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Abstract

We derive the canonical momentum 7; of the gravity field e!. Then we use
it to derive the path integral of the gravity field. The canonical momentum
7y is represented in Lorentz group. We derive it from the holonomy U (v, A)
of the connection A% of the Lorentz group. We derive the path integral of the
gravity field as known in the quantum fields theory and discuss the situation
of the free gravity field (like the electromagnetic field). We find that situation
is only in the background spacetime, the weak gravity situation. We search
for a theory in which the gravity field is dynamical at any energy in arbitrary
curved spacetime {z*}. For that, we suggest the duality e/ <+ ©/% | where
the field 21/ = el A e’ is the Area field. That duality lets to the possibility
to study the both fields e/ and X!/ in arbitrary curved spacetime. We find
el — 27K in spacelike and £7% — ¢! in timelike. We find that the tensor
product of the gravity and area fields, in selfdual representation, satisfies the
reality condition. We apply that to derive the static potential of exchanging
gravitons in scalar and spinor fields, the Newtonian gravitational potential.
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1 The canonical conjugate field 7/ and the path
integral

We search for conditions to have a dynamical gravity field. The problem of the
dynamics in general relativity is that the spacetime is itself a dynamical thing. It
interacts with the matter, it is an operator di*. Therefore we have to treat the
spacetime as a quantum field like the other fields. But where they exist, this problem
is solved by considering fields exist over fields not over the spacetime|1].

As usual in quantum field theory we have to find the canonical conjugate field
7l (represented in Lorentz group) acts canonically on Lorentz vectors over 3d closed
surface 0 M immersed in arbitrary curved spacetime x* of manifold M. That closed
surface M is parameterized by three parameters X!, X2, X3, In a certain gauge, we
consider them as a spatial part of Lorentz coordinate X’ = X% X' X2 X3 with the
flat metric (- + + +).

Therefore, the exterior derivative operator lets to the change along the norm of
that surface, so it lets to the change in the time X° direction. That lets the 3d
surface extends and have the four Lorentz spacetime {X I } parameterize the four
dimensions z* of the curved spacetime in the manifold M.

We suggest canonical states ‘él > and ’7‘(‘1 > represented in Lorentz group, we use
them in deriving the path integral of the gravity field. We find that there is no
propagation over the dynamical spacetime x*. But in the background spacetime we
find that the gravity field propagates freely like the electromagnetic fields.

Although the dynamics of the gravity field is built using the Lorentz group ele-
ments, the measurements relate and depend on the dynamical spacetime x* . Because
xt is itself a dynamical, it interacts with all fields. Therefore our need to the Lorentz
representation is to have canonical dynamical laws, processes ..., so we have to dis-
tinguish between the dynamics of the general relativity and its measurements.

The holonomy of the connection A in the quantum gravity is[1]
Uy, A) = TrPeh4 (1.1)

It is ordered integral along closed path + in arbitrary curved spacetime x*. This
element is invariant under local Lorentz transformation V! — L (z)V”/ and under
arbitrary changing of the coordinates dax* — A", (z)dz”. Therefore the quantum
gravity is studied using it.
The connection A is the selfdual of Lorentz spin connection w:

Al (z) = (P"),,w) (2)
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P is the selfdual projector[1]. We can write the holonomy using the spin connection
wi‘] dx* of Lorentz group. We have

U(y,w) = TrPe' $:"

We expect that it has the same properties of U(7y, A); satisfies the symmetries of GR.
For free gravity field, we impose the relation:

IJeK

1J
)= ?

(wy TK

The conjugate field 7!’ (z) is represented in Lorentz group and acts on its vectors.
Therefore we consider it as a dynamical operator. The holonomy becomes

U(y,me)=TrP expi% (WKIJ) effdx“

~

For free gravity field, we expect that the momentum 7//¥ is antisymmetry. So we
can write
AT = LK

This is our starting point in study the dynamics of the gravity. The holonomy
becomes

U(y,m,e)=TrP expi]{ (7™')) expdz® = TrP expif (e"™)) mrex dat
0! 0!

The result of that integral depends on

P / WKeff daxt
i
v; are ordered paths divide the closed path v and P is the permutation of them.
The holonomy U (v, 7, €) satisfies the general relativity symmetries, invariance un-

der local Lorentz transformation V! — L ;(2)V7 and under arbitrary changing of
the coordinates dz* — A*,(x)dx”. Therefore we can use it in quantum gravity.

We expect ﬂKeff dz" satisfies the same conditions if it is integrated over a closed
surface instead of the path v . That is because

1 1
ed*r = ngxu Adat = Zeéwpadx” A dz? A dx® A dzt /3!



is invariant element. Therefore we can replace WKef dx* with
WKeK”d%M = WKeK“esu,,pgdx” A dxP A dz? /3!

With integrating it over closed three dimensions surface 6 M.
e is the determinant of the gravity field e/, :

g () = nrre,e, > V=g =e

For arbitrary transformation, we have the invariant element
\/ggll'bn = ﬂggl---in

Therefore
€ wpodx” N\ dxf A dz’ /3! = d?’:zru

Is a co-vector, as 0,. By that, the integral

Uy, m,e) = expi]{

oM

ﬂ]ef“eéwpgdx” Adz? N dz? /3! = expi% mef“d%ﬂ

Satisfies the same conditions of the holonomy U (v, A), invariant under local Lorentz
transformation V! — LL(x)V”/ and under arbitrary changing of the coordinates
dx* — A*,(x)dz”. That relates to the physical reality, it is, the integral of free
vector fields over a closed surface dM in a manifold M is invariant if there are no
sources for those fields. It is the conversation. The spin connection w* and so e

as vectors, satisfy that reality in free gravity.

