent to replace k, with ik, in the free solutions: ek —y g7k op ek
We find that the behavior of the area field, in selfdual representation, is op-
posite to the behavior of the gravity field. For that reason, we suggest the

gravity-area duality, which satisfies the reality condition.

The area field is defined in

1) _ Iz J - 1J
Y=e Ne', with X =

N
—
)
=~
Q)

We start with the Lagrange (1.3):
S(e, 7T) = C/ [E]JKLGI VAN €J Ad (WMKLGM) + €]JKL€I AN GJ N (7TK1KM) 6K1 VAN (7TK2ML> GKQ} .
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As done before, we assume that the integral of

erirrnd (eI Ael A (WMKLBM)) =¢eryrrd (E” A (WMKLGM))
is zero at the infinities, thus we get
dZI‘]/\(WMKL) eMielne’ Nd (WMKLGM) = — (WMKL) eMAadS! +el ne? Nd (WMKL6M> )
By using it, the Action becomes
S(evm) = [ ermen (rar") M ADEM + eraen S A (e o) (M) € A e,
or

S(e, 7T) = C/ [€[JKL (WMKL) €M A dZIJ + €I1JKL (7TK1KM> (7TK2ML> ZIJ N EKlKZ]

By inserting our imposing:

TlIK ﬂ_LELIJK’
we get
KL\ M MKL NMKL
€IJKL (7TM ) € =EIJKLT €M = €IJKLTNE ey = —2(me; —mep).

We can write
ZIJ A 2K1K2 SN €IJK1K2201 A 223’
by it we have

EIIKL (7TK1KM) (ﬂ_KQML) EIJ A EKlKg = £1JKL (7TK1KM) (WKQML) &_IJKleEOl A 223
-9 (WLKM) (ﬂ_KML) 201 A 223 -9 (WLKM) (WKML) 201 A 223
—9 (ﬂ-KML> (ﬂ_KML) 201 A 223 — 27TI€IKML7TJ€JKML201 A 223

= —127°5% A X%

Therefore, the Action becomes

S(e,w, E) = C/ [—2 (71'[6] —7TJ€[) /\dZIJ — 127‘1’[7‘(’[201 /\223].
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Because the area field X!/ is anti-symmetry, we can write

S(e,m, %) = c/ [—47T[€J AdST — 127780 A 223],
and by using €p123 = —1, we can rewrite it like

S(e,m %) =c / [—4mies N dSY 4+ 121wl ey B A SR /41,
or

S(e,m, %) = c/ [—47@@ AdX! + %W2€[JKLEIJ A EKL} )

1

The path integral over momentum 7' vanishes unless (the equation of mo-

tion)

o 1
- —471'[6] VAN dEIJ + _7T28[JKL2]J VAN ZKL = 0.
571'[ 2

But it is not easy to separate X from e. It is like the gravity field, it is
separable only in weak gravity(background spacetime). Therefore, we solve
it in the background spacetime. On arbitrary spacetime, we get the integral:

1
/ (—47T[€J A dEIJ + §7T26[JKLZIJ A ZKL)

1
— / (—4ﬂleuj<9y2£g5“l’p" + §7TZSIJKLE£I{E£2LEHV'DU> d4x.
The background spacetime approximation is
en(x) = 6, +hi(z), e—1+de,
by it the area field becomes
ZIJ _ 1 I _J I _J 1 515J 615J 1 h16J hICSJ 1 5IhJ 5Ih,J
12 = & (ehel — ehe) — 3 (6107 — 816]) 45 (hlo] — o)) +5 (92! — O1R).
By inserting it in the action:

pv = po

1
S (6, Z) = C/ <—4mewal,2f)is“””” + §7T2€]JKLEIJEKL€”VPU> d4l‘,
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it becomes
1J_ vpo 1 2 4
S(e,X) = S(h,0%) = c/ (—477131,2/)0@ PT + 3T (—24) + .. .)d x.

Therefore the condition( equation of motion):

) 1
- —47T[6J A dEIJ + _7T2€[JKLZ]J A EKL =0
571'[ 2

approximates to

) 1
— / (—4mayzf Tpe€l P + §7r2 (—24)>d4x = 0.

(S?T[

Its solution is

1 1
7TI = _gauzgpagjypg = _gar/zlJpagJVpU'

By that, the action in background spacetime is approximated to
S(X) = ¢ / Eamz”lmejmpma,,zljpgeJ”f’” + ... | d'z.

By defining inner product /17101y, = 225:;1551 07, we get
S(¥) = ¢ / (—40,5750"5) + ) d*x with 9,57 =0.

This is the action of the area field in weak gravity field (background space-
time). It is like the electromagnetic field. The corresponding Lagrange is

Lo(2) = —4¢(9,579) (0"5]7) with  9,%4) = 0.
We rewrite it like
Lo()d'z = —4c (9,57)) (0"S))) ed'z + ...

