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Abstract

We study the dynamics of the gravity field, on arbitrary spacetime

xµ, according to the quantum fields theory. Therefore, we suggest a

canonical momentum πI as a conjugate momentum for the canoni-

cal gravity field ẽI = eeIµn
µ. We derive both the canonical gravity

field and its conjugate momentum from the holonomy U (γ,A) of the

complex selfdual connection Aia. The canonical momentum πI is rep-

resented in the Lorentz group. We use it in deriving the path integral

of the gravity field according to the quantum fields theory. We discuss

the situation of the free gravity field (like the electromagnetic field).

We find that this situation takes place in the background spacetime
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approximation, the situation of low matter density(weak gravity). We

search for a theory, in which, the gravity field becomes a dynamical

at any energy on arbitrary curved spacetime xµ. For that purpose,

we suggest a duality eI ↔ ΣJK , where the field ΣIJ = eI ∧ eJ is the

Area field. That duality allows us to treat both fields eI and ΣIJ as

a dynamical on arbitrary curved spacetime. We find that the gravity

field changes to the area field (eI → ΣJK) in the spacelike region,

while the area field changes to the gravity field (ΣJK → eI) in the

timelike region. We find that the tensor product of them, in selfdual

representation, satisfies the reality condition. Finally, we derive the

static potential of exchanging gravitons in scalar and spinor fields, the

Newtonian gravitational potential.

key words: Conjugate momentum, path integral, free gravity propagator,
gravity-area duality, area field.

1 The canonical conjugate momentum πI and

the path integral

We search for conditions to have a dynamical gravity field. The problem of
the dynamics in the general relativity is that spacetime is itself a dynami-
cal. It interacts with matter, it is an operator dx̂µ. Therefore, we have to
consider it as a quantum field like the other fields. But if spacetime is itself
a dynamic, where do the fields exist? This problem is solved by considering
that fields exist on each other, not on spacetime[1]. Both the dynamical
curved spacetime xµ and the gravity field eI have the same entity, it is the
gravity. Thus, we study only one of them as a gravity field: êI . We will
see that it is substantially different in the background spacetime, the gravity
field becomes like the usual quantum fields.

As usual in the quantum fields theory, we have to find the canonical con-
jugate momentum πI(x)(represented in the Lorentz group). We find that it
acts canonically on the local-Lorentz vectors V I(x) on a closed 3D surface
δM immersed in arbitrary curved spacetime xµ of a manifold M . The closed
surface δM is parameterized by three parameters X1, X2 and X3. In a cer-
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tain gauge, we consider that they carry the spatial indices of the local-Lorentz
frame XI : X0, X1, X2, X3. This local-Lorentz frame is tangent-space on the
curved spacetime xµ. We find that the path integral of the gravity field is
independent on this gauge.

Therefore, the exterior derivative operator, on the surface δM , leads to a
change along the norm of that surface, so it causes the change in the time
dX0 direction. That allows the 3D surface δM to extend and have the 4D
local-Lorentz frame XI , which, in our gauge, parameterize the four dimen-
sions xµ coordinates of the curved spacetime in the manifold M . With that
the gravity field propagates from one surface to another by the extension of
those surfaces.

To study the gravity field propagation, we suggest canonical states
∣∣ẽI〉 and∣∣πI〉 represented in Lorentz group. We use them in deriving the path inte-

gral. We find that there is no propagation on the dynamical spacetime xµ.
But in the background spacetime, we find that the gravity field propagates
freely like the electromagnetic fields.

The holonomy of the complex connection Ai in the quantum gravity is[1,
2]

U(γ,A) = TrPei
∮
γ A, (1.1)

where the path ordered P is defined in

Pei
∮
γ A =

∞∑
n=0

1∫
0

ds1

s1∫
0

ds2...

sn−1∫
0

dsniA (γ (sn))...iA (γ (s1)) : γ̇µ (s) =
dxµ

ds
,

where γ(s) is a closed path in the curved spacetime xµ. In irreducible self-
dual representation of the Lorentz group, we write A = Aiτ i, where τ i are
Pauli matrices. The element U(γ,A) is invariant under local-Lorentz trans-
formation V I → LIJ(x)V J and under arbitrary changing of the spacetime
coordinates dxµ → Λµ

ν(x)dxν , therefore the quantum gravity is studied us-
ing it[1].

The complex connection Ai is selfdual of the local-Lorentz spin connection
ω(x)[1]:

Aiµ (x) =
(
P i
)
IJ
ωIJµ (x) ,
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where P i are the selfdual projectors. We can write the holonomy U(γ,A)
using the real spin connection ωIJµ dx

µ of the local-Lorentz frame, we get

U(γ, ω) = TrPei
∮
γ ω

I
J .

We expect that it has the same properties of U(γ,A); satisfies the symme-
tries of GR.

For the free gravity field, we impose the relation:

(ωµ)IJ = πK
IJeKµ ,

where the conjugate momentum πK
IJ (x) is represented in the Lorentz group

and acts on its vectors. Thus, we consider it as a dynamical operator. By
inserting it in the holonomy U(γ, ω), we get

U(γ, π, e) = TrP exp i

∮
γ

(
πK

I
J

)
eKµ dx

µ.

In the free gravity field, we expect that the momentum πIJK is antisymmetry.
Thus, we can write it as

πIJK = πLε
LIJK .

This is our starting point in studying the dynamics of the quantum gravity.
By that, the holonomy becomes

U (γ, π, e) = TrP exp i

∮
γ

(
πKIJ

)
eKµdx

µ = TrP exp i

∮
γ

(
εLKIJ

)
πLeKµdx

µ.

We write it as

∞∑
n=0

1∫
0

ds1

s1∫
0

ds2...

sn−1∫
0

dsn
(
iεLKIJπLeKµγ̇

µ
)

(sn)
(
iεL1K1J

J1πL1eK1µ1 γ̇
µ1
)

(sn−1)

...
(
iεLn−1Kn−1Jn−2

IπLn−1eKn−1µn−1 γ̇
µn−1

)
(s1),

where
(
iεLKIJπLeKµγ̇

µ
)

(sn) = iεLKIJπL (sn) eKµ (sn) γ̇µ (sn), with the tan-
gent γ̇µ (s) = dxµ

ds
on the closed path γ(s) in the manifold M .
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By using the properties

εIJKLε
IJK1L1 = −2

(
δK1
K δL1

L − δ
L1
K δ

K1
L

)
and εIJKLε

I1JKL = −6δI1I ,

the integrals of the holonomy U (γ, π, e) become over terms like

...πI(sj)e
I
µ(si)γ̇

µ (si)dsi...πJ(si)e
J
ν (sk)γ̇

ν (sk)dsk... with i 6= j and i 6= k.

This holonomy satisfies the general relativity symmetries; invariance under
local Lorentz transformation V I → LIJ(x)V J and under arbitrary changing
of the coordinates dxµ → Λµ

ν(x)dxν . Therefore, we use it in quantum gravity.

Let us suggest another term:
∮
γ
πKe

K
µ dx

µ. We expect that it satisfies the
general relativity symmetries if it is integrated over a closed 3D surface δM
instead of the closed path γ(s). This is because

ed4x =
1

4
d3xµ ∧ dxµ =

1

4
eεµνρσdx

ν ∧ dxρ ∧ dxσ ∧ dxµ/3!

is invariant element, thus we can replace πKe
K
µ dx

µ with

πKe
Kµd3xµ = πKe

Kµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3!.

With integrating it over a three dimensions closed surface δM , it becomes
invariant under GR transformations because in the free gravity there are no
sources for the gravity field. As a sequence of that, the flux of the Lorentz
vectors is invariant under arbitrary changing of the closed surface δM .
The determinant e of the gravity field eIµ is defined in e =

√
−g with writing

the metric gµν(x) on the curved spacetime xµ as

gµν(x) = ηIJe
I
µe
J
ν .

In arbitrary transformations, we have invariant element:

√
gεi1...in =

√
g′ε′i1...in .