The equation of motion of the gravity field e’ is
De! = de! +w!jne’ =0

With our imposing (w,)"” = mi'el, we get

del = —mnt eN Ae?
As we know, the tensor

N J __ N _J o v __ N_J _N_J o v
e’ Ne” = e, e dit Ndx" = (e#ey eyeu)dx A dx



Measures the area in the manifold M. Therefore the changes of the gravity field
around a closed path (rotation) relate to the flux of the momentum 7 throw the area
which is determined by the closed path. It is like the magnetic field, generated by
straight electric current. Therefore

eN Ael = Area

I eV Nel — flux throw this Area

K

deI = —TN

For that reason we suggested 7//X is antisymmetry. We see that the flux depends

on the momentum .

Now, in the integral
expz’]( mej“esw,podx” A dxP A dz? /3!
sM

We define the canonical gravity field
BX =eldXldX?dX3 = eI“eswpad:p” A dz? A dz? /3!
We get

UgM((SM,W,é) = expij{ meld®X
M
Where X! : I = 1,2,3 parameterize the closed surface §M in the manifold M. In
certain gauge, we consider X’ : I = 1,2,3 as a spatial part of Lorentz spacetime
X!':1=0,1,2,3. Therefore the exterior derivative is along the time X°. The time
X0 is the direction of the norm on the surface §M (X1, X2, X3). We will see that
the result of the path integral is independent on this gauge.

The integral exp féM mreld® X satisfies the same conditions of the holonomy U (v, A),
invariant under local Lorentz transformation and under arbitrary changing of the co-
ordinates. Therefore we consider it as a canonical dynamical element.
Comparing it with
(@] 7) =expi [ EXo(X)r(X)/n

the dynamical relation of scalar field ¢. For A = 1, we suggest canonical states ‘él >
and |7TI > with

(e | 7TI>6M = expi/aM (X)) m(X)d*X
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77 is canonical conjugate field of /. We can write it over the surface JM like
<él | 7r1>5M = nHJ(éI (n + dzy,) | T (x")>6M
With

= expié! (zn+dx,)mr(2,)dP X — expié! (z,)mr(2,)d> X

<eI (y + dzy,) | 71 (T >5M

This relation is over the surface M. In general, for two points in different surfaces
OM, and dM,, we have

<él (n + dzy,) ! Ty (acn)> = expié! (z, + du,)mr(z,)d* X (1.2)
Here the variation
ie! (z, 4 dxy,) — 1" (z,)

Is exterior derivative along the time dX° in the direction of the norm on the surface
dM;, it lets to the propagation. That lets to extend the surface: M (X', X2, X?3) —
M(X° X1 X2 X3).

We need to make éd*# commutes with é/d3X. For that we write

—ed'3 = edit A €,p0d3” A diP A d37 /4!
_ ogg p Svee oz¥ 0P 0z° £k
41 9X10XI0Xk 3|

1
X = Zédﬁc“ﬁung

The indexes 7jk are Lorentz indexes for I = 1,2, 3. As we assumed before, X’ : I =1,2,3
parameterize the closed surface d M in the manifold M.
We can rewrite it(in certain gauge) like

18x

1
—ed'z = A—Ledx“nudSX = 1 8X0

——n,d’XdX" = ieeg‘n”d?’XdXO
compare it with the term

e'd*X = eteg,,ppdx” A dx’ Ada /3! = ee'tn,d* X
We find it commutes with it

(66" d° X, i, d* XdX") =0 — [E'a*X, ed's| = 0
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Where [éﬁ, éi] = 0 . Therefore the operator éd*Z takes eigenvalues when it acts on

the states |él>.

The action of the free gravity field is[1]

1

Slew) =15

EIJKL (61 Ael A RKL(M) +xel nel AefE A eL)
We consider only the first term
Sle,w) = C/€]JKL€I Ael A RFE(w)

C' is constant. The Riemann curvature is
RE(w) = dw™F + "y A wME
Using the relation we imposed before:

)IJ I1J _K

(Wu)” =7k e,

the action becomes

S(e,m) = c/ leraxre’ Nel Ad (P e™) +epgrre’ Nel A (T, ) €5 A (T, M) €2

or

S(eim) = [ Tense! Ae? Ad (mare) + epmcs (nie ) (mae ME) f Ae? A et n et
(1.3)

We find the term d (my*%e!) from

€[JKLd (61 A €J VAN WMKLGM)

But we assume its integral is zero at infinity. We have

E[JKLd (61 A €J VAN WMKLGM) =E€I1JKL (de]) A €J N 7TMKL6M — €[JKL€I VAN (dGJ) A 7TMKL€M

+ €[JKL€I A BJ Ad (WMKLBM)



Rewriting

—ersrrel A (de‘]) A (WMKLGM) = —€1JKL (de‘]) Ael A (WMKLeM)

= €JIKL (deJ) Ael Ay KleM

Therefore
erixnd (61 Ael A TMKLGM) = 261 JKL (del) /\eJ/\WMKLeM+€UKLeI/\eJ/\d (WMKLeM)
By that we write the action as
S(e,m) = c/ [—QSUKL (del) Ael A (WMKLGM) + €KL (WKIKM) (WKQML) el Nel Aeft A eKﬂ
Using the equation of motion of the gravity field

0=De! =del +w'jne! =de! +npyteN Ne?!
We get

del = —manT e A’

Inserting it in the action, it becomes

S(e,m) = c/2€UKL(7rNIB)eN AeP Aeln (FMKLGM)

