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Abstract:

This paper is an elementary-level attempt at discussing 8D E8 Physics 
based on the 240 Root Vectors of an E8 lattice 
and how it compares with physics models based on 4D and 3D structures 
such as Glotzer Dimer packings in 3D, Elser-Sloane Quasicrystals in 4D, 
and various 3D Quasicrystals based on slices of 600-cells 
and 
a natural progression from 600-cell to Superposition of 8 E8 Lattices. 
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My E8 Physics model described in viXra 1602.0319 is based on physical interpretation 
of each of the 240 Root Vectors of E8. The E8 Root Vectors live in 8D but it is hard for 
me to visualize 8 dimensional space so I like to use projections to 3D and 2D. 
Bathsheba Grossman makes laser sculptures in 3D glass cubes, including a scupture 
of the 240 E8 Root Vectors. In this E8 sculpture by her 

where different 2D face projections of her 3D cube projection from full 8D Root Vectors 
look quite different, although they obviously represent the same 240 of E8. 

The 2D projection above on the left I call the square-cube projection.   
In it there are 112 Root Vector Vertices on the two axes of the square 
and there are in each of the 4 off-axis quadrants there are 32 vertices for 4x32 = 128 
so that the square-cube projection corresponds to E8 / D8 = (OxO)P2 
where E8 has 240 Root Vectors and D8 has 112 Root Vectors and
(OxO)P2 is Rosenfeld’s Octo-Octonionic Projective Plane with 64+64 = 128 dimensions 
of half-spinors for 8 components of 8 fermion particles and 8 fermion antiparticles. 
The D8 axes have structure D8 / D4 x D4 = 64-dim real 4-Grassmannian of R8 which 
represents 8 spacetime position x 8 spacetime momentum dimensions 
and one D4 represents gauge bosons of gravity and ghosts of standard model 
and the other D4 represents gauge bosons of the standard model and ghosts of gravity. 

The 2D projection above on the right I call the circle-ball projection. 
It has 8 concentric circles each with 30 vertices. 
4 circles represent E8 Physics of gravity and the M4 part of M4 x CP2 Kaluza-Klein and 
4 represent E8 Physics of standard model and CP2 part of M4 x CP2 Kaluza-KIein. 

 

First, look at the 240 E8 Root Vectors in the square-cube projection: 

 



Here is the physical identification of the 128 E8 / D8  fermionic root vector subset: 

Here are some more details using the electron as example: 

 



I conjecture that 
the 4 vertices of M4 components for 4D H4grav 600-cell form a tetrahedron 
with N = 1 tetrahedra ( imagea from Wolfram CDF file by Ed Pegg Jr )

and 
the 4 vertices of CP2 components for 4D H4stdmod 600-cell form another  tetrahedron 
which 
when combined with the H4grav tetrahedron forms an 8-vertex dimer 
as described by Chen, Engel, and Glotzer in arXiv 1001.0586 
with N = 2 tetrahedra 

representing all 8 components of the electron.

The propagation path of each of the two tetrahedra of the electron dimer remains 
within its own 4D H4 600-cell inside the E8 Lattice. 

 



Packing densities in 3D for tetrahedral dimer structures are described 
by Chen, Engel, and Glotzer in arXiv 1001.0586: 

As you increase the number N of tetrahedra you first encounter the maxiumum at 
N = 4 which represents two dimers = particle-antiparticle pair (electron-positron)

 



The maximum is encountered at N = 4, 8, 12, 16 ... for dimer tetrahedra periodicity 4. 
A tetrahedron can be seen as a pair of binary binars 

so that the dimer binary periodicity is 2 x 4 = 8 
which is the same 8-periodicity as Real Clifford Algebras with binary structure. 

The tetrahedral N = 8 is for 4 dimers corresponding to a lepton and G R B quarks  
(electron and green, red, and blue up quarks)

The tetrahedral N = 12 is for 6 dimers corresponding to 3 quark-antiquark pairs 
(green, red, and blue up quarks and green, red, and blue up antiquarks)

The tetrahedral N = 16 is for 8 dimers (lepton and G R B quarks and their antiparticles)

 



The tetrahedral N = 32 is for 16 dimers that represent E8 / D8 = (OxO)P2 
= all 16 fermions x 8 components = 128 Fermionic E8 Root Vectors

The 128 Fermionic E8 Root Vectors are also consistent with Geoffrey Dixon’s 
fundamental tensor T^2 where T = RxCxHxO 

= real x complex x quaternion x octonion. 

The tetrahedral N = 48 adds 16 / 2 = 8 dimers (magenta) 
representing ( 4+4 = 8 ) dimensions of spacetime and 8x8 = 64 E8 Root Vectors 
for a total of 128 + 64 = 192 Root Vectors or 96 binars or 24 dimers. 