Therefore,

eεµνρσdx
ν ∧ dxρ ∧ dxσ/3! = d3xµ
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is a co-vector, as ∂µ. By that, the integral

U(δM, π, e) = exp i

∮
δM

πIe
Iµeεµνρσdx

ν ∧ dxρ ∧ dxσ/3! = exp i

∮
δM

πIe
Iµd3xµ

satisfies the same conditions of the holonomy U (γ,A); invariant under local
Lorentz transformation V I → LIJ(x)V J and under arbitrary changing of the
coordinates dxµ → Λµ

ν(x)dxν . That relates to the fact that the integrals of
free vector fields over a closed surface δM , in a manifold M , are invariant if
there are no sources for those fields. It is the conservation. The spin connec-
tion ωµ and so πKe

Kµ, as vectors, satisfy this fact in the free gravity.

The equation of motion of the gravity field eI is

DeI = deI + ωIJ∧eJ = 0.

With our imposing (ωµ)IJ = πK
IJeKµ , it becomes

deI = −πNIJeN ∧ eJ .

But the tensor

eN ∧ eJ = eNµ e
J
νdx

µ ∧ dxν =
1

2

(
eNµ e

J
ν − eNν eJµ

)
dxµ ∧ dxν

measures the area in the manifold M . Therefore, the changes of the gravity
field around a closed path (rotation) relate to the flux of the momentum π
through the area determined by that closed path. It is like the magnetic field
generated by straight electric current. Therefore, we have

eN ∧ eJ → Area,

deI = −πNIJeN ∧ eJ → flux throw this Area.

For that reason, we suggested that the conjugate momentum πIJK is anti-
symmetry.

Now, in the integral

exp i

∮
δM

πIe
Iµeεµνρσdx

ν ∧ dxρ ∧ dxσ/3!,
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we define the canonical gravity field ẽI as

ẽId3X = ẽIdX1dX2dX3 ≡ eIµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3!,

or

ẽI = eeIµn
µ
(
X i
)
,

where nµ(X i) is the norm to the surface δM . By that, the holonomy U(δM, π, e)
becomes

ŨδM(δM, π, ẽ) = exp i

∮
δM

πI ẽ
Id3X,

where the parameters XI : I = 1, 2, 3 parameterize the closed 3D surface
δM in the manifold M . As mentioned before, in certain gauge, we con-
sider that the indices I = 1, 2, 3 are the spatial indices of the local-Lorentz
frame(I = 0, 1, 2, 3). Therefore, the exterior derivative, on the surface δM ,
is along the time dX0. The time dX0 is the direction of the norm on the
surface δM(X1, X2, X3). We will see that the result of the path integral is
independent on this gauge.

As we suggested before, the integral exp i
∮
δM

πI ẽ
Id3X satisfies the same

conditions of the holonomy U(γ,A); invariant under local-Lorentz transfor-
mation and under arbitrary changing of the coordinates, thus we consider it
as a canonical dynamical element.

Comparing it with

〈φ | π〉 = exp i

∫
d3Xφ(X)π(X)/~,

a canonical relation in the scalar field φ theory on flat spacetime. For ~ = 1,
we suggest canonical states

∣∣ẽI〉 and
∣∣πI〉 with〈

ẽI
∣∣ πI〉δM = exp i

∫
δM

ẽI(X)πI(X)d3X,

where πI is the canonical conjugate momentum of ẽI . We can write this
relation on the surface δM as〈

ẽI
∣∣ πI〉δM =

∏
n,I

〈
ẽI (xn + dxn)

∣∣ πI (xn)
〉
δM

,

7



with〈
ẽI (xn + dxn)

∣∣ πI (xn)
〉
δM

= exp iẽI(xn+dxn)πI(xn)d3X → exp iẽI(xn)πI(xn)d3X.

In general, for two points in adjacent surfaces δM1 and δM2, let us rewrite
it as 〈

ẽI (xn + dxn)
∣∣ πI (xn)

〉
= exp iẽI(xn + dxn)πI(xn)d3X. (1.2)

Here the variation

ẽI(xn + dxn)− ẽI(xn)

is exterior derivative along the time dX0 direction, the direction of the norm
on the surface δM1. It leads to the propagation. That allows the extension
of the surface: δM(X1, X2, X3)→M(X0, X1, X2, X3).

We need to make êd4x̂ commutes with ˆ̃eId3X. For that we write

−êd4x̂ = êdx̂µ ∧ εµνρσdx̂ν ∧ dx̂ρ ∧ dx̂σ/4!

= êdx̂µ ∧ εµνρσ
4!

∂x̂ν

∂X i

∂x̂ρ

∂Xj

∂x̂σ

∂Xk

εijk

3!
d3X =

1

4
êdx̂µn̂µd

3X.

The indexes i, j and k, in our gauge, are the local-Lorentz indices for I =
1, 2, 3. As we assumed before; XI : I = 1, 2, 3 parameterize the closed sur-
face δM in the manifold M .

We can rewrite it(in our gauge) as:

−ed4x =
1

4
edxµnµd

3X =
1

4
e
∂xµ

∂X0
nµd

3XdX0 =
1

4
eeµ0nµd

3XdX0.

Comparing it with the term

ẽId3X = eIµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3! = eeIµnµd

3X,

we find that it commutes with it:[
êêIµn̂µd

3X, êêµ0 n̂µd
3XdX0

]
= 0→

[
ˆ̃eId3X, êd4x̂

]
= 0,

where
[
êIµ, ê

J
ν

]
= 0 . Thus, the operator êd4x̂ takes eigenvalues when it acts

on the states
∣∣ẽI〉.
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The action of the gravity field is[1]

S(e, ω) =
1

16πG

∫
εIJKL

(
eI ∧ eJ ∧RKL(ω) + λeI ∧ eJ ∧ eK ∧ eL

)
.

We consider only the first term:

S(e, ω) = c

∫
εIJKLe

I ∧ eJ ∧RKL(ω),

where C is constant. The Riemann curvature is

RKL(ω) = dωKL + ωKM ∧ ωML.

By using the relation we imposed before:

(ω)IJ = πK
IJeK ,

the action becomes

S(e, π) = c

∫ [
εIJKLe

I ∧ eJ ∧ d
(
πM

KLeM
)

+ εIJKLe
I ∧ eJ ∧

(
πK1

K
M

)
eK1 ∧

(
πK2

ML
)
eK2
]
,

or

S(e, π) = c

∫ [
εIJKLe

I ∧ eJ ∧ d
(
πM

KLeM
)

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

]
.

(1.3)

We get the term d
(
πM

KLeM
)

from

εIJKLd
(
eI ∧ eJ ∧ πMKLeM

)
,

by assuming that its integral is zero at the infinities. We have

εIJKLd
(
eI ∧ eJ ∧ πMKLeM

)
=εIJKL

(
deI
)
∧ eJ ∧ πMKLeM − εIJKLeI ∧

(
deJ
)
∧ πMKLeM

+ εIJKLe
I ∧ eJ ∧ d

(
πM

KLeM
)
.

By the rearrangement:

−εIJKLeI ∧
(
deJ
)
∧
(
πM

KLeM
)

= −εIJKL
(
deJ
)
∧ eI ∧

(
πM

KLeM
)

= εJIKL
(
deJ
)
∧ eI ∧ πMKLeM ,

9



it becomes

εIJKLd
(
eI ∧ eJ ∧ πMKLeM

)
= 2εIJKL

(
deI
)
∧eJ∧πMKLeM+εIJKLe

I∧eJ∧d
(
πM

KLeM
)
.

Therefore, we can rewrite the action as

S(e, π) = c

∫ [
−2εIJKL

(
deI
)
∧ eJ ∧

(
πM

KLeM
)

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

]
.

From the equation of motion of the gravity field:

0 = DeI = deI + ωIJ ∧ eJ = deI + πN
I
Je

N ∧ eJ ,

we get

deI = −πNIJeN ∧ eJ .

Inserting it in the last action, it becomes

S(e, π) = c

∫
2εIJKL(πN

I
B)eN ∧ eB ∧ eJ∧

(
πM

KLeM
)

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2 ,

or

S(e, π) = c

∫
2εIJKL

(
πN

I
B

) (
πM

KL
)
eN∧eB ∧ eJ ∧ eM

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2 .