+ EIJKL (7TK1KM) (WKQML) el Ael Neftn el

S(e,m) = 0/26UKL (WNIB) (ﬂ'MKL) eV aeB Ael AeM
+ 1KLL (ﬂ'KlKM) (WKQML) el Nel Nefta ek
Rewriting it like
S(e,m) = 0/26UKL (WNIB) (WMKL> ePre’ AelV A eM
+ E€1IKL (7TK1KM) (WKQML) el nel Aeft A ek
Replacing Bz I, N — K; and M — K5 in the first term, we get
S(B,T&') = C/2€BJKL (ﬂ'KIB[) (WKQKL)el A €J A €K1 N €K2

+EeKL (7TK1KM> (7TK2ML) el Nel Neft n el



We replace
el Nel Neft el o gl TEIE2 0 Al A2 A B
We get
S(e,m) = C/[25BJKL (7TK1B[) ('/TKQKL) e 807 (WKIKM) (WKQML) 5”K1K2}
xe® Ael Ne? Ae?

Using the relation 7//F = mxe®1/L we imposed before. The action:

S(e,m) = c/[ZSBJKL (mrymr) (ma, ™ 0) 7R — 2 (e Bpg) (e MF) 4+ 2 (7% ) (™))
xe? ANel Ae? A e
becomes:
S(e,m) = c/ [25BJKL7TN€NK131 (WKQKL) el KKy L9 (1ppenr) (WKML)} P Net Ae? Aed
Or
S(e,m) = c/ |:2€BJKL7TN€]K1NB (WKQKL) (—€IK1JK2) + 27TI€1LMK7U5JLMK] e Nel Ae? AeP
Using the property
51K1N351K1JK2 = -2 (5}(,5? — 5%5]{?2) and 77y’ FME = —65}7

The action becomes

S(e,m) = c/ [45K2JKL7TJ (WKQKL) — 127717r1} P Net AP Aed

S(e,m) = c/ [45K2JKL7T‘] (WK2KL) — 12#2} e Anel Ne? Ae?
Then

S(e,m) = c/ [45K2JKL7TJ7TI€IK2KL — 12%2} A AnetAe? A
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The action becomes
So(e,m) = c/ [247® — 127 " Ne' N N e’ = c/ 12722 Aet Ae? Ae?

= 0/127T26d41‘

In the background spacetime, we have e = 1 + de, therefore
So(de, ) — /1207T2d41’ + ..

To find its meaning we compare it with scalar field Lagrange in the background
spacetime, for h = 1:

Ld'z = (m0y¢ — H(¢, 7)) d'z with H (¢, 7)d"z = (%7# + % (Vo) + %m2¢2> d'x

We conclude that the term

/1207?2d4x =0

Is the energy of the gravity field in background spacetime. As we will find in result
of the path integral, in background spacetime limit, we have to replace ¢ — —c when
we compare with the electromagnetic field, therefore, in the background spacetime,
we replace

S(e,m) — —/1267‘(’261413 = —/Hd41:

That is not surprising, because the general relativity equation (Einstein field equa-
tion) is derived to satisfy the energy conservation over curved spacetime:

1
R, — §R9W = 81GT ),
It satisfies the energy-momentum conservation V,T* = 0. But, as we know, in

quantum field theory in background spacetime limit, we have to write the canonical
law of the conservation like

Ou (Thtyer + Tl ) =0

matter gravity
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Therefore we write

—1 1
T+ —— — (R - éRg,w) = T,, (matter) + T}, (gravity) = constant

By that we conclude

. 1 1
T, (gravity) = %0 (le - §ng>

Therefore we have to replace ¢ — —c , we see that when we compare it with the
electromagnetic field in background spacetime.

Now we derive the path integral as usual. As we saw before, the operator éd*%
takes eigenvalues when it acts on the states ‘él > therefore we have the amplitude

(¢ (z + do)| € |mp (2)) — (&' (x + dx)| 270 |7 (2))
= exp (i12cr’e (z + dx) d'z + &' (z + dz) 71(2)d* X))

— exp (i12cm’e (z) d'zx + ie" (z + dx) 7 (z)d* X)

We let the momentum 7; acts on the left. The amplitude of the propagation between
two points z and x + dz in different adjacent surfaces dM; — dMs is

<éI (x + dx)| eic12fr2éd45c ’é[ (x)>6M1—>6M2

— f 61 T +d:):)| icl272ed4a ‘ﬂ[ (x)>6M1—>5M2 <7TI (x) ‘ el (x>>5M1

f mlexp [i12en? (z) e (x + dx) d'z + ie! (z + dx)m; ()P X | exp (—ie! (z)m(2)d>X)

— [ l;[dﬂ'l exp [i12¢c7? (z) e () d*z + i (¢! (z + dz) — &' (z)) 7/ (z)d* X ]

The exterior derivative

oel (x)

(e"(zx +dzx) — &' (2)) d’X = G

—— 2 dPXdX° = dé" (z)d*X

11



Is along the time dX° in the direction of the norm of the surface M (X!, X? X3),
therefore it lets to propagate from surface to another.

We write the amplitude like

(61 (x + dx)| eic?7*ed™s & (2)) /H dr’ exp [i12en® (2) e (z) d'z + imp(z)de’ (z)d* X
I

§M1~>§M2 =

The path integral is the integral of ordered product of those amplitudes over all
spacetime points(over all ordered 3d surfaces).

Wesr = / 11 D&' D7y expii / (12em’ed's + myde’ d°X)
I
= /HDéIDm expi/ (12071’260 ANel Ae? Aed + mdélng)
I

For selfdual representation, we consider that propagation in the direction of expand-
ing of the surface(positive direction).