There are two tetrahedra = one Glotzer 8-vertex dimer for each dimension of 8D 
spacetime.  The 8x8 = 64 vertices are 

For each dimension of 8D spacetime, 
two tetrahedra represent momentum in 4D M4 and in 4D CP2 
each propagating in its own H4 600-cell subspace 

 



Therefore, 128 + 64 = 192 of the 240 representing fermions and spacetime 
can be represented as tetrahedra. 

The spacetime 64 are isomorphic by Triality 
to the N = 8 lepton and G R B quark particle components (8x8 = 64) 
and to their N = 8 lepton and G R B quark antiparticle components (8x8 = 64) 

Consistently with Clifford Periodicity (tetrahedral N = 48 is divisible by 4) 
Fermions + Spacetime give a packing of the maximum density 4000 / 4671 = 0.8656347

which is more dense than a dodecagonal quasicrystal (0.8324) 
and 

more dense than a compressed QC approximant at 0.8503 
( see Haji-Akbari1, Engel, Keys, Zheng, Petschek, Palffy-Muhoray, and Glotzer 

in arXiv 1012.5138 )

 



The tetrahedral N = 54 adds 3 dimers representing 24 gauge bosons and ghosts 
(12 gauge bosons for Gravity+Dark Energy and 12 ghosts for Standard Model

or
12 gauge bosons for Standard Model and 12 ghosts for Gravity+Dark Energy)

BUT as tetrahedral N = 54, equivalent to binary 108, is NOT consistent with periodicity 
because when you add 
EITHER 24 vertices of Gravity+Dark Energy OR 24 vertices of Standard Model 
to 128 + 64 = 192 Fermion Particles and Antiparticles and Spacetime 
then you get 216 vertices or 54 tetrahedra or 108 binars 
and 54 is not a multiple of 4 and 108 is not a multiple of 8. 

However, when you add
BOTH 24 vertices of Gravity+Dark Energy AND 24 vertices of Standard Model 
to 128 + 64 = 192 Fermion Particles and Antiparticles and Spacetime 

then you get 240 vertices or 30 dimers or 60 tetrahedra or 120 binars 
( 30 8-vertex dimers give the circle-ball 2D projection )

so 
for N = 60 the totality of all 240 E8 Root Vectors is consistent with periodicity.  

 



What is the physical reason that you cannot add only one of 
24-vertex Gravity-Dark Energy and 24-vertex Standard Model 

to the 192 vertices of Fermions and Spacetime 
but 

must add both ? 

A non-physical answer is that 192 + 24 vertices = 216 / 4 = 54 tetrahedra 
and 54 is not divisible by 4 
whereas 
192 + 24 + 24 vertices = 240 /4 = 60 tetrahedra is divisble by 4 of periodicity. 

Physically, 
the gauge bosons of Gravity+Dark Energy are in M4 (horizontal axis) 
and their ghosts are in CP2 (vertical axis) so both axes must be used
and Standard Model similarly requires both axes to be used. 

 



Now, look at the 240 E8 Root Vectors in the circle-ball projection:

My E8 Physics model Physical Interpretation of the 240 E8 Root Vectors 
which break down into two sets of 120 each with H4 symmetry that correspond to 
the M4 gravity and CP2 standard model sectors of M4 x CP2 Kaluza-Klein is: 

64 blue = Spacetime 
64 green and cyan = Fermion Particles 
64 red and magenta = Fermion AntiParticles 
24 yellow = D4g Root Vectors = 12 Root Vectors of SU(2,2) Conformal Gravity 
                                                + 12 Ghosts of Standard Model SU(3)xSU(2)xU(1)
24 orange = D4sm Root Vectors = 8 Root Vectors of Standard Model SU(3)xSU(2)xU(1)
                                                    + 16 Ghosts of U(2,2) of Conformal Gravity

Here they are shown in the circle-ball 2-dim projection with 8 circles of 30 vertices each: 

 



Here is how the 240 break down into 120 + 120 of H4grav and H4stdmod

Here are 128 Fermionic Root Vectors with the 8 components for the electron dimer that 
break into two (M4 and CP2) tetrahedra with 4 vertices shown connected by white lines.

If you combine the dimers for the green, red, and blue up quarks with the electron dimer 
as shown in purple boxes then you get 4 dimers with maximum packing density

 



If you then take all 4 Fermion Quadrants 

then you get the tetrahedral N = 32 for 16 dimers that represent E8 / D8 = (OxO)P2 
= all 16 fermions x 8 components = 128 Fermionic E8 Root Vectors

The 128 Fermionic E8 Root Vectors are also consistent with Geoffrey Dixon’s 
fundamental tensor T^2 where T = RxCxHxO 

= real x complex x quaternion x octonion. 