By rewriting it like

S(e, π) = c

∫
2εIJKL

(
πN

I
B

) (
πM

KL
)
eB∧eJ ∧ eN ∧ eM

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2 ,

and replacing B→← I,N → K1, and M → K2 in the first term, we get

S(e, π) = c

∫
2εBJKL

(
πK1

B
I

) (
πK2

KL
)
eI ∧ eJ ∧ eK1 ∧ eK2

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2 .
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And by the replacing

eI ∧ eJ ∧ eK1 ∧ eK2 → εIJK1K2e0 ∧ e1 ∧ e2 ∧ e3,

we get

S(e, π) = c

∫ [
2εBJKL

(
πK1

B
I

) (
πK2

KL
)
εIJK1K2 + εIJKL

(
πK1

K
M

) (
πK2

ML
)
εIJK1K2

]
×e0 ∧ e1 ∧ e2 ∧ e3.

By using the relation πIJL = πKε
KIJL we imposed before, the action

S(e, π) = c

∫ [
2εBJKL (πK1BI)

(
πK2

KL
)
εIJK1K2 − 2

(
πK

K
M

) (
πL

ML
)

+ 2
(
πL

K
M

) (
πK

ML
)]

×e0 ∧ e1 ∧ e2 ∧ e3

becomes

S(e, π) = c

∫ [
2εBJKLπ

NεNK1BI

(
πK2

KL
)
εIJK1K2 + 2 (πLKM)

(
πKML

)]
e0 ∧ e1 ∧ e2 ∧ e3.

By using εNK1BI = −εIK1BN = εIK1NB, εILKM = −εILMK and εJKML =
−εJLMK , that action becomes

S(e, π) = c

∫ [
2εBJKLπ

NεIK1NB

(
πK2

KL
) (
−εIK1JK2

)
+ 2πIεILMKπJε

JLMK
]
e0 ∧ e1 ∧ e2 ∧ e3,

and by setting

εIK1NBε
IK1JK2 = −2

(
δJNδ

K2
B − δ

J
Bδ

K2
N

)
and εILMKε

JLMK = −6δJI ,

it becomes

S(e, π) = c

∫ [
4εK2

JKLπ
J
(
πK2

KL
)
− 12πIπ

I
]
e0 ∧ e1 ∧ e2 ∧ e3.

Or

S(e, π) = c

∫ [
4εK2JKLπ

J
(
πK2KL

)
− 12π2

]
e0 ∧ e1 ∧ e2 ∧ e3,

then

S(e, π) = c

∫ [
−4εJK2KLπ

JπIε
IK2KL − 12π2

]
e0 ∧ e1 ∧ e2 ∧ e3.
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Finally, the action becomes

S0(e, π) = c

∫ [
24π2 − 12π2

]
e0 ∧ e1 ∧ e2 ∧ e3 = c

∫
12π2e0 ∧ e1 ∧ e2 ∧ e3

= c

∫
12π2ed4x.

In the background spacetime, we have e → 1 + δe, therefore this action
becomes

S0(δe, π)→
∫

12cπ2d4x+ ....

To find its meaning, we compare it with the scalar field Lagrange in the flat
spacetime:

Ld4x = (π∂0φ−H(φ, π)) d4x with H(φ, π)d4x =

(
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2

)
d4x.

For ~ = 1, we conclude that the term∫
12cπ2d4x � 0

is the energy of the gravity field in the background spacetime. As we will find
in the result of the path integral, in the background spacetime limit, we have
to replace c with −c when we compare our results with the electromagnetic
field. Thus, in the background spacetime, we expect the replacement:

S(e, π)→ −
∫

12cπ2d4x = −
∫
Hd4x.

This is not surprise, because the general relativity equation (Einstein field
equation) is derived to satisfy the energy-momentum conservation on arbi-
trary curved spacetime, that equation is

Rµν −
1

2
Rgµν = 8πGTµν .

It satisfies the energy-momentum conservation ∇µT
µν = 0. But, as we know,

in the quantum field theory in the background spacetime limit, we have to
write the canonical law of the conservation as

∂µ
(
T µνmatter + T µνgravity

)
= 0,
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therefore we write

Tµν +
−1

8πG

(
Rµν −

1

2
Rgµν

)
= Tµν (matter) + Tµν (gravity) = constant.

Thus, we conclude the relation:

Tµν (gravity) = − 1

8πG

(
Rµν −

1

2
Rgµν

)
.

Therefore, we have to replace c with −c . We will see this, when we compare
the result of the gravity path integral with the electromagnetic field on the
background spacetime.

Now, we derive the path integral as usual in the quantum fields theory. As
we saw before, in our gauge, the operator êd4x̂ takes eigenvalues when it acts
on the states

∣∣ẽI〉. By using (1.2), we get the amplitude〈
ẽI (x+ dx)

∣∣ eiS |πI (x)〉 →
〈
ẽI (x+ dx)

∣∣ ei12cπ̂2êd4x̂ |πI (x)〉

= exp
(
i12cπ2 (x) e (x+ dx) d4x+ iẽI (x+ dx) πI(x)d3X

)
→ exp

(
i12cπ2 (x) e (x) d4x+ iẽI (x+ dx) πI(x)d3X

)
,

where we let the momentum πI acts on the left. The amplitude of the
propagation between two points x and x + dx of adjacent surfaces δM1 and
δM2 is

〈ẽI (x+ dx)| eic12π̂2êd4x̂
∣∣ẽI (x)

〉
δM1→δM2

=
∫ ∏

I

dπI 〈ẽI (x+ dx)| eic12π̂2êd4x̂
∣∣πI (x)

〉
δM1→δM2

〈
πI (x)

∣∣ ẽI (x)
〉
δM1

=
∫ ∏

I

dπI exp
[
i12cπ2 (x) e (x+ dx) d4x+ iẽI(x+ dx)πI(x)d3X

]
exp

(
−iẽI(x)πI(x)d3X

)
→
∫ ∏

I

dπI exp
[
i12cπ2 (x) e (x) d4x+ i

(
ẽI(x+ dx)− ẽI(x)

)
πI(x)d3X

]
.
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The exterior derivative(
ẽI(x+ dx)− ẽI(x)

)
d3X =

∂ẽI(x)

∂X0
d3XdX0 = dẽI(x)d3X

is along the time dX0 direction, the direction of the norm on the surface
δM(X1, X2, X3), therefore it leads to the propagation from one surface to
another.

Thus, we write the amplitude as

〈ẽI (x+ dx)| eic12π̂2êd4x̂
∣∣ẽI (x)

〉
δM1→δM2

=

∫ ∏
I

dπI exp
[
i12cπ2 (x) e (x) d4x+ iπI(x)dẽI(x)d3X

]
.

The path integral is the integral of ordered product of those amplitudes on
all spacetime points(over all ordered 3D surfaces), thus we write it as

WST =

∫ ∏
I

DẽIDπI exp i

∫ (
12cπ2ed4x+ πIdẽ

Id3X
)

=

∫ ∏
I

DẽIDπI exp i

∫ (
12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ

Id3X
)
.

In selfdual representation, we consider that the propagation is in the direc-
tion of expanding of the surface δM(positive direction).

There is no problem with Lorentz non-invariance in ∂ẽI(x)
∂X0 d

3XdX0, because
the equation of motion we find in the result of the path integral is

∂ẽI(x)

∂X0
∝ −πI ,

thus we have

∂ẽI(x)

∂X0
πId

3XdX0 ∝ −πIπId3XdX0.

This is Lorentz invariant. This is like the equation of motion of the scalar
field φ; π = ∂0φ which solves the same problem.

In our gauge, we have

πIπ
Id3XdX0 → π2dX0 ∧ dX1 ∧ dX2 ∧ dX3 = π2e0

µe
1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ

= π2e0
µe

1
νe

2
ρe

3
σε

µνρσd4x = π2ed4x.
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It is invariant element, we find it in the path integral.

The path integral

WST =

∫ ∏
I

DẽIDπI exp i

∫ (
12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ

Id3X
)

vanishes unless

δ

δπI

(
12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ

Id3X
)

= 24cπIe0∧e1∧e2∧e3+dẽId3X = 0.