There is no problem with Lorentz non-invariance in %d?’X dX° because the equa-

tion of motion, we find in the result of the path integral, is
0! (z) I
oxo >
Therefore
el (x
ﬁmngdXo x —mrld® X dX°

This is Lorentz invariant. This is like the equation of motion of the scalar field
m = Oy¢ which solves the same problem.
In our gauge we have
mr P XdX? — w?dX° A dXT AN dXP N dXP = mPedee
201
nev

2
p
_ 2
=T7"e p

(&

It is invariant element; we find it in the path integral.
The path integral:

Wer = /H Dé' Drry expi/ (12671’260 ANet Net Aed + W]déldsX)
I

12



Vanishes unless

0
5o (12071’260 ANet Ae? Aed + W[délng) =2Uerl® Net A2 AN +deldPX =0
Tr

Therefore we have the path(equation of motion)

AT T a0 A sl A 52 A 53\ g1 53
= — X 14
T 24C(eAeAe AEY) T de'd (1.4)
Or
1 _
) = S (A A AT P Xde P X (1.5)
(24c)
Therefore

1 _
12em2® ANet A A ed 4+ mdel P X = 180 (eo Ael Ae A 63) ! (dé[d3X) (déld?’X)
c
1

s (A e ) (dedX) (de!dX)

The path integral becomes

Wer = /1:[ DéIExp4_—8ic / (60 Ael Ae? A 63)71 (dé;d3X) (déld?’X)
The canonical field &' is defined in
EBX = eK“eaEWpadm” A dx? N dz? /3!
Therefore
(d%) X = (D0 2yupodi?™ A di” A di” A di” /3
Where D is the co-variant derivative defined in
DV =dv!'+w'; AV
We have

(derd3X) (de’ d*X)

0 1 2 3\ —1 ~ 13 ~] 13 _
("Ne' neP Ae) T (ded®X) (de'd’X) = O Nl A2 A od

13



It becomes

~ A A ~ ~ ~ A - A i A A ~q, ~ Al ~ !
(Dme’;> €€ ppodTtt N dT¥ N\ dZP N d2® (Dwe[“ ) CE o dTH? N dT N dz? N d2®

313160, L 62 &3 diks N divs A dies A dio

We have, the inverse:

v o —1 ! ! / o' 3 a 8 a
(epe,eresdat Ndx” Adxf ANdx”) " = Eff EY EY Ej e A 57 A B A D

We write it in the form

e

=)

1
e},eieidm“ Adz” N\ dz? Adx’ = Zed?’xu A dz"
Therefore we write
EY EY B ES 8y AN Oy Ny Ny = ED, N O

With inner product like
Eod, N 0¥ 1d3 A dzt —1E8/\83”d3 /\d“—lE §") d,dat = Ee =1
( ., )Zex“ X —Zey Ty x—zle(u)yx—e—

Actually, we have to write the tensors e*"?? and €,,,, like e~ tetro and €€ uwpo but
here we neglect that, because it gives the same results.

We can write
(D, eh) €2 mpodat Ndax” NdaP Adz? /3! — (D, ef) edz'' Ad*z,, = — (D, e4) ed®z, Ndz"
Also

(Dmem,) ey pordat? A da” A da? A dx® /3] — — (Dwe”‘,) ed®x, A dz'
We conclude

&x, Ndat = —dz, A dPs" — &Pz, A de" = —dz, A P
Therefore

— (D, e}) ed*x, N da" — (D, ef) edz, A d*z™

14



By that we get

(dejd3X) (dé1d3X)
eONel Ne? A e?

— — (Ed, NO¥) ((D,,€f) edxy, A dPz™) ((Dwe”‘/> ed®x, A d:c“Q)

It becomes

(dérd3X) (de! d3X)

eONel Ne2 A\ ed

— (D"'ey,) (Dmel"/> e (0, NO¥) (dPxpy A da) (dPay A dat?)

We can write the contraction
(&, A (93”) (d?’ac#1 A d:v“) (d?’xu/ A dac’”) = (&, A 83”d3:z:#1 A d:z:“) (d?’:v#/ A dac’”)
=0, (0, N da) (d?’xuf A dxm) =0, (=dz" N0,) (—dxm A d?’xu/)
= Oy, dat A D, dat? N Py = 6y 0krdat A Py

Therefore we can write

(dé;d®X) (de'd*X)
eONel Ne2 Aed

— (D"ep,) <DM261“,> ed, ohrdxt N d*x,

= (Dyery) (D”el“/> edz" A d*z,y = — (D,er,) <D”el"l> ed®x, A dz"
= —(Dyer,) (D”eI“/> eéﬁ,d"‘x = —(Dyer,) (D”eI“) ed*z
We can also write another contraction:

DMep) ( Dy,e™ )e(0, NO™) (d’x,, Adz") (d°xy A dat?) —
( w) (D i ’ “z, Sz,

(D''ep,,) (Dmel",) e (0, AN O¥ Pz, N dat) (P A dz?)
= (D"ey,) (Dmel“/> e (67,0, Nda") (dPxp A dat?)

- 5/11155 (D‘“em) (Duzem/) e (dgl’,/ A d:L’W)
It becomes
(de;d*X) (de' d*X)
eONel Ne2 A e3

— (D"er,) (D“/el“/> ed*z

15



By the two possible contractions, we can write the final result as
_ —1
(N A2 Ae) T (derd®X) (de!dPX) = - (D€ D" el, — D,e{D,e'") ed*x

This Lagrange is like the Lagrange of the electromagnetic field. Also it is indepen-
dent on the gauge we chose for the surface 6 M. it is invariant under local Lorentz
transformation V! — L’ ;(z)V’ and any coordinate transformation V* — 221"

The path integral of the gravity field becomes, after replacing ¢ — —c.