The 240 of E8 = ( 128 spinor fermionic E8 / D8 ) + 112 of D8

 



The Spinor Fermion part = E8 / D8 contains 128 vertices = 64 binars = 16 dimers = 
= 32 tetrahedra so it has tetrahedral N = 32

Since D8 / D4xD4 = 64-dim (OxO)P2
the 112 of D8 = ( 8x8 = 64 spacetime ) + (24+24 = 48 D4xD4 )

 



The Spacetime part = D8 / D4xD4 contains 64 vertices = 32 binars = 8 dimers = 
= 16 tetrahedra so it has tetrahedral N = 16 

and the total Spinors + Spacetime has 192 vertices = 96 binars = 24 dimers = 
= 48 tetrahedra so it has tetrahedral N = 48

The Gauge Boson + Ghosts part = D4xD4 contains 48 vertices = 24 binars = 6 dimers 
= 12 tetrahedra so it has tetrahedral N = 12 

and the total Spinors + Spacetime + Gauge Bosons + Ghosts has 240 vertices = 
= 120 binars = 30 dimers = 60 tetrahedra so the total E8 tetrahedral N = 60

 



 



Dimer Packing and QuasiCrystals

In arXiv 1106.4765 Haji-Akbari, Engel, and Glotzer said: 
“... Phase Diagram of Hard Tetrahedra ... 

Two dense phases of regular tetrahedra have been reported recently. 
The densest known tetrahedron packing is achieved in a crystal of triangular bipyramids 
(dimers) ... phase DIII ... triclinic ... with packing density 4000 / 4671 = 85.63%. 
In simulation a dodecagonal quasicrystal is observed; 
its approximant, with periodic tiling (3,4,3^2,4), 
can be compressed to a packing fraction of 85.03%. ... 

... The phase DIII ... triclinic ...  is thermodynamically stable, 
DII ... monoclinic ... and Di ... rhombohedral ... are metastable ...
The transformation of the approximant or quasicrystal directly to and from 
the Dimer III crystal is not observed ... Instead, during expansion the Dimer III crystal 
transforms into the Dimer II crystal, and then the Dimer I phase prior to melting ... 

 



... Structurally, 
the quasicrystal is significantly more complicated than the dimer phase; 
tetrahedra are arranged into rings that are further capped with pentagonal dipyramids 
(PDs). The rings and PDs are stacked in logs parallel to the ring axis, which in 
projection form the vertices of a planar tiling of squares and triangles ... 

... Additional particles - referred to as interstitials - 
appear in the space between the neighboring logs. 
It is noteworthy that the entire structure is a network of interpenetrating PDs spanning 
all particles in the system.
A periodic approximant of the quasicrystal, i.e. a crystal approximating the structure of 
the quasicrystal on a local level, with the (3, 4, 3^2, 4) Archimedean tiling 
and 82 tetrahedra per unit cell compresses up to ... 85.03%,
only slightly less dense than the dimer crystal ...  
In this paper we demonstrate that the approximant is more stable than the dimer crystal 
up to very high pressures and that the system prefers the dimer crystal 
thermodynamically only at packing densities exceeding 84%. ...”.

The quasicrystal QC is a cut-and-projection from a full E8 lattice 
and so any QC loses by projection some of the full E8 information, 
and the lost part of the E8 information corresponds 
to complicated empire-phason structure of the QC, 
so 

the complexity of the QC phase is due to 
its failure to connect with full E8 information.  

 



For example, consider the Elser-Sloane 4D QuasiCrystal described by them 
in J. Phys. A: Math. Gen. 20 (1987) 6161-6168 where they say: 
“... Let V be 8D Euclidean space with orthonormal basis e1, ... , e8
...
 The unit icosians consist of ... 120 quaternions ... 
the icosians ... with the Euclidean ... rational number ... norm lie in a real 8D space 
and form a lattice isomorphic to the E8 lattice ... 
the Weyl group W(E8) ... is ... [t]he point group G0 of this lattice 
... 
There are 240 icosians of Euclidean norm unity, consisting of the unit icosians and 
sigma ... = (1/2)( 1 - sqrt(5) ) times the unit icosians, 
and these correspond to the 240 minimal vectors of the E8 lattice 
... 
the group G1 = [3,3,5] ... consist[s] ... of all transformations of the icosians ... 
G1 has order 14,400 ...[and]... acts on V as a subgroup of G0 ... 
There are two 4D subspaces X and Xbar of V that are invariant under the action of G1 
... 
We note that E8 has only the origin in common with either of the spaces X or Xbar 
...
The Voronoi cell W of E8 is defined by W = { Q in V : || Q || < || Q - P || for all P in E8 } 
... The Voronoi cell W is a convex 8D polytope ...[with]... 19,400 vertices ... 
The ... [Elser-Sloane] quasicrystal involves the 4D polytope S ... obtained by 
projecting W onto the subspace Xbar ... 
... The polytope S is the convex hull of the projection of these ... W ... vertices onto Xbar 
... to project onto Xbar ...multiply... by 

and take the last four coordinates ... S has 720 vertices ... 
120 vertices of a copy of the polytope {3,3,5} ... 
600 vertices of a copy of the reciprocal polytope {5,3,3} (the 120-cell) ...
S is the convex hull of reciprocal (and concentric) polytopes {3,3,5} and {5,3,3}  , 
arranged so that the midpoints of the edges of the {5,3,3} pass through the 
centres of the triangular faces of the {3,3,5} ... 
S is a 4D analogue of the triacontahedron ... convex hull of ... {3,5} ... and {5,3} ... 
arranged so that the midpoints of their edges coincide 
... 