Thus we get the path(equation of motion):

π̂I =
−1

24c

(
ê0 ∧ ê1 ∧ ê2 ∧ ê3

)−1
dˆ̃eId3X, (1.4)

or

πIπJ =
1

(24c)2

(
e0 ∧ e1 ∧ e2 ∧ e3

)−2
dẽId3XdẽJd3X. (1.5)

By using it we get

12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ
Id3X =

1

48c

(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
− 1

24c

(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
.

By setting it in the path integral, it becomes

WST =

∫ ∏
I

DẽIExp
−i
48c

∫ (
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
.

The canonical field ẽI is defined in

ẽKd3X = eKµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3!.

By applying the exterior derivative, we get(
dˆ̃eK

)
d3X =

(
D̂µ1 ê

Kµ
)
êεµνρσdx̂

µ1 ∧ dx̂ν ∧ dx̂ρ ∧ dx̂σ/3!,
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where D is the co-variant derivative defined in

DV I = dV I + ωIJ ∧ V J .

Thus, the term

(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
=

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

,

in the path integral, becomes(
D̂µ1 ê

µ
I

)
êεµνρσdx̂

µ1 ∧ dx̂ν ∧ dx̂ρ ∧ dx̂σ
(
D̂µ2 ê

Iµ′
)
êεµ′ν′ρ′σ′dx̂

µ2 ∧ dx̂ν′ ∧ dx̂ρ′ ∧ dx̂σ′

3!3!ê0
µ3
ê1
ν3
ê2
ρ3
ê3
σ3
dx̂µ3 ∧ dx̂ν3 ∧ dx̂ρ3 ∧ dx̂σ3

.

Let us define the inverse:(
e0
µe

1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ
)−1

= Eµ′

0 E
ν′

1 E
ρ′

2 E
σ′

3

∂

∂xσ′
∧ ∂

∂xρ′
∧ ∂

∂xν′
∧ ∂

∂xµ′
.

We write it in the form

e0
µe

1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ =
1

4
ed3xµ ∧ dxµ.

(Actually, we have to write the tensors εµνρσ and εµνρσ like e−1εµνρσ and
eεµνρσ but here we neglect that, because it gives the same results).

Also, we can write

Eµ′

0 E
ν′

1 E
ρ′

2 E
σ′

3 ∂σ′ ∧ ∂ρ′ ∧ ∂ν′ ∧ ∂µ′ = E∂ν ∧ ∂3ν ,

with inner product like(
E∂ν ∧ ∂3ν

)(1

4
ed3xµ ∧ dxµ

)
=

1

4
Ee∂ν∧∂3νd3xµ∧dxµ =

1

4
Ee
(
δνµ
)
∂νdx

µ = Ee = 1.

In general, we can write it like(
E∂ν ∧ ∂3ν

) (
ed3xµ′ ∧ dxµ

)
= Ee∂ν ∧∂3νd3xµ′ ∧dxµ = Eeδνµ′∂νdx

µ = δµµ′ .

In the path integral, we set the replacement:

(Dµ1e
µ
I ) eεµνρσdx

µ1∧dxν∧dxρ∧dxσ/3!→ (Dµ1e
µ
I ) edxµ1∧d3xµ = − (Dµ1e

µ
I ) ed3xµ∧dxµ1 ,
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and(
Dµ2e

Iµ′
)
eεµ′ν′ρ′σ′dx

µ2∧dxν′∧dxρ′∧dxσ′/3!→ −
(
Dµ2e

Iµ′
)
ed3xµ′∧dxµ2 .

Let us assume the following replacing:

d3xµ ∧ dxµ = −dxµ ∧ d3xµ → d3xµ ∧ dxµ1 = −dxµ ∧ d3xµ1 .

There is no problem with this trick because in any 4D spacetime we have the
contraction (d3xµ ∧ dxν) = δνµd

4x.
Therefore, we set the replacement:

− (Dµ1e
µ
I ) ed3xµ ∧ dxµ1 → (Dµ1e

µ
I ) edxµ ∧ d3xµ1 .

By that, the term(
D̂µ1 ê

µ
I

)
êεµνρσdx̂

µ1 ∧ dx̂ν ∧ dx̂ρ ∧ dx̂σ
(
D̂µ2 ê

Iµ′
)
êεµ′ν′ρ′σ′dx̂

µ2 ∧ dx̂ν′ ∧ dx̂ρ′ ∧ dx̂σ′

3!3!ê0
µ3
ê1
ν3
ê2
ρ3
ê3
σ3
dx̂µ3 ∧ dx̂ν3 ∧ dx̂ρ3 ∧ dx̂σ3

,

in the path integral, becomes

−
(
E∂ν ∧ ∂3ν

) (
(Dµ1e

µ
I ) edxµ ∧ d3xµ1

) ((
Dµ2e

Iµ′
)
ed3xµ′ ∧ dxµ2

)
= (Dµ1eIµ)

(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
,

where we used

−dxµ ∧ d3xµ1 = d3xµ1 ∧ dxµ then d3xµ1 ∧ dxµ.

Thus we can write

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

→ (Dµ1eIµ)
(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
.

We can choose the contraction:(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
=
(
∂ν ∧ ∂3νd3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
= δνµ1 (∂ν ∧ dxµ)

(
d3xµ′ ∧ dxµ2

)
= δνµ1 (−dxµ ∧ ∂ν)

(
−dxµ2 ∧ d3xµ′

)
= δνµ1dx

µ ∧ ∂νdxµ2 ∧ d3xµ′ = δνµ1δ
µ2
ν dx

µ ∧ d3xµ′ .
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Thus we can write the term in the path integral as

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

→ (Dµ1eIµ)
(
Dµ2e

Iµ′
)
eδνµ1δ

µ2
ν dx

µ ∧ d3xµ′

= (DνeIµ)
(
DνeIµ

′
)
edxµ ∧ d3xµ′ = − (DνeIµ)

(
DνeIµ

′
)
ed3xµ′ ∧ dxµ

= − (DνeIµ)
(
DνeIµ

′
)
eδµµ′d

4x = − (DνeIµ)
(
DνeIµ

)
ed4x.

We can also choose another contraction:

(Dµ1eIµ)
(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
→

(Dµ1eIµ)
(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3νd3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
= (Dµ1eIµ)

(
Dµ2e

Iµ′
)
e
(
δνµ1∂ν ∧ dx

µ
) (
d3xµ′ ∧ dxµ2

)
= δνµ1δ

µ
ν (Dµ1eIµ)

(
Dµ2e

Iµ′
)
e
(
d3xµ′ ∧ dxµ2

)
.

Thus, we get

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

→ (DµeIµ)
(
Dµ′e

Iµ′
)
ed4x.

By the two possible contractions, we can write the final result as(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
=
−1

2

(
Dµe

ν
ID

µeIν −Dµe
ν
IDνe

Iµ
)
ed4x.

This Lagrange is like the Lagrange of electromagnetic field, but with opposite
sign. It is also independent on the gauge we chose for the surface δM . It is
invariant under local Lorentz transformation V I → LIJ(x)V J and under any
coordinate transformation V µ → ∂xµ

∂x′ν
V ′ν .

The path integral of the gravity field becomes, after the replacement c→ −c:

WST =

∫ ∏
I

DeI exp
i

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x,
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with the free gravity field Lagrange

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x. (1.6)

We determine the constant c in the Newtonian gravitational potential c � 0.

In the background spacetime, weak gravity; Dµ → ∂µ and e → 1 + δe, we
have

L→ 1

48c

1

2

(
−∂µeνI∂µeIν + ∂µe

ν
I∂νe

Iµ
)
,

or

L0 =
1

48c

1

2
ηIJe

I
µ

(
gµν∂2 − ∂µ∂ν

)
eJν .

Without background spacetime approximation, in strong gravity field, we
have a problem with the determinant e in the path integral:

WST =

∫ ∏
I

DeIexp
i

48c

∫
1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
e0
µ1
e1
ν1
e2
ρe

3
σε

µ1ν1ρσd4x,

with η0123 = −1, we rewrite

WST =

∫ ∏
I

DeIexp
i

48c

∫
1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)

(−ηI1JKL) eI1µ1e
J
ν1
eKρ e

L
σε

µ1ν1ρσd4x/4!.