1
—— (=D,eyD"e! + D,e4D, e ed'x

Wep = De!
ST /1} ¢ P09

With the free gravity field Lagrange

11
Ld*z = 1803 (=D,eyD"el + D e D,e'") ed*x (1.6)
c

We determine the constant ¢ in the Newtonian gravitational potential ¢ > 0.
For free gravity D, — 0, and e — 1 + de, therefore we have

11 v v
L— E§ (—6N618N€l[, + auefﬁyel“)
Or
L _Ll I( ;wa? auau) J
07 e Mo \9 0 v

Without background spacetime approximation, we have a problem with the deter-
minant e, it is

) 1
Wer = /H Delel‘p@ 3 (—D“e’;D”elI, + D”e?D,,eI”) egle,ﬁl eiegg““’lp“d%
I

with To123 = —1 we get

2 H1-v1Lop o

‘ 1
Wsr = /H Dele:(zp%& 5 (—Due?D“ellj + Due?Dl,e]“) (= k) etel effekermprgiy /4]
I

16



Always there is a field eff which is different from efL and el therefore the integral
over it gives delta Dirac:

mntp Yo

' 1
/H Delearpé 3 (=D,€/D" e}, + D,el/D,e™) (—nrux1) € €] el eket 1177 dy /4]
c
T

— § (—=DyeD"e, + D,/ D,e'")
— —D,e{D! el + D,e D, e'" =0

This path integral is trivial, there is no propagation. The gravity field e/ﬂ has the
entity of the spacetime. It is impossible for the spacetime to propagate over itself.
But if we write e}, (z) — &} 4 h/ () the path integral exists, the propagation is pos-
sible. Therefore the propagation of the gravity is possible only over a background
spacetime, this is the situation of weak gravity (low energy densities).

Latter we will search for conditions to make the gravity field propagate over z* |
for that we impose the duality; Gravity-Area.

The path integral of the weak gravity field in the background spacetime is
v\ ,J g4
w—/HDe expz/gﬁeﬂ nrsg" o — np000") e d's (1.7)

The gravity field propagator, g =7 and k,et! =0, is

dAk nIJgp,y ik(za—x1)
AP (xg — =48
(%2 = 1) C/ (2m)4 k? — ie

, dAk gpgguueik(xg—xl)
AlV(zg —x1) = 480/ ot s (1.8)

We will use this propagation in the gravity interaction with the scalar and spinor
fields.
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2 The need to the duality Gravity-Area

We search for conditions to have a dynamical gravity field in arbitrary curved space-
time without spacetime background approximation.

We found that the spacetime path integral Wgr is trivial. There is no propagation
without spacetime background. We can solve that problem by assuming that the
fields exist over themselves not in the spacetime[l]. Therefore the spacetime is mea-
sured thing by its interactions with the matter.

According to general relativity, the length, the area and the volume are another
form of the gravity. We can explain that by the duality gravity <+ areas and vol-
umes. We try to find this duality using the trivial path integral Wgr by finding
conditions allow the gravity field to propagate. That propagation is e/ « L7/K it
means they propagate when they change to each other. Also we find that the tensor
product of them |e/) ® |£75), in selfdual representation, satisfies the reality condi-
tion.

Starting from the full Lagrange (1.6):

11
Ld*z = 18¢2 (—Dw?D“elI, + Due;DyeI“) ed*z
c

The covariant derivative is
Del =de! +wlyne’!

Using our assuming

wIJ — 7TKIJ€K

The covariant derivative becomes
De! = de! + (WKIJ) e ne’l

The second term have two multiple fields e A e/, they become four multiple fields
in the Lagrange. All of them must be different as (de;) (WKIJ) e Ae’l. Like what
we saw with the determinant e, the path integral over one of them is delta Dirac.
This is trivial path integral Wsr. Therefore the second term must be a new field, it
is the area field 57 = e A ¢/ by that the path integral exists.

The Area field is anti-symmetry field:
1

_Ytorg  rJ
Si = 5 (ehel = ele)
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The derivative becomes

De' =de' + (mg'y) S8 =de’ + 7% Sk,
Using our assumption

plIK = o JLITK
The derivative becomes

Del = deI + WKIJEKJ = de[ + 7TL€LKIJEKJ = deI + EILKJWLEKJ

By that we have two fields e/ and X!/ in the Lagrange. They interact, that lets to
the duality.

The full Lagrange of the gravity field is

Ld*t = ——* (—D,eyDrel + D€t D,e'*) ed?

a:—4—86§(— u€7D" el + D,eD,e') ed*x

We have

—D,e{D"e}, + D,efD,e'" = —D,e} (D"e}, — D, e'")
It becomes

— (a“eﬁ + €]JKL7TJE£(LV) (8“e£ —+ €IJ1K1L17TJ1 E‘LILQLU/ — 81,6[“ — €IJ1K1L17TJ1 EKlLluM)

Or
—DM6? (D“e£ — DVGIM> = — (8,@? + E]JKLWJE/[L{LV) (8“6{, — 8,,61“ + 2€IJ1K1L17TJ12%1L1V)
It becomes

— (D) (Bl — ety — 2PN (@) Dl

KLv_J 8"6{,—8”@[“ I K1Ly KLv_J m
—2epykr2, T | ————— | — 2 ergrn2y, T T X

2 I

To complete it, we need to replace the momentum 7! by its value, we had before
(1.4) and (1.5):

S
(48¢)

(DueI”D“ei — DueI"D,,eJ“)