 



The 4D quasicrystal C is obtained by projecting the lattice E8 
onto the subspace X , 

subject to the requirement that the projection onto Xbar lies in the polytope S 
...
(i) C is invariant under a point group (fixing the origin) isomorphic to G1 = [3,3,5] ...
(ii) C is closed under multiplication by tau ... = (1/2)( 1 + sqrt(5) ) [Golden Ratio] ... 
(iii) C is a discrete set of points ... 
(iv) ... 120 of the 240 minimal vectors of E8 project into C ... forming a copy of {3,3,5} 

Similarly ... 120 of the 2160 vectors in E8 of length 2 project into C ... forming a ... 
larger {3,3,5} concentric with the first ... 

(v)  C has a cross section which is a 3D quasicrystal with icosahedral 
symmetry. ...”. 

Boyle and Steinhardt in arXiv1608.08215 and arXiv1604.06426 say: 
“... H4 root QL ... corresponds to the icosians ...

 
...”.

Physically, 8D E8 gives two 4D 600-cells, 
one in X = v|| and the other in Xbar = v_|_ 

which in E8 physics represent M4 and CP2 of 8-dim Kaluza-Klein spacetime M4 x CP2 
Therefore, in terms of E8 Physics based on physical interpretation of Root Vectors, 
each of the two 600-cells contains one D4 of D4xD4 in D8 / D4xD4 of E8 
and  
the 600-cell with D4grav represents M4 spacetime and Gravity+DarkEnergy 
and 
the 600-cell with D4stdmod represents CP2 symmetry space and Standard Model. 

An Elser-Sloane 4D QC is based on either one or the other of those two 600-cells 
each of which has 120 vertices corresponding to 120 of the 240 E8 Root Vectors 
so an 

Elser-Sloane 4D QC cannot describe more than 120 / 240 = 
= half of E8 Physics. 

 



A 3D QC based on 4D 600-cells is even more limited 
in the parts of E8 Physics that it can describe, 
being based on a cross section of the 600-cell of Elser-Sloane 4D QC 
which cross sections have only a subset of the 120 vertices of the 600-cell. 

Here are some cross section slices of a 600-cell
( see “Geometrical Frustration” (Cambridge 1999, 2006) by Sadoc and Mosseri )

    vertex first                     cell first                         rhombic triacontahedra
                                                                                      jitterbugs with
                               57G contact neighbors              truncated octahedra

 



Vertex-first Tetrahedral Slice Structure: 
At Equator is the 30-vertex icosidodecahedron + top and bottom vertices = 32 vertices 
corresponding to 4 momentum dimensions of 4-dim physical spacetime M4 
time 4+4 = 8 dimensions of a M4 x CP2 Kaluza-Klein spacetime 
where CP2 = SU(3) / SU(2) x U(1) is a compact internal symmetry space 
carrying the symmetry groups of the Standard Model. 

Adjacent to the icosadodecahedron on either side are 20+12 vertices of dodecahedron
+icosahedron whose convex hull is the 32-vertex Rhombic Triacontahedron (RTH).
The upper 20+12 = 32 vertices represent 4 covariant components of 4-dim M4 Physical 
Spacetime of 8 first-generation fermion fundamental particles 
(electron, RGB up quarks; neutrino, RGBdown quarks)
and the lower 12+20 = 32 vertices represent 4 covariant components of 4-dim M4 
Physical Spacetime of 8 first-generation fermion fundamental particles 
(positron, RGB up antiquarks; antineutrino, RGBdown antiquarks). 

The upper and lower 12-vertex icosahedra represent 
the 12 Root Vectors of the SU(2,2) = Spin(2,4) Conformal Group 
that gives, by a MacDowell-Mansouri mechanism, Gravity+ Dark Energy 
and 
the ghosts of the 12 gauge bosons of the SU(3)xSU(2)xU(1) Standard Model. 

The Vertex-first structure has H3 icosahedral symmetry 
that is inherited from the H4 symmetry of the 600-cell. 

The 3D QC quasicrystal does not contain directly in its vertices 
all the physics information of all 240 E8 Root Vector vertices 
so, due to the missing information, it has a complicated empire - phason structure. 