Always there is a gravity field eKρ which is different from eIµ and eIν , thus the
integral over it yields delta Dirac:∫ ∏

I

DeIexp
i

48c

∫
1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)

(−ηI1JKL) eI1µ1e
J
ν1
eKρ e

L
σε

µ1ν1ρσd4x/4!,

→ δ
(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
,

→ −Dµe
ν
ID

µeIν +Dµe
ν
IDνe

Iµ = 0,

it yields

π2 = 0 → S (π, e) = c

∫
12π2ed4x = 0 → H (π, e) = 0.
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This path integral is trivial, there is no propagation, because there is no
gravity energy H (π, e) = 0. Like Wheeler-DeWitt equation Ĥψ = 0. The
reason of that is because the gravity field eIµ has the entity of spacetime. It is
impossible for spacetime to be a dynamical on itself, to propagate over itself.

But if we write eIµ(x) → δIµ + hIµ(x), the path integral exists. The propa-
gation is possible. Thus, the dynamics of the gravity is takes place only on
the background spacetime. This is the situation of the weak gravity (low
energy densities). In this situation, the gravity field becomes dynamical as
the other fields.

Latter, we will search for conditions allow the gravity field to propagate
over curved spacetime xµ, for that purpose we impose the duality; Gravity-
Area.

The path integral of weak gravity field in the background spacetime is

w =

∫ ∏
I

DeI expi

∫
1

48c

1

2
eIµ
(
ηIJg

µν∂2 − ηIJ∂µ∂ν
)
eJνd

4x. (1.7)

Thus, the gravity field propagator, g = η and kµe
µI = 0, is

∆µν
IJ(x2 − x1) = 48c

∫
d4k

(2π)4

ηIJg
µνeik(x2−x1)

k2 − iε
,

or

∆µν
ρσ(x2 − x1) = 48c

∫
d4k

(2π)4

gρσg
µνeik(x2−x1)

k2 − iε
. (1.8)

We will use this propagation in the gravity interaction with the scalar and
spinor fields.

2 The need for the duality Gravity-Area

We search for conditions to have a dynamical gravity field in arbitrary curved
spacetime without spacetime background approximation. We found that the
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curved spacetime path integral WST is trivial. There is no propagation with-
out spacetime background. We can solve this problem by assuming that the
fields exist on themselves, not on spacetime[1].

As we saw in the path integral of the gravity field on curved spacetime,
we have a problem in the gravity fields e0 ∧ e1 ∧ e2 ∧ e3. All of them must
be different, the integral over one of them yields delta Dirac. This is trivial
path integral WST . Therefore, there must be a new field, it is the area field
ΣKJ = eK ∧ eJ , by that, the path integral of the gravity field takes place.
This means that the gravity field becomes a dynamical on the area field, not
on spacetime.

According to the general relativity, the length, the area and the volume
are another form of the gravity. We can illustrate that, by the duality
gravity ↔ areas and volumes. We try to find this duality using the trivial
path integral WST , by suggesting conditions allow the gravity field(the dy-
namical spacetime) to propagate on arbitrary spacetime. That propagation
is eI ↔ ΣJK , it means that they propagate when they change to each other.
Also we find that the tensor product of them

∣∣eI〉 ⊗ ∣∣ΣJK
〉
, in selfdual rep-

resentation, satisfies the reality condition.

Starting from the full Lagrange (1.6):

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x,

where the covariant derivative D is defined in

DeI = deI + ωIJ ∧ eJ .

By using our assuming:

ωIJ = πK
IJeK ,

the covariant derivative becomes

DeI = deI +
(
πK

I
J

)
eK ∧ eJ .

The Area field is anti-symmetry field:

ΣIJ
µν =

1

2

(
eIµe

J
ν − eIνeJµ

)
.
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By inserting it in the covariant derivative, it becomes

DeI = deI +
(
πK

I
J

)
ΣKJ = deI + πKIJΣKJ .

And by using our assumption

πIJK = πLε
LIJK ,

the derivative becomes

DeI = deI + πKIJΣKJ = deI + πLε
LKIJΣKJ = deI + εILKJπLΣKJ .

By that, we have two fields eI and ΣKJ in the Lagrange. They are insepara-
ble, therefore we suggest a duality eI ↔ ΣKJ .

The full Lagrange of the gravity field is

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x,

where

−Dµe
ν
ID

µeIν +Dµe
ν
IDνe

Iµ = −Dµe
ν
I

(
DµeIν −Dνe

Iµ
)
.

It becomes

−
(
∂µe

ν
I + εIJKLπ

JΣKLν
µ

) (
∂µeIν + εIJ1K1L1πJ1Σ

µ
K1L1ν

− ∂νeIµ − εIJ1K1L1πJ1ΣK1L1ν
µ
)
,

or

−
(
∂µe

ν
I + εIJKLπ

JΣKLν
µ

) (
∂µeIν − ∂νeIµ + 2εIJ1K1L1πJ1Σ

µ
K1L1ν

)
.

We write it as

− (∂µe
ν
I )
(
∂µeIν − ∂νeIµ

)
− 2εIJ1K1L1 (∂µe

ν
I ) πJ1Σ

µ
K1L1ν

− 2εIJKLΣKLν
µ πJ

(
∂µeIν − ∂νeIµ

2

)
− 2εIJ1K1L1εIJKLΣKLν

µ πJπJ1Σ
µ
K1L1ν

.

To complete it, we need to replace the momentum πI with its value. We had
before (1.4) and (1.5):

πIπJ =
−1

(48c)2

1

2

(
Dµe

IνDµeJν −Dµe
IνDνe

Jµ
)
.
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We consider only the term:

πIπJ =
−1

(48c)2

1

2

(
∂µe

Iν∂µeJν
)
.

Let us expect the contraction:

2εIJ1K1L1 (∂µe
ν
I )πJ1Σ

µ
K1L1ν

→ −1

(48c)2 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν
.

By inserting it in the Lagrange terms, we get

− (∂µe
ν
I )
(
∂µeIν − ∂νeIµ

)
+

2

(48c)2 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν

+
1

(48c)2 ε
IJ1K1L1εIJKLΣKLν

µ

(
∂σe

J
ρ

) (
∂σeρJ1

)
Σµ
K1L1ν

.

Thus, the Lagrange

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x,

becomes

Ld4x→ 1

48c

−1

2
(∂µe

ν
I )
(
∂µeIν

)
ed4x+

1

(48c)3 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν
ed4x

+
1

2 ∗ (48c)3 ε
IJ1K1L1εIJKL

(
∂σe

J
ρ

) (
∂σeρJ1

)
ΣKL
µν Σµν

K1L1
ed4x,

where we used the gauge ∂µe
Iµ = 0.

Now, we use the selfdual projection. We can write any real anti-symmetry
tensor T IJ in two unmixed representations, selfdual and anti-selfdual. In
general relativity the selfdual is chosen. Its projector is[1](

P i
)
jk

=
1

2
εijk ,

(
P i
)

0j
=
i

2
δij : i = I for I = 1, 2, 3.

We see that these projectors satisfy

2i
(
P i
)IJ

(Pi)
KL − 2i

(
P̄ i
)IJ (

P̄i
)KL → εIJKL.
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It is a projection from I 6= J and K 6= L in the left to I 6= J 6= K 6= L in
the right.

The second term is for the anti-selfdual. We consider only the selfdual repre-
sentation. Latter, we discuss the reason of that. Now, we consider only the
first term, thus

εIJKL → 2i
(
P i
)IJ

(Pi)
KL .

We use it in the determinant e:

e = e0
µe

1
νe

2
ρe

3
σε

µνρσ → −εIJKLeIµeJν eKρ eLσεµνρσ/4! : ε0123 = −1.

With the selfdual projection, we have

e = −εIJKLeIµeJν eKρ eLσεµνρσ/4!→ −2i
(
P i
)
IJ

(Pi)KL e
I
µe
J
ν e

K
ρ e

L
σε

µνρσ/4!.