N | —
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We approximate it to

-1 1
) -
(48¢)” 2

(8Mel Yote))
We expect the contraction

2e! il (aue?) 7TJ1EI;(1L1V — glifala (@Le?) (aueph) ZI;QLIV

(48¢)*
Therefore we rewrite

2
—2€IJ1K1L1 (aﬂe?) (a“ele) Zﬁj)(lLll/

— (0,€}) (0%l — D,e™) + (480

1 IJ1 K1 L KLv J o
+(486)2€ o 1‘€UKLZM (8‘761/) (a 631) EMK1L1p

The Lagrange
11

Ld*z = 1803 (—DMG?D“GII, + Due?DVeI“) ed*z
Becomes
4 1 -1 v w1 4 1 IJ1 K11y v Y P 4
Ld*x %@7 (Ou€7) (8 ey) ed*T + @18—0)36 (0.€7) (0"epn,) X, ed @
1 v ag
* 2 % (480)3€]J1K1L161JKL25L (aael{) (a 631) E?ﬁLlpedz{T

We used the gauge 9 e’ = 0.

Now we use the selfdual projection. For any anti-symmetry tensor 77/ we can write
it in two unmixed representation, selfdual and anti-selfdual. In general relativity the
selfdual is chosen, its projector is[1]

(P =585 s (P)yy =50 i=1for I=1,2,3

We see that these projectors satisfy

20 (P) (B) =20 () (R) 8
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It is a projection from I # J and K # L to I # J # K # L.

The second term is for the anti-selfdual. Therefore we consider only the first term,
we replace

cIKL o (Pi)IJ (Pi)KL
We use it in the determinant e:

_ 0.1 .2 3 _uvpo I _J K _L_uvpo . o
e =e,e,e,e,e"P — —errre e, e, e e [AL L ggrp3 = —1

With selfdual projection, we have

e

e = —eryxrelelefeletvr [4) 5 2 (Pi)IJ (P) g1 e

J
u-v-p Yo v

I K L _uvpo

W€y €M7 [4l
We can rewrite
eleJeKeLé?“”p” _ 1 (€I€J _ €I€J> eKeLg,uupa _ 1 ( IeJ _ eleJ) 1 (€K€L _ €K€L) chvpo
nw-v-p “o _2 n-v v-p p o _2 n-v 2pa o -p

By that we can rewrite it using the area field %!/

I _J _K_L_pvpo _ N JINKL _pvpo
€,6,€, €,E = ZHVEﬂO' €
Therefore the determinant e becomes

21

e= —5UKL6£65656{;5“”W/4! 0 (Pi)IJ (P)wr EiiZﬁf,Ls“”p” (2.1)

Now we can write the area field as a vector ¢ = 1,2, 3 in the selfdual representation

Efw = (Pi)u Eii

Therefore the determinant e becomes
2?‘ 7 vpo 2Z 7 vpo
e — ] (Z )W (Zi)po' ehvP? or — IEWEl-pas“ P (2.2)

We wrote it in this form to get rid of it in the path integral. As we saw it lets to
delta Dirac, it cancels the propagation.

By that, the full Lagrange of the gravity field:

1 -1 Y 1 KLy Y
Ld*z — YTy (8.ey) (0"€l) ed'z + —(486)35” Kl (9,er) (0"epn) S, ed e
1
2 * (48)38[J1K1L1€IJKL lIfLV (8061{) (80691) lf(lLlpelex

21



becomes

Ld's — 2 (D) (0% (_%21 Eimguyw) .
s (%) 0u) %) B (=5 BB )
s 00 8 ) @) 5 B )
Or
Ld*z — 42_82%

(0u€)) (0%e)) (51, Sipee™? /4) d*x
4

- (486)3 (pi)ljl (aﬂe?) (auepfl) E,Z/p (ELVEipJEMVpJ/ZH) d4£C
43 . |
(48 ) (pz)IJl ( >IJ Eij’ (8 e ) (8”6?1) E;}M (Elyzipaf‘:uypa/éﬂ) dir

It is quadratic in e/ and ¥ therefore its integral is not trivial.

If we considered the first term. To discover its behavior, we test one wave cos (k,x").
We have

(0.e7) (0%€)) — —€70,0"el, = —0,0" cos (k") = k, k" cos (k,a")

Therefore
~ 2 2
7 d4z L 7 vpo
et bdte exp/ 1503 (kukterel) (3], Sipoe!? JA) d*x + ..
21
— exp/ 15 2( k") (efel) (Z’ Sipee 7 AN dix + ..
Or
21
S 7 vpo 4
e — exp/ 1803 (k k2> (e¥el) (Z D ipee 7 AN i+ . (2.3)

We find in the time-like k2 — k2 = 0 the gravity field is created. And in the space-like

k2 — k2 < 0 the gravity field is annihilated e, — X}
we will see.
This is the duality e > Zl It is like to say, in time-like we find the gravity field

vp» ODPositely to the area field, as
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and in the space-like we find the area field.

The time-like phase is the phase of exchanging the energies (interactions). While the
space-like is the phase of the static fields, the situation of located matter. Therefore
the spacetime in which the matter is located is consisted of quanta of area and vol-
ume. The duality e,ﬂ < Zf,p satisfies the reality, it is like the right and left spinor
fields.

3 The Lagrange of the Area field

We derive the Lagrange of the area field; we find it is like the electromagnetic field.
We find the behavior of the area field is opposite to the gravity behavior. For that
reason we suggest the duality gravity-area.