Given a star-like central configuration of a 3D QC such as an icosahedron, its Empire 
is that part of the 3D QC that is an accurate copy of part of the E8 parent lattice
and 
its Phasons are ribbon-like areas of the 3D QC for which projection did not give full 
information about the E8 parent lattice, 
which ignorance allows flips between possible alternative configurations. 

 



Empires and Phasons are described by Fang in a 2D example: “... 

... the green area …[has] only one way to tile legally …
these tiles must be forced by the red patch [star]… 
The green tiles are called the Empire Field of the red patch [star] ...
the blue area there are multiple ways of tiling …
the blue ribbons are superpositions of left and right [ Phason ] flip …”.

In arXiv 1511.07786 Fang and Klee Irwin describe how QC with Phason Ribbons 
may be related to Fibonacci Chains:

 



Klee Irwin, in Toward the Unification of Physics and Number Theory, said: 
“... the simplest quasicrystal possible is the two length ... 1D ... Fibonacci chain ...
It possesses two lengths related as the golden ratio. In order for a quasicrystal greater 
than 1D to have only two letters, the letters must be 1 and the inverse of the golden 
ratio. ... When a slice of E8  is projected to 4D according to a non-arbitrary golden ratio 
based irrational angle, the resulting quasicrystal is made entirely of 3-simplexes and is 
the only way to project that lattice to 4D and retain H4 symmetry. ... 
This quasicrystal ... can be described as a network of Fibonacci chains ...
Changing a single point to be on  or off  in a Fibonacci chain 1D quasicrystal forces an 
infinite number of additional points throughout the possibility space  of the 1D chain to 
also change state. When a network of Fibonacci chains is formed in 2D, 3D or 4D, a 
single binary state change at one node in the possibility space changes Fibonacci 
chains throughout the entire 1+n dimensional network of chains ...
the special dimensions for Fibonacci chain related quasicrystals are 1D, 2D, 3D and 4D. 
And of these dimensions, 4D can host the quasicrystal with the densest network of 
Fibonacci chains, 
where 60 Fibonacci chains share a single point at the center of the 600-cells in the E8 
to 4D quasicrystal discovered by Elser and Sloane ...[ they ] appear to be the maximum 
possible density of Fibonacci chains in a network of any dimension ...
3D quasicrystals ordinarily have a maximum of degree 12 vertices with six shared 
Fibonacci chains. Fang Fang of Quantum Gravity Research discovered how to create a 
3D network of Fibonacci chains with degree 60 vertices ...”.   

Boyle and Steinhardt in arXiv 1608.08220 , arXiv 1608.08215 ,arXiv 1604.06426 say:
“… Unlike an ordinary lattice, which has no scale invariance, 
each reflection QL has discrete scale invariance … 
WE CANNOT ENUMERATE ALL THE REFLECTION QLs IN 2D, 
WE CANNOT ENUMERATE ALL … FACTORS IN 2D …
THE … UNIQUE … MAXIMAL REFLECTION QL … EXISTS IN 4D ... 
there is a unique reflection QL … quasilattice … /\ … in 4D …
Every vector … in /\ can … be written as an integer combination of the 120 H4 roots
…
/\ must contain all the golden integers times each H4 root,
and all integer linear combinations of such vectors …
and … it cannot contain anything else 
…
it is unique … H4 root QL … corresponds to the … icosians,
which may be obtained by orthogonally projecting the E8 root lattice
on a maximally symmetric 4D subspace …
…
the 240 E8 roots project onto the parallel space 
to yield two copies of the 120 H4 roots 
(an inner copy and an outer copy that is longer by T [Golden Ratio] ) ...
the scaling group of the QL must be a subgroup of the scaling group of its 1D sublattice 
... H3 and H4 contain Z(sqrt(5)) 
... 

 



choose … the minimal star … a 120-pointed star pointing 
towards the vertices of the 600-cell 
… and … 

… the unique reflection quasilattice corresponding to H4 is the H4 root quasilattice 
(i.e. the set of all integer linear combinations of the H4 roots) …
H4 reflection QL contain[s] a 1D sublattice corresponding to a ring … Z(sqrt(5) ... 
the fundamental unit … = T = (1/2)(1+5) (the golden ratio) …”.

In other words, an E8 lattice is made up of two H4 quasilattice 4D QC 
(one scaled by integers and the other by Golden Ratio) and 

each H4 4D QC is a 120-point star plus Fibonacci Chains based on 
the 60 Fibonacci Chains through pairs of antipodal points of the 120-point star. 

Compare 
Fibonacci Chains / Phason Ribbons of Vertex-first Icosahedral Structures 

with 
Cellular Automata of Truncated Octahedra / Cuboctahedra derived from 

Rhombic Triacontahedra / Icosahedra by Jitterbug Transformation. 