We can rewrite

eIµe
J
ν e

K
ρ e

L
σε

µνρσ =
1

2

(
eIµe

J
ν − eIνeJµ

)
eKρ e

L
σε

µνρσ =
1

2

(
eIµe

J
ν − eIνeJµ

) 1

2

(
eKρ e

L
σ − eKσ eLρ

)
εµνρσ.

Thus, we can rewrite it using the area field ΣIJ :

eIµe
J
ν e

K
ρ e

L
σε

µνρσ = ΣIJ
µνΣ

KL
ρσ ε

µνρσ,

therefore the determinant e becomes

e = −εIJKLeIµeJν eKρ eLσεµνρσ/4!→ −2i

4!

(
P i
)
IJ

(Pi)KL ΣIJ
µνΣ

KL
ρσ ε

µνρσ. (2.1)

Now, we can write the area field as a vector i = 1, 2, 3 in the selfdual repre-
sentation:

Σi
µν =

(
P i
)
IJ

ΣIJ
µν .

Thus, the determinant e becomes

e→ −2i

4!

(
Σi
)
µν

(Σi)ρσ ε
µνρσ or − 2i

4!
Σi
µνΣiρσε

µνρσ. (2.2)

We wrote it in this form to get rid of the gravity fields in the path integral.
As we saw before, the integral over one of them yields delta Dirac. It cancels
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the propagation.

By that, the full Lagrange of the gravity field

Ld4x→ 1

48c

−1

2
(∂µe

ν
I )
(
∂µeIν

)
ed4x+

1

(48c)3 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν
ed4x

+
1

2 ∗ (48c)3 ε
IJ1K1L1εIJKL

(
∂σe

J
ρ

) (
∂σeρJ1

)
ΣKL
µν Σµν

K1L1
ed4x,

becomes

Ld4x→ 1

48c

−1

2
(∂µe

ν
I )
(
∂µeIν

)(
−2i

4!
Σi
µνΣiρσε

µνρσ

)
d4x

+
1

(48c)3

(
2ipIJ1i

)
(∂µe

ν
I ) (∂µeρJ1) Σiρ

ν

(
−2i

4!
Σi
µνΣiρσε

µνρσ

)
d4x

− 2

(48c)3 (pi)
IJ1 (pj)IJ

(
∂σe

J
ρ

) (
∂σeρJ1

)
Σj
µνΣ

iµν

(
−2i

4!
Σi
µνΣiρσε

µνρσ

)
d4x,

or

Ld4x→ 2i

48c

1

2
(∂µe

ν
I )
(
∂µeIν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x

+
4

(48c)3 (pi)
IJ1 (∂µe

ν
I ) (∂µeρJ1) Σiρ

ν

(
Σi
µνΣiρσε

µνρσ/4!
)
d4x

+
4i

(48c)3 (pi)
IJ1 (pj)IJ

(
∂σe

J
ρ

) (
∂σeρJ1

)
Σj
µνΣ

iµν
(
Σi
µνΣiρσε

µνρσ/4!
)
d4x.

It is quadratic in eI , therefore its integral is not trivial. Here we can consider
the area field Σi as a background field that the gravity field propagates over
it. Or suggesting the duality eI ↔ Σi, by it the amplitude of propagation of
eI between x and x+ dx is

〈
eI(x+ dx)

∣∣ Σi(x)
〉
.

If we consider the first term, we can discover its behavior by testing one
wave; cos (kµx

µ). We have

(∂µe
ν
I )
(
∂µeIν

)
→ −eνI∂µ∂µeIν → −∂µ∂µ cos (kµx

µ) = kµk
µ cos (kµx

µ) ,

it yields

ei
∫
Ld4x → exp

∫
2

48c

i2

2

(
kµk

µeνIe
I
ν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ...

→ exp

∫
2

48c

1

2
(−kµkµ)

(
eνIe

I
ν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ...,
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then

eiS → exp

∫
2

48c

1

2

(
k2

0 − ~k2
) (
eνIe

I
ν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ .... (2.3)

We consider that the area field is in the positive directionRe
(
Σi
µνdx

µ ∧ dxν
)
�

0, the direction of the expanding, then Re
(
Σi
µνΣiρσε

µνρσ
)
� 0.

We find that in time-like region k2
0 − ~k2 � 0, the gravity field is created,

while in the space-like region k2
0 −~k2 ≺ 0, it is annihilated eIµ → Σi

νρ. Oppo-
sitely to the area field, as we will see. This is the duality eIµ ↔ Σi

νρ. It is like
to say, in the time-like region we find the gravity field and in the space-like
region we find the area field.

The time-like region is the region of exchanging energies (interactions), while
the space-like region is the region of the static fields, the situation of located
matter. Therefore spacetime, in which matter is located, is consisted of
quanta of area and volume. The duality eIµ ↔ Σi

νρ, as we will see, satisfies
the reality condition. It is like the right and left spinor fields.

3 The Lagrange of the Area field

We derive here the Lagrange of the area field. We find that in the background
spacetime it is like the electromagnetic field, but with opposite sign in the
Lagrange. We can get rid of that opposite sign by the replacement ∂µ → i∂µ,
it is equivalent to replace kµ with ikµ in the free solutions: eikx → e−kx or ekx.
We find that the behavior of the area field, in selfdual representation, is op-
posite to the behavior of the gravity field. For that reason, we suggest the
gravity-area duality, which satisfies the reality condition.

The area field is defined in

ΣIJ = eI ∧ eJ , with ΣIJ
µν =

1

2

(
eIµe

I
ν − eIνeIµ

)
.

We start with the Lagrange (1.3):

S(e, π) = c

∫ [
εIJKLe

I ∧ eJ ∧ d
(
πM

KLeM
)

+ εIJKLe
I ∧ eJ ∧

(
πK1

K
M

)
eK1 ∧

(
πK2

ML
)
eK2
]
.
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As done before, we assume that the integral of

εIJKLd
(
eI ∧ eJ ∧

(
πM

KLeM
))

= εIJKLd
(
ΣIJ ∧

(
πM

KLeM
))

is zero at the infinities, thus we get

dΣIJ∧
(
πM

KL
)
eM+eI∧eJ∧d

(
πM

KLeM
)

= −
(
πM

KL
)
eM∧dΣIJ+eI∧eJ∧d

(
πM

KLeM
)
.

By using it, the Action becomes

S(e, π) = c

∫ [
εIJKL

(
πM

KL
)
eM ∧ dΣIJ + εIJKLΣIJ ∧

(
πK1

K
M

) (
πK2

ML
)
eK1 ∧ eK2

]
,

or

S(e, π) = c

∫ [
εIJKL

(
πM

KL
)
eM ∧ dΣIJ + εIJKL

(
πK1

K
M

) (
πK2

ML
)

ΣIJ ∧ ΣK1K2
]

By inserting our imposing:

πIJK = πLε
LIJK ,

we get

εIJKL
(
πM

KL
)
eM = εIJKLπ

MKLeM = εIJKLπNε
NMKLeM = −2 (πIeJ − πJeI) .

We can write

ΣIJ ∧ ΣK1K2 → εIJK1K2Σ01 ∧ Σ23,

by it we have

εIJKL
(
πK1

K
M

) (
πK2

ML
)

ΣIJ ∧ ΣK1K2 = εIJKL
(
πK1

K
M

) (
πK2

ML
)
εIJK1K2Σ01 ∧ Σ23

= 2
(
πL

K
M

) (
πK

ML
)

Σ01 ∧ Σ23 = 2 (πLKM)
(
πKML

)
Σ01 ∧ Σ23

= 2 (πKML)
(
πKML

)
Σ01 ∧ Σ23 = 2πIεIKMLπJε

JKMLΣ01 ∧ Σ23

= −12π2Σ01 ∧ Σ23.