The area field is defined in

u=e'ne! with B =

N | —
—~
aQ
=~
o

Starting with the Lagrange (1.3)
S(e,m) = ¢ / ersnre’ Ae! Ad (maPeM) + pppre el A (e ar) € A (i, ™M) 2]
As before we assume the integral of
corpd (€ A& A (T PeM)) = eppmend (S A (mar<heM))
is zero at infinity, it becomes
dS N (™) eM el el Ad (ma e ) = — (™) e AdST el ne Ad (P eM)
The Action becomes
S(e,m) = ¢ / ersnr (mar<5) €M A dS 4 e A (0 K a) (™) 51 A 2]
Or

S(G, 7T) = C/ [E[JKL (WMKL) €M AN dZIJ + €1JKL (7TK1KM) (WKQML) ZIJ N EKlKQ]
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Using our imposing

K — o clTIK
We get
€IJKL (WMKL) M =epxpm ey = epgrpmne™M ey = =2 (mres — mer)
We write

EIJ A 2K1K2 N glJKlKQEOI A 223

So we have

ML) IJKlngol /\223

EIJKL (7TK1KM) (WKQML) S ASE = e (7TK1KM) (7TK2 €

-9 (WLKM) (WKML) 201 A 223 -9 (WLKM) (,NKML) 201 A 223

,ﬂ_KML) 201 JKMLZJOI A 223

=2 (WKML) ( A 223 = 27T[€[KML7TJ€

= —127°5% A B
The Action becomes
S(e,m, %) = c/ [—2 (mrey — mrer) AdX! — 12mm 80 A 223]
Because the area field /7 is anti-symmetry, we write
S(e,m, %) = c/ [_47T[€J AdSY — 1277t 50 A 223}
Using €g123 = —1 we can rewrite it like

S(e,ﬂ', Z) = C/ [—47’('[6] N dEIJ + 127T[7TI<€]JKLEIJ A EKL/ZU}

1
S(B,W, E) = C/ |:_4'/T[€J VAN dEIJ + §7T2€]JKLZIJ VAN EKL:|

I

The path integral over momentum 7' vanishes unless (the equation of motion)

J

om

1
/ [—4W[€J VAN dEIJ + §7T2€]JKLEIJ A EKL} =0
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But it is not easy to separate X from e. It is like the gravity field, it is separable only
in weak gravity(background spacetime). Therefore we solve it in the background
spacetime.

1
/ (—47T[€J AN dEIJ + §7T2€[JKLEIJ A EKL>

1
— / (—47T]6#J8V2f)g€“ypo + §7T28[JKLZ£Z{Z£ZL€‘“VPU) d*z
The background spacetime is
I I I
e (x) =6, +h,(r), e—1+0de
The area field becomes

1
1J __ I_J I_J
= (el

5 (ehel —clel) = 5 (010] — 5167) + 5 (Who — hie7) + 5 (5%h — n)

N | —

inserting it in the action:
1
S(e, E) = / (_47716MJ8VE£;7€MVPU + §WQEIJKLEI€iZ,€(gL5MVpU) d4I
it becomes
S(e,X) = S(h,o%) = A0, 5 ¢ jvPo L2 24 d*
(67 )_> (7 )— —aTI0y2155E ] +§7T (— )—l— T

Therefore the condition(the equation of motion):

J

1
—/ —47T[€J/\dZIJ+—7T281JKLEIJ/\EKL =0
(577'[ 2

approximates to

o 1
e (_471_18112]#)08]1/@7 + 571'2 (—24)) d4x =0

(577'[

Its solution is
1

1
I - I Jvpo __ v Jpo
™ = _68VEJPU€ = 68 2 EJvpo
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By that, the action is approximated to

S(X) — c/ [g@”lE”lpl"lle,,lpwl8,,EIJM€JVW + ... | d*x
define inner product /1y, ;= 22551551(5;’1, we get

S(X) = ¢ / (—40,5700"8) + ) d*z with 9,577 =0

This is the action of the area field in weak gravity field (background spacetime). It
is like the electromagnetic field.

Lo(X) = —4c(9,275) (0"2))) with 9,511 =0
We rewrite it like

Lo(X)ed's = —4c (0,575) (0"SL)) ed*x + ...
By using the selfdual projection (2.1) and (2.2)

2,
I _J K_L IJ\KL
e = —€[JKL6“6VGP GUSMWJU/ZL! — ——4' (PZ)IJ (B)KL EWEW ghvpe

the Lagrange becomes
Lo(X)ed*s = 8ci (0"S750,5L7) (30, Bipoc™ 7 /A1) d'z + ..

As we did, in deriving the gravity Lagrange we had to replace; ¢ — —c. This con-
stant is determined in gravity potential ¢ > 0.

To discover the area field behavior, we test one wave cos (k,z*). We have
Lo(S)ed's — —8ci (k"k,X77500) (30, Sipee’? /AY) d*x

The action of that is
e'led’s _, exp 8c (kPSS (0, Sipeet?? /A1) d'a

Then

¢ — exp8e (—kE + K) (S12L1) (Shy Siposh ™ /41) d'a (3.1)
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It is opposite to the gravity field (2.3). In the time-like —kZ + k2 < 0 the area field
is annihilated ¥, — e/,. And in the space-like —kg + k2 > 0 the area field is created
e, — X, this is the duality e}, ++ 3} . It preserves the reality. It is like duality of
the left and right spinor field under Lorentz transformation and the party.

The opposite behavior is with the anti-selfdual representation, the hermitian of the

selfdual
2i (P (P)F —2i ()" (P)"" — I/KL

which is projection from I # J and K # L , in the left, to I # J # K # L in the
right.