Therefore the 
Vertex-first Tetrahedral Slice Structure allows 

construction of a Realistic Physics Model 
IF you can generate 

the Standard Model gauge bosons from their ghosts 
and 

the Gravity+Dark Enery ghosts from their gauge bosons 
and 

the 4D CP2 components of fermions and spacetime 
from the existence of M4 x CP2 Kaluza-Klein

 



Cell-first Tetrahedral Slice Structure with 57G: 
The top and bottom structures are 26-vertex groups of 57 tetrahedra (57G) 
which are the maximal number of tetrahedra in a group 
all in contact with each other within the 600-cell. 

This configuration most clearly shows how 
individual tetrahedra represent individual fermions 

but 

vertices with similar physical interpretation 
are not grouped together as nicely 

as in Vertex-first Slicing or as with Rhombic Triacontahedra. 

 



The 32-vertex Rhombic Triacontahedron (RTH), is a combination of the 12-vertex 
Icosahedron and the 20-vertex Dodecahedron. It "forms the convex hull of ... 
orthographic projection ... using the Golden ratio in the basis vectors ... of a 6-cube to 3 

dimensions." (Wikipedia).   Sharp  and Flat  
golden rhombohedra are the basis for constructing Rhombic Triacontahedra.

The 32-vertex Rhombic Triacontahedron does not itself tile 3-dim space
but it is important in 3-dim QuasiCrystal tiling. Mackay (J. Mic. 146 (1987) 233-243) said 
"... the basic cluster, to be observed everywhere in the three-dimensional ... 
Penrose ...tiling ...[is]... a rhombic triacontahedron (RTH) ... The 3-D tiling can be 
regarded as an assembly of such RTH, party overlapping ...”.

To look at tiling 3-dim space by Rhombic Triacontahedra, the first step is to describe the 
physical interpretation of the Rhombic Triacontahedra, beginning with 

which are interpreted as 4x8 = 32 vertices representing 
4 covariant components of 4-dim M4 Physical Spacetime of 8 first-generation fermion 
fundamental particles (electron, RGB up quarks; neutrino, RGBdown quarks)
and 4x8 = 32 vertices representing 
4 covariant components of 4-dim M4 Physical Spacetime of 8 first-generation fermion 
fundamental particles (positron, RGB up antiquarks; antineutrino, RGBdown antiquarks)

 



Since fermion particles are inherently Left-Handed, their RTH is Left-Handed 
and 
since fermion antiparticles are inherently Right-Handed, their RTH is Right-Handed. 

The third RTH with no handedness describes Spacetime as 4x8 = 32 vertices 

representing 4 momentum dimensions of 4-dim physical spacetime M4 
time 4+4 = 8 dimensions of a M4 x CP2 Kaluza-Klein spacetime 
where CP2 = SU(3) / SU(2) x U(1) is a compact internal symmetry space 
carrying the symmetry groups of the Standard Model. 

Note that the central RTH of spacetime as a Rhombic Triacontahedron 
is dual to the equatorial icosadodecahedron of the vertex-first slices of a 600-cell.

The two 12-vertex icosahedra (top and bottom slices of the 600-cell) represent 

the 12 Root Vectors of the SU(2,2) = Spin(2,4) Conformal Group 
that gives Gravity+ Dark Energy by a MacDowell-Mansouri mechanism 
and 
the ghosts of the 12 gauge bosons of the SU(3)xSU(2)xU(1) Standard Model. 

Note that the cuboctahedron transforms by Jitterbug to an icosahedron 
which is the top and bottom configuration for Vertex-first projection. 

 



Mackay (J. Mic. 146 (1987) 233-243) said "... a rhombic triacontahedron (RTH) ... can 
be deformed to ... a truncated octahedron ... [which is] the space-filling polyhedron 
for body-centered cubic close packing ... 

... By a similar process ... a cuboctahedr[on]... can be deformed to an icosahedron ...".

Using those Jitterbug transformations the icosahedral / rhombic triacontahedral 
slicing of the 24-cell goes to cuboctahedral / truncated octahedral structure

The 4x8 = 32 M4 spacetime components of 8 fermion particles 
and 4x8 = 32 M4 spacetime components of 8 fermion antiparticles 
are indicated by color codes

with the quarks at corner vertices of square faces and the leptons at centers of hexagon 
faces. 

For the central configuration representing spacetime 
the 8 dimensions of spacetime correspond to the 8 fundamental fermions.

 



Truncated Octahedra tile 3D space 
and 

the cuboctahedron has a 6-square configuration that is compatible 
with the 6-square space-filling configuration of the truncated octahedron 

so 

the Rhombic Triacontahedra slicing can, by Jitterbug transformation 
tile 3D space with transformed Truncated Octahedra 
EXCEPT that some of the Truncated Octahedra (marked in cyan in the following image) 
must be replaced by Cuboctahedra: 

(image from apgoucher at cp4space (25 Aug 2013))

The 3D QC Quasicrystal structure of Rhombic Triacontahedra with Icosahedra 
is transformed by Jitterbug into 

a 3D almost-space-filling structure of Truncated Octahedra with Cuboctahedra. 