Therefore, the Action becomes

S(e, π,Σ) = c

∫ [
−2 (πIeJ − πJeI) ∧ dΣIJ − 12πIπ

IΣ01 ∧ Σ23
]
.
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Because the area field ΣIJ is anti-symmetry, we can write

S(e, π,Σ) = c

∫ [
−4πIeJ ∧ dΣIJ − 12πIπ

IΣ01 ∧ Σ23
]
,

and by using ε0123 = −1, we can rewrite it like

S(e, π,Σ) = c

∫ [
−4πIeJ ∧ dΣIJ + 12πIπ

IεIJKLΣIJ ∧ ΣKL/4!
]
,

or

S(e, π,Σ) = c

∫ [
−4πIeJ ∧ dΣIJ +

1

2
π2εIJKLΣIJ ∧ ΣKL

]
.

The path integral over momentum πI vanishes unless (the equation of mo-
tion)

δ

δπI

∫ [
−4πIeJ ∧ dΣIJ +

1

2
π2εIJKLΣIJ ∧ ΣKL

]
= 0.

But it is not easy to separate Σ from e. It is like the gravity field, it is
separable only in weak gravity(background spacetime). Therefore, we solve
it in the background spacetime. On arbitrary spacetime, we get the integral:∫ (

−4πIeJ ∧ dΣIJ +
1

2
π2εIJKLΣIJ ∧ ΣKL

)

→
∫ (
−4πIeµJ∂νΣ

IJ
ρσε

µνρσ +
1

2
π2εIJKLΣIJ

µνΣ
KL
ρσ ε

µνρσ

)
d4x.

The background spacetime approximation is

eIµ(x)→ δIµ + hIµ(x) , e→ 1 + δe,

by it the area field becomes

ΣIJ
µν =

1

2

(
eIµe

J
ν − eIνeJµ

)
→ 1

2

(
δIµδ

J
ν − δIνδJµ

)
+

1

2

(
hIµδ

J
ν − hIνδJµ

)
+

1

2

(
δIµh

J
ν − δIνhJµ

)
.

By inserting it in the action:

S (e,Σ) = c

∫ (
−4πIeµJ∂νΣ

IJ
ρσε

µνρσ +
1

2
π2εIJKLΣIJ

µνΣ
KL
ρσ ε

µνρσ

)
d4x,
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it becomes

S (e,Σ)→ S (h, δΣ) = c

∫ (
−4πI∂νΣ

IJ
ρσεJ

νρσ +
1

2
π2 (−24) + . . .

)
d4x.

Therefore the condition( equation of motion):

δ

δπI

∫ [
−4πIeJ ∧ dΣIJ +

1

2
π2εIJKLΣIJ ∧ ΣKL

]
= 0

approximates to

δ

δπI

∫ (
−4πI∂νΣ

I
Jρσε

Jνρσ +
1

2
π2 (−24)

)
d4x = 0.

Its solution is

πI = −1

6
∂νΣ

I
Jρσε

Jνρσ = −1

6
∂νΣIJρσεJνρσ.

By that, the action in background spacetime is approximated to

S(Σ)→ c

∫ [
2

3
∂ν1ΣIJ1ρ1σ1εJ1ν1ρ1σ1∂νΣIJρσε

Jνρσ + ...

]
d4x.

By defining inner product ΣIJ1ρ1σ1ΣIJρσ = Σ2δJ1J δ
ρ1
ρ δ

σ1
σ , we get

S(Σ)→ c

∫ (
−4∂µΣνρ

IJ∂
µΣIJ

νρ + ...
)
d4x with ∂µΣµρ

IJ = 0.

This is the action of the area field in weak gravity field (background space-
time). It is like the electromagnetic field. The corresponding Lagrange is

L0(Σ)→ −4c (∂µΣνρ
IJ)
(
∂µΣIJ

νρ

)
with ∂µΣµρ

IJ = 0.

We rewrite it like

L0(Σ)d4x = −4c (∂µΣνρ
IJ)
(
∂µΣIJ

νρ

)
ed4x+ ...

We replace c with −c, as we did in deriving the Lagrange of the gravity
field. This constant is determined in the static gravity field potential c � 0.
Therefore,

L0(Σ)d4x→ 4c (∂µΣνρ
IJ)
(
∂µΣIJ

νρ

)
ed4x+ .... (3.1)
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We can get rid of opposite sign by the comparing with the free electromag-
netic Lagrange in background spacetime e → 1 + δe. We can replace ∂µ
with i∂µ, it is equivalent to the replacing kµ → ikµ in the free solutions:
eikx → e−kx or ekx in the background spacetime. By that the area field be-
comes a classical field, we can consider it as background field that the gravity
field propagates over it.

By using the selfdual projection (2.1) and (2.2):

e = −εIJKLeIµeJν eKρ eLσεµνρσ/4!→ −2i

4!

(
P i
)
IJ

(Pi)KL ΣIJ
µνΣ

KL
ρσ ε

µνρσ,

the Lagrange (3.1) becomes

L0(Σ)ed4x = −8ci
(
∂µΣνρ

IJ∂
µΣIJ

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ....

To discover the area field behavior, we test one wave; cos (kµx
µ). We get

L0(Σ)ed4x→ −8ci
(
kµkµΣνρ

IJΣIJ
νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x.

The action of that is

eiLed
4x → exp 8c

(
kµk

µΣνρ
IJΣIJ

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x,

it yields

eiδS → exp 8c
(
−k2

0 + ~k2
) (

Σνρ
IJΣIJ

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x. (3.2)

It is opposite to the behavior of the gravity field (2.3). In the time-like region

(−k2
0 +~k2 ≺ 0), the area field is annihilated ΣJK

νρ → eIµ, while in the space-like

region (−k2
0 +~k2 � 0), the area field is created eIµ → ΣJK

νρ . This is the duality
eIµ ↔ ΣJK

νρ . It preserves the reality condition. It is like the duality of left and
right spinor field under Lorentz transformation and party.

The opposite behavior is with the anti-selfdual representation, the hermi-
tian conjugate of the selfdual

2i
(
P i
)IJ

(Pi)
KL − 2i

(
p̄i
)IJ (

P̄i
)KL → εIJKL,

which is projection from I 6= J and K 6= L in the left to I 6= J 6= K 6= L in
the right.
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The first term is for the selfdual, while the second is for the anti-selfdual.
The tensor product of them satisfies the reality:

ei∆L(selfdual)d4xei∆L(anti−selfdual)d4x = real.

Instead of that, we can satisfy the reality by gravity-area duality:

ei∆L(e)d4xei∆L(Σ)d4x = real : invariant for selfdual.

For one wave, it becomes

e
2

48c
1
2(k20−~k2)(eνI eIν)(ΣiµνΣiρσε

µνρσ/4!)e8c′(−k20+~k2)(ΣνρIJΣIJνρ)(ΣiµνΣiρσε
µνρσ/4!),

where we wrote c′ to distinguish it from c. For

2

48c

1

2

(
eνIe

I
ν

)
= 8c′

(
Σνρ
IJΣIJ

νρ

)
,

the Tensor product of them equals one, this satisfies the reality. By that, we
can determine c′, like to choose (48c)−1 = 16c′, with(

eνIe
I
ν

)
=

1

2

(
Σνρ
IJΣIJ

νρ

)
=

1

2

(
Σνρ
i Σi

νρ + Σ̄νρ
i Σ̄i

νρ

)
,

where the hermitian conjugate Σ̄νρ
i Σ̄i

νρ is represented in anti-selfdual: Σ̄i =
P̄ i
IJΣIJ .

As done for the left and right spinor fields; in the left spinor field representa-
tion, the right spinor field is zero. And in the right spinor field representation,
the left spinor field is zero[3]. Therefore, in the selfdual representation, we
assume that the anti-selfdual is zero. Like that in the anti-selfdual represen-
tation.

Thus, in the selfdual representation, we have

Σ̄i =
1

2
εijkΣjk − iΣ0i = 0→ 1

2
εijkΣjk = iΣ0i.

Therefore, the area field in the selfdual representation becomes

Σi =
1

2
εijkΣjk + iΣ0i = εijkΣjk,
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which is real as required for satisfying the reality condition. It is equivalent
to the replacing x0 → −ix0. Same result we get in the anti-selfdual repre-
sentation: Σi = 0→ Σ̄i = εijkΣjk. It is equivalent to the replacing x0 → ix0,
which allows the splitting: SO(3, 1)→ SU(2)⊗ SU(2).