We replace ¢ with —c, as we did in deriving the Lagrange of the gravity
field. This constant is determined in the static gravity field potential ¢ > 0.
Therefore,

Lo()d's — 4c(9,575) (0#5))) ed'z + ... (3.1)
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We can get rid of opposite sign by the comparing with the free electromag-
netic Lagrange in background spacetime e — 1 + de. We can replace 9,
with ¢d,, it is equivalent to the replacing k, — ik, in the free solutions:
e’ — e7* or € in the background spacetime. By that the area field be-
comes a classical field, we can consider it as background field that the gravity
field propagates over it.

By using the selfdual projection (2.1) and (2.2):

20,
_ I J K _L_puvpo = 3 ) 1JNKL _pvpo
€ = —E1JKLE,E, €, €, € /4 — m (P )U (Pt Y e €M,

the Lagrange (3.1) becomes
Lo(X)ed's = =8ci (9,5750"SL7) (S0, Sipee?? JA) d'x + ...
To discover the area field behavior, we test one wave; cos (k,z"). We get
Lo(X)ed's — —8ci (k"k,S70500) (20, Sipee!™? /A1) d'a.
The action of that is
ellet's s exp8e (k h"SSL) (1,207 /41) d',
it yields
e — exp 8¢ (—kg + E2> (2?32%) (ZLVZip,,s“”p"/él!) d*z. (3.2)

It is opposite to the behavior of the gravity field (2.3). In the time-like region
(—k§+k* < 0), the area field is annihilated ;)% — e/, while in the space-like

region (—k2+k2 > 0), the area field is created e, — X)) This is the duality
eﬁ > Zif . It preserves the reality condition. It is like the duality of left and
right spinor field under Lorentz transformation and party.

The opposite behavior is with the anti-selfdual representation, the hermi-
tian conjugate of the selfdual

2i (P)" (P)*" —2i (") (P)"F — 7K,

which is projection from [ # J and K # L in the left to [ # J # K # L in
the right.
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The first term is for the selfdual, while the second is for the anti-selfdual.
The tensor product of them satisfies the reality:

. 4 . o A
ezAL(selfdual)d xezAL(antz selfdual)d*z _ real.

Instead of that, we can satisfy the reality by gravity-area duality:

i 4 i 4 . .
e AUOT GALE) T _ ol inuvariant for sel fdual.

For one wave, it becomes

ose 3 (K —k2) (efel ) (Bh Sipee o7 /A1) 8¢ (k3 +K2) (S7520) ) (Sho Sipoeh 7 /41)

I

where we wrote ¢’ to distinguish it from c¢. For

— (6;61) = 8¢ (Z??Z%) ,

v

the Tensor product of them equals one, this satisfies the reality. By that, we
can determine ¢, like to choose (48¢)™" = 16¢/, with

(e7es) =

where the hermitian conjugate 3” if/p is represented in anti-selfdual: ¥/ =
pi s,

(B75%0,) = 5 (B°%, + 57%,) .

N | —
| =

As done for the left and right spinor fields; in the left spinor field representa-
tion, the right spinor field is zero. And in the right spinor field representation,
the left spinor field is zero[3]. Therefore, in the selfdual representation, we
assume that the anti-selfdual is zero. Like that in the anti-selfdual represen-
tation.

Thus, in the selfdual representation, we have
i L gk 5 0i L i 5 0i
2256 ij—zE :O—>§€ ij:ZZ.

Therefore, the area field in the selfdual representation becomes
i _ L i 50 ijk
N — 55 ij +2" =¢ ij,
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which is real as required for satisfying the reality condition. It is equivalent
to the replacing 2° — —iz®. Same result we get in the anti-selfdual repre-
sentation: ¥ = 0 — X7 = £9%3 ;. Tt is equivalent to the replacing 20 — i2°,
which allows the splitting: SO(3,1) — SU(2) @ SU(2).

In the two representations, the condition (efe]) = 3 (Z7721)) = 1 (8%, + £775 )

v

v I\ _ 1 K _ijkywe _ ywps ik
becomes (eIey) = i, €N = a0

The difference between the selfdual and the anti-selfdual appeared in the
opposite sign in the Lagrange:

L~ 8¢ (<K + B2 (SV5L,) (L, Sipos"# /A1) for selfdual 5 =0,
and
L — —8¢ (—kg + Ez) (2775,) (5, Eipec™?7 /A1) for anti-sel fdual %' = 0.

The opposite sign comes from the projection (2.2):

21 . 2 - —
IS PUNE Y ST

ST A

We chose the selfdual representation because its tensor product with the
gravity field satisfies the reality. It is like the duality of the left and right
spinor fields under the Lorentz transformation and the party: ¥y <> ¥g.

4 The static potential of weak gravity

We derive the static potential of the scalar and spinor fields interactions with
the weak gravity field in the static limit, the Newtonian gravitational poten-
tial. We find that this potential has the same structure for the both fields,
it depends on the fields energy. By that, we determine the constant ¢ > 0.