Instead of the empire - phason structure of vertex-first 600-cell slicing 3D QC
with points, icosahedra, dodedahedra, and an icosidodecahedron 

you have 
the pattern of cuboctahedra replacements in the overall truncated octahedral 3D tiling. 

 



From 3D Rhombic Triacontahedra to 24D Leech Lattice

Rhombic Triacontahedra Jitterbug to Truncated Octahedra. 
The Truncated Octahedra space-filling structure 

is consistent with 
256 Elementary Cellular Automata describing Physics based on 256-dim Cl(8) 

and, by periodicity, 
all tensor products of Cl(8) including Cl(8) x Cl(8) = Cl(16) containing E8 

Some examples of physical interpretations of Elementary Cellular Automata are, 
from grade 2 representing bivector gauge bosons: 

SU(3):  

 



SU(2): 

U(1):

Conformal Gravity Spin(2,4) = SU(2,2): 

 



Each of the 256 Cellular Automata can be represented by a triangular pyramid 
and each of the 3 mutually perpendicular faces of the 

3D Truncated Octahedra / Cuboctahedra structure can be seen as a triangular pyramid

Each of the 3 triangular pyramids (magenta, gold, green) can carry any 
of the 256 Cellular Automata which correspond to the 256 elements of Cl(8). 

The 8-dim Vectors of Cl(8) live in an 8-dim Integral Octonion Space E8 Lattice. 
There are 7 Algebraically Independent E8 Integral Domain Lattices 
corresponding to the 7 Imaginary Octonions i, j, k, e, ie, je, ke 
of which 3   i, j, e  are Algebraically independent. 

Let the green triangular pyramid carry an E8i Lattice 
and the gold triangular pyramid carry an E8j Lattice 
and the magenta triangular pyramid carry an E8e lattice. 

7 E8 lattice integral domains E8i E8j E8k E8e E8ie E8je E8ke 
correspond to the 7 imaginary octonions i j k e ie je ke
Scale them so that their Inner Shells have Unit Radius because as Geoffrey Dixon said 
“... the inner shell should ... consist of unit elements ...
[since]... O multiplication of ... unit elements is closed ...”.

 



Consider the 240-vertex Unit Radius Inner Shells of E8 Lattice Integral Domains 
corresponding to the algebraic generators i j e of the imaginary octonions with 
coordinates of the form ( E8i , E8j , E8e )

E8i  itself has 240 vertices ( x , 0 , 0 ) 
E8j  itself has 240 vertices ( 0 , x , 0 ) 
E8e itself has 240 vertices ( 0 , 0 , x )

Then, consider the 240 + (240 + 16 x 240) = 4320 vertices 
of Unit Radius Inner Shells of /\16 Barnes-Wall Lattices 
constructed from pairs of E8 Lattices using Dixon’s XY-product 
with X and Y in the pairs

E8i x E8j  with 16x240 = 3840 new vertices ( x , y , 0 ) 
E8j x E8e with 16x240 = 3840 new vertices ( x , 0 , y ) 
E8e x E8i with 16x240 = 3840 new vertices ( 0 , x , y )

Then, consider the 61,440 = 16x16x240 vertices of the second shell of Barnes-Wall /\16
rescaled for Unit Radius constructed from triples of E8 Lattices using Dixon’s XY-
product with X and Y outside the E8i, E8j, E8e and their /\16 Lattices
 
(E8i x E8j) x  E8e with 16x16x240 = 61,440 vertices ( x , y , z )
(E8j x E8e) x E8i  with 16x16x240 = 61,440 vertices ( x , y , z )
(E8e x E8i) x E8j  with 16x16x240 = 61,440 vertices ( x , y , z )

The total inner vertices = 3 x ( 240 + 3840 + 61,440 ) = 196,560 
correspond to the inner-shell vertices of the 24-dim Leech Lattice

One Cell of E8 26-dimensional Bosonic String Theory with structure J(3,O)o 
with Strings being physically interpreted as World-Lines 

and massless spin-2 states are interpreted as carriers of Bohm Quantum Potential
can be described by taking the quotient of its 

24-dimensional O+, O-, Ov subspace modulo the 24-dimensional Leech lattice.