In the two representations, the condition
(
eνIe

I
ν

)
= 1

2

(
Σνρ
IJΣIJ

νρ

)
= 1

2

(
Σνρ
i Σi

νρ + Σ̄νρ
i Σ̄i

νρ

)
becomes

(
eνIe

I
ν

)
= 1

2
εij′k′Σ

j′k′
νρ ε

ijkΣνρ
jk = Σνρ

jkΣjk
νρ.

The difference between the selfdual and the anti-selfdual appeared in the
opposite sign in the Lagrange:

L→ 8c′
(
−k2

0 + ~k2
) (

Σνρ
i Σi

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
for selfdual Σ̄i = 0,

and

L→ −8c′
(
−k2

0 + ~k2
) (

Σ̄νρ
i Σ̄i

νρ

) (
Σ̄i
µνΣ̄iρσε

µνρσ/4!
)
for anti-selfdual Σi = 0.

The opposite sign comes from the projection (2.2):

e→ −2i

4!
Σi
µνΣiρσε

µνρσ/4! +
2i

4!
Σ̄i
µνΣ̄iρσε

µνρσ/4!.

We chose the selfdual representation because its tensor product with the
gravity field satisfies the reality. It is like the duality of the left and right
spinor fields under the Lorentz transformation and the party: ψL ↔ ψR.

4 The static potential of weak gravity

We derive the static potential of the scalar and spinor fields interactions with
the weak gravity field in the static limit, the Newtonian gravitational poten-
tial. We find that this potential has the same structure for the both fields,
it depends on the fields energy. By that, we determine the constant c � 0.

The action of scalar field in curved spacetime is[1]

S(e, φ) =

∫
d4xe

(
ηIJeµI e

ν
JDµφ

+Dνφ− V (φ)
)
.
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In the weak gravity, the background spacetime approximation is given by

eµI (x)→ δµI + hµI (x) , e→ 1 + δe.

Thus, the action is approximated to

S(e, φ) =

∫
d4x

(
∂µφ

+∂µφ+ hµν(x)∂µφ
+∂νφ+ hνµ(x)∂µφ

+∂νφ− V (φ) + ...
)
.

The gravity field is symmetry, thus we get

S(e, φ) =

∫
d4x

(
∂µφ

+∂µφ+ 2hµν(x)∂µφ
+∂νφ− V (φ) + ...

)
.

The energy-momentum tensor of the scalar field is[3]

Tµν = ∂µφ
+∂νφ+ gµνL,

hence

∂µφ
+∂νφ = Tµν − gµνL.

By inserting it in the Lagrange, it becomes

L = ∂µφ
+∂µφ+ 2hµν(x) (Tµν − gµνL)− V (φ) + ....

By that, we have

L = ∂µφ
+∂µφ+ 2hµνTµν − V (φ)− 2hµνgµνL+ ....

Therefore, in the interaction term, we set the replacement:

∂µφ
+∂νφ→ Tµν and L→ L− 2hµνgµνL.

Because the gravity field is weak (background spacetime), so 2hµνgµνL is ne-
glected by comparing it with L.

We find the potential V (r) of the exchanged virtual gravitons by two particles
k1 and k2, using M (k1 + k2 → k′1 + k′2) matrix element (like Born approx-
imation to the scattering amplitude in non-relativistic quantum mechanics
[7]).
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For one diagram of Feynman diagrams, we have

iM (k1 + k2 → k′1 + k′2) = i (−ik′2)µ (ik2)ν
∆̄µνρσ (q)

i
i (−ik′1)ρ (ik1)σ ,

with

q = k′1 − k1 = k2 − k′2.

The propagator ∆µνρσ (x2 − x1) is the gravitons propagator (1.8), we get it
from the Lagrange of the free gravity field (background spacetime) we had
before:

L0 =
1

48c

1

2
ηIJe

I
µ

(
gµν∂2 − ∂µ∂ν

)
eJν →

1

48c

1

2
ηIJh

I
µ

(
gµν∂2 − ∂µ∂ν

)
hJν .

With the gauge ∂µeIµ = 0, we get

∆IJ
µν (y − x) =

∫
d4q

(2π)4 ∆̄IJ
µν

(
q2
)
eiq(y−x) : ∆̄IJ

µν

(
q2
)

= 48c
gµνη

IJ

q2 − iε
.

Therefore, the M matrix element becomes

iM (k1 + k2 → k′1 + k′2) = i48c (−ik′2)µ (ik2)ρ
gµνgρσ

q2
(−ik′1)σ (ik1)ν ,

where g = η and q = k′1 − k1 = k2 − k′2
By comparing it with[7]

iM (k1 + k2 → k′1 + k′2) = −iV̄ (q) δ4 (kout − kin) ,

we get

V̄
(
q2
)

= −48c (−ik′2)µ (ik2)ρ
gµνgρσ

q2
(−ik′1)σ (ik1)ν .

And by comparing this relation with the replacement:

∂µφ
+∂νφ→ Tµν and L→ L− 2hµνgµνL,

and by evaluating the inverse Fourier transform, we get

V (y − x) = −48cTµρ (y) gµνgρσTνσ (x)
1

4π |y − x|
= −48c

Tµν (y)T µν (x)

4π |y − x|
,
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where T µν is transferred energy-momentum. In the static limit, for one par-
ticle, we approximate T 00 to m: m is the mass of interacted particles.

Therefore, we get the Newtonian gravitational potential:

V (y − x) = −48c
m2

4π |y − x|
= −G m2

|y − x|
→ 48c = 4πG.

Therefore, the weak gravity Lagrange becomes

L0 =
1

4πG

1

2
ηIJe

I
µ

(
gµν∂2 − ∂µ∂ν

)
eJν .

We do the same thing for the spinor fields interaction with the gravity. The
action is[1]

S(e, ψ) =

∫
d4xe

(
ieµI ψ̄γ

IDµψ −mψ̄ψ
)
,

where the covariant derivative Dµ is

Dµ = ∂µ+ (ωµ)IJ L
J
I +AaµTa.

In the background spacetime, it becomes

S(e, ψ) =

∫
d4x

(
iψ̄γµDµψ + ihµI ψ̄γ

IDµψ −mψ̄ψ + ...
)
.

Let us consider only the terms:∫
d4x

(
iψ̄γµ∂µψ + ihµν ψ̄γ

ν∂µψ −mψ̄ψ
)

: g = η.

The energy-momentum tensor of the spinor field is[3]

T µν = −iψ̄γµ∂νψ + gµνL.

As for the scalar field, in the interaction term, we have the replacement

iψ̄γµ∂νψ → −Tµν and L→ L+ hµνgµνL.

The term hµνgµνL is neglected by comparing it with the Lagrange L. We
find M matrix element of the exchanged virtual gravitons p1 + p2 → p′1 + p′2,
for one diagram of Feynman diagrams[7]:

iM (p1 + p2 → p′1 + p′2) = i48cū (p′1) γµ (−ip1)ν u (p1)
gµσg

νρ

q2
ū (p′2) γσ (−ip2)ρ u (p2) ,
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with

q = p′1 − p1 = p2 − p′2 and g = η,

we have

V̄
(
q2
)

= −48cū (p′1) γµ (−ip1)ν u (p1)
gµσg

νρ

q2
ū (p′2) γσ (−ip2)ρ u (p2) .

By comparing this relation with the replacement:

iψ̄γµ∂νψ → −Tµν and L→ L+ hµνgµνL,

and by evaluating the inverse Fourier transform, we get

V (y − x) = −48c (−Tµρ (y)) gµνgρσ (−Tνσ (x))
1

4π |y − x|
= −48c

Tµν (y)T µν (x)

4π |y − x|
,

where T µν is transferred energy-momentum. In the static limit, for one par-
ticle, we approximate T 00 to m: m is the mass of interacted particles.

Therefore, we get the Newtonian gravitational potential:

V (y − x) = −48c
m2

4π |y − x|
= −G m2

|y − x|
→ 48c = 4πG.

It is the same potential we found in the scalar field interaction with the
gravity field.
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