The first term is for the selfdual, while the second is for the anti-selfdual. The tensor
product of them gives the reality:

AL(selfdual)d43:eAL(anti—selfdual)d4x

e = real

instead of that we can satisfy the reality by gravity-area duality:

AL(e)d4x6AL(E)d4m

e = real : invariant for selfdual

Mathematically, there must be another term like it for the anti-selfdual. But that
is not necessary because by that relation the energy is conserved, as we saw in (2.3)
and (3.1), we conclude:

OE (gravity) + JE (area) = 0

It is like the duality of the left ¢/;, and right ¢ spinor fields under the Lorentz trans-
formation and the party. ¥} and 1}1g are not Lorentz invariant. While ¢ is
Lorentz invariant, but it is not hermitian. To satisfy the both we write ¥,y r+¢ .

4 The static potential of the weak gravity

We derive the static potential of the interactions of the scalar and spinor fields with
the weak gravity field in the static limit. We see it is the same in the both, the New-
tonian gravitational potential. We see that potential relates to the energy-energy
interaction. By that we determine the constant ¢ > 0.
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The action of the scalar field in the curved spacetime is[1]

S(e, ¢) = /d4xe (nueﬁef}Du¢+Dy¢ — V((b))
In weak gravity, the background spacetime:
ei(x) = of + W (x) , e — 1+ de

the action is approximated to
S(e, o) = /d% (Q@*(‘?“qﬁ + W (2)0,¢7 0,0 + W ()0, 0y — V(0) + Ling + )

The gravity field is symmetry, so

S(e, o) = /d4x ((‘L(]ﬁ@“(]ﬁ + 2R (2)0,0" 0,0 — V(9) + )
The energy-momentum tensor of the scalar field is[3]

Ty = 0,07 0,0 + gu L
Therefore

0" 0vd = Ty — g L
Using it in the Lagrange, it becomes

L=0,0"0"¢+ 20" () (T — g L) — V() + ...
By that we have

L=0,0T0 ¢+ 20" T,, — V() — 20" g L + ...
Therefore we have the replacement

2,¢070,0 — T,, and L — L—2h"g,,L

Because the gravity field is weak (in this study), so 2h*"g,, L is neglected comparing
with L .
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We find the potential V' (r) of exchanged virtual gravitons by two particles k; and ko
using M (ky + ko — k7 + kb) matrix element (like Born approximation to the scat-
tering amplitude in non-relativistic quantum mechanics [7]).

For one diagram of Feynman diagrams, we have

A/,wpa
iM (ki + ks — K+ K)) = i (—ikp) , (iks), e OF (—ik}), (iky),

]

with
q=Fk — ki =ky—k

The propagator A*F7 (x9 — 1) is the gravitons propagator (1.7), we find it in the
Lagrange of the free gravity field (background spacetime) we had before

11
1 v 92 v\ . J 1 v 92 v J
LO = _0_77[‘]6/‘ (g” o° — o*o ) e, — E§nljhu (g” 0° — o0"o ) hy

with the gauge d"e/ = 0, we have

1J d'q AIJ (2\ ig(y—=) AIJ (.2 g,“,n”
M=) = [ S e s () = el
The M matrix element becomes

uv ., po
9

iM (ki + ks — K + k) = i48¢ (—iky), (iks), qg (—ik,), (iky),

where g=mnand q=Fk| —k; = ko — ky
Comparing with[7]

iM (ky + ky — K + k) = —iV (q) * (kour — kin)

We have

VvV PO
g gP

= . . g . .
\% (qz) = —48¢ (—Zl{‘é)u (Zk)g)p T (—Zk'i)o_ (Zkfl)y
Comparing this relation with the replacement:

0,60, — Ty and L — L — 21 g, L
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and making the Fourier transformation, we get

%
L e Tw @) T (2)
At |y — | At |y — |

V(y—x)=—-48c1,,(y) 9" 9" T,s (2)

With the transferred energy-momentum T | in the static limit, for one particle
T% — m the mass of the interacted particles.

Therefore we get the Newtonian gravitational potential

2 2

- A8 = AnG

Viy—1)= 48— —
W —o) =48 =0 = %=

The weak gravity Lagrange becomes

11,

_ v 02 v J
O—R?yueu (g“ 0 — o*o )61,

We do the same thing for the gravity interaction with spinor field. The action is[1]
S(ev) = [ dtoe (icfin" Dy — mi)
The covariant derivative D,, is
D, = 0+ (wy)y L +ALT®
In the background spacetime, we have
S(e, ) = /d4x (i?ﬂﬁy"Duw + ih’f&fyIDuw — m&w) + ...
We consider only the terms
[t 6999, + b0, — miv) s g =
The energy-momentum tensor is[3]
TH = —ipy 0" + g"' L
Therefore, as for the scalar field, we have the replacement
iy O — —T,, and L — L+ h"g,,L
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The term h**g,, L is ignored comparing with the Lagrange L. We find the M element
of exchanged virtual gravitons p; + p2 — p| + ph, for one diagram of Feynman
diagrams|7]

. o : Guc9”’ _ o/
iM (p1 + p2 — py + py) = i48cti (py) ¥ (—ip1), u (p1) ng u (py) (_Zp2>pu(p2)

with
g=p,—p1=p2—pyand g=r1
We have

i?(qQ)::-—48cu<pa>v“<—4p1x,u<p1>g“;i”pu<p;>wa<—¢p2x,u<p2>

Comparing this relation with the replacement
ipy"9"yp — =T, and L — L+ h"g,,L
And make the Fourier transformation, we get

1 T, p
At |y — | At |y — |

Vy—xz)=—48c (=T, (y)) 9" (—T,s ()

With the transferred energy-momentum T | in the static limit, for one particle
T% — m is mass of the interacted particles(spinor).

Therefore we get the Newtonian gravitational potential.

2 2

—GL — 48¢c = 471G

Viy—z)=—-48c——— =
y—2) Ty—a -4

It is the same potential as for the scalar particles.
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