Therefore: 

3D Rhombic Triacontahedron -- Jitterbug -->  3D Truncated Octahedron 
which fills 3D space with each node corresponding to 

3 Elementary Sets of Cellular Automata (CA) 
each of which corresponds to an E8 Lattice so that 

the 3 Sets of CA represent a 24D Leech Lattice 
underlying the structure of the 26D String Theory of E8 Physics AQFT 

based on Strings as World-Lines and 
massless spin-2 states as carriers of Bohm Quantum Potential

 



From 600-cell to Superposition of 8 E8 Lattices

Start with the 4D H4 QC QuasiLattice whose origin-neighbor vertices form a 600-cell 

with unit Radius. It has 120 vertices whose physical interpretations are 
32 blue = 4D M4 Minkowski part of 8D M4xCP2 Kaluza-Klein Spacetime 

32 green and cyan = 4 Minkowski components of 8 Fermion Particles
32 red and magenta = 4 Minkowski components of 8 Fermion AntiParticles

24 yellow = D4g Root Vectors = 12 Root Vectors of SU(2,2) Conformal Gravity
+ 12 Ghosts of Standard Model SU(3)xSU(2)xU(1)

arranged, with respect to a circle-sphere projection to 2D,  
in 4 circles of 30 vertices each.

Boyle and Steinhardt in arXiv 1608.08220 , arXiv 1608.08215 ,arXiv 1604.06426 say:
“... there is a unique reflection QL … quasilattice … /\ … in 4D …
Every vector … in /\ can … be written as an integer combination of the 120 H4 roots
… /\ must contain all the golden integers times each H4 root,
and all integer linear combinations of such vectors …
it is unique … H4 root QL … correspond[ing] to the … icosians...
the scaling group of the QL must be a subgroup of the scaling group of its 1D sublattice
... H4 contain[s] Z(sqrt(5)) ... scaling factor is the “golden ratio” ... ( 1 + sqrt(5) ) / 2 ...”. 

Therefore, the second shell of the 4D H4 QC QuasiLattice is also a 600-cell 
whose expanded Radius is the “golden ratio” ... ( 1 + sqrt(5) ) / 2 = 1.61 
arranged in 4 circles of 30 vertices each with physical interpretations 

32 blue = 4D CP2 Internal Symmetry part of 8D M4xCP2 Kaluza-Klein Spacetime 
32 green and cyan = 4 CP2 components of 8 Fermion Particles

32 red and magenta = 4 CP2 components of 8 Fermion AntiParticles
24 orange = D4sm Root Vectors = 8 Root Vectors of Standard Model SU(3)xSU(2)xU(1)

+ 16 Ghosts of U(2,2) of Conformal Gravity

 



Boyle and Steinhardt in arXiv 1608.08220 , arXiv 1608.08215 ,arXiv 1604.06426 say: 
“... H4 root QL … corresponds to the … icosians,
which may be obtained by orthogonally projecting the E8 root lattice
on a maximally symmetric 4D subspace …
the 240 E8 roots project onto the parallel space to yield two copies of the 120 H4 roots
(an inner copy and an outer copy that is longer by T [Golden Ratio] ) ...”. 

In other words, the first two shells of the 4D H4 QC QuasiLattice 
form the 240 Root Vector first shell of an 8D E8 Latice with 8D norm 2x1 = 2
shown here in the circle-ball 2-dim projection with 8 circles of 30 vertices each

and in a square-cube 2-dim projection with the same physical interpretation color-coding

 



The second shell of the 8D E8 Latice, with 8D norm 2x2 = 4, has 2160 vertices: 
8 pairs of 128-vertex Cl(16) half-spinors for 2048 vertices 
and 112 vertices corresponding to Root Vectors of the D8 subalgebra of E8 

   
The 112-vertex D8 combines with a left-handed 128-vertex Cl(16) half-spinor, 
representing E8 Physics Fermion Particles, which are left-handed, 
to form a 240-vertex configuration like the E8 Root Vector Gosset Polytope

 



Since there are 8 pairs (left-handed and right-handed) of 128-vertex Cl(16) half-spinors 
in the second E8 shell, if you require the 112-vertex D8 to combine with the left-handed 
half-spinor to form a 240-vertex E8 Root Vector Polytope for an E8 Physics model 
with realistic left-handed half-spinors representing Fermion Particles, 
then 
there are 8 ways you can produce an E8 Lattice for E8 Physics. 
7 of the 8 ways produce algebraically distinct independent Integral Domains, 
corresponding to the 7 imaginary Octonions  i, j, k, E, I, J, K 
The 8th way is not an algebraically independent Integral Domain 
and it corresponds to the real Octonion 1.

In E8 Physics, 8-dim Spacetime (described by the D8 / D4xD4 part of E8) 
is a Superposition of Spacetimes of each of those 8 E8 sets of 240 Root Vectors. 

 



If you consider each of those 8 E8 sets of 240 Root Vectors 
as a first shell of a second-order E8 Lattice 

each having a second shell of 2160 Vertices
then

you get 8 x 2160 = 17280 Vertices 
and

if you add 240 Vertices of a first-shell set of E8 Root Vectors 
then 

you get the 17280 + 240 = 17520 Vertices 
of the 4th shell of an E8 Lattice 

as described by the E8 theta series 
Wikipedia: “... the number of E8 lattice vectors of