The action of scalar field in curved spacetime is|[1]
S(e.0) = [ d'ae (e D,0" Do~ V().
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In the weak gravity, the background spacetime approximation is given by
ei(z) = o +hi(xz) , e =1+ de.

Thus, the action is approximated to

S(e,¢) = /d4x (8u¢+8“¢ + W (2)0,¢07 0,0 + W (2)0,0T D0 — V(¢) + )
The gravity field is symmetry, thus we get
S(e, ¢) = / Az (0,0 0" ¢ + 21" ()00 0up — V(9) + ...).

The energy-momentum tensor of the scalar field is[3]
T = 0,07 0,6 + g L,
hence
0 00 = T — g L.
By inserting it in the Lagrange, it becomes
L=0,0"0 ¢+ 20" (2) (T — g L) — V() + ...
By that, we have
L=0,0"0 ¢+ 20T, —V(p) — 20" gL + ...
Therefore, in the interaction term, we set the replacement:
8u¢+31,¢ — T, and L — L—2h"g,,L.

Because the gravity field is weak (background spacetime), so 2h**g,, L is ne-
glected by comparing it with L.

We find the potential V' (r) of the exchanged virtual gravitons by two particles
ki1 and ko, using M (ki + ke — Kk} + k%) matrix element (like Born approx-
imation to the scattering amplitude in non-relativistic quantum mechanics

[7])-
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For one diagram of Feynman diagrams, we have

A (g

1

with

The propagator A**? (zo — z1) is the gravitons propagator (1.8), we get it
from the Lagrange of the free gravity field (background spacetime) we had
before:

11

LO = Einl‘]el ( ‘“’32 8'LL8V>

With the gauge ((Wei =0, we get

IJ o 2\ Jiqy—z) . 1J (. 2\ __ Hv
Aw(y—x)—/(2ﬁ)4 W(q)eqy : A“”(q)_486q2—ia'

1 v v
Eﬁnl]hl ( ’ 82 —0"0 )h;{

Therefore, the M matrix element becomes

vV PO
g g”

IM (y + ks — K, + k) = id8c (—iky) , (iks), T—0— (—iky}), (ik1), ,

where g=mnand ¢g=Fk| —k = ko — K}
By comparing it with[7]

iM (l{?l + ]{?2 — ki -+ k‘é) = —ZV (q) 54 (kout — km) ,

we get

V (¢?) = —48c(—iky), (iks), 9”;—9’)0( i) (i), .

And by comparing this relation with the replacement:
0,070, — T, and L — L—2h"g,,L,

and by evaluating the inverse Fourier transform, we get

o 1 T (y) T ()
V{y—a)=—48T,, (y) 99" Tio (2 )m Ty

?
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where T is transferred energy-momentum. In the static limit, for one par-
ticle, we approximate T to m: m is the mass of interacted particles.

Therefore, we get the Newtonian gravitational potential:
2 2

—a- Ly 48 = 4nG.

V(g —a)= 48— —
v —2) =2 =z

Therefore, the weak gravity Lagrange becomes
11 B

T inG 57’[‘76“

We do the same thing for the spinor fields interaction with the gravity. The
action is[1]

Lo (0% — 0"0") .

S(e,v) = /d4xe (z‘e’;@'yIDuw — m&w),
where the covariant derivative D, is
D, = 0+ (wy)y L +ALT .
In the background spacetime, it becomes
S(e,v) = /d4x (iz/_w”D,ﬂp + ih’ﬁﬁyID#w — map) + )
Let us consider only the terms:
/ d*x ()"0 + ihiy " Ob — mi)) = g =n.
The energy-momentum tensor of the spinor field is[3]
TH = —ipy" 0 + g" L.
As for the scalar field, in the interaction term, we have the replacement
iy 9"y — =T, and L — L+ h*g,,L.

The term h*”g,, L is neglected by comparing it with the Lagrange L. We
find M matrix element of the exchanged virtual gravitons p; +ps — p} + pb,
for one diagram of Feynman diagrams|7]:

9ucg"" _

iM (p1 +p2 — py +ph) = i48ct (py) v* (—ip1), u (p1) " u (py) 7 (=ip2),u (pa)
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with
q=p,—p =p2—pyand g=r,

we have

_ B . g o_ng B . )

V(¢%) = —48cu (p)) 7" (=ip1), u (p1) qu U (p3) V7 (—ip2), u (p2) -
By comparing this relation with the replacement:

iy 9"y — =T, and L — L+ h"g,,L,

and by evaluating the inverse Fourier transform, we get

V(y—=z) =—48c (=1}, (v) 9" 9" (=Tys () m N _486TMZ7(ryl)yTj;|<x>

Y

where T is transferred energy-momentum. In the static limit, for one par-
ticle, we approximate T to m: m is the mass of interacted particles.

Therefore, we get the Newtonian gravitational potential:

m? m?

—G——— — 48¢c = 4nd.

Vy—z)=—-48c——— =
e i R

It is the same potential we found in the scalar field interaction with the
gravity field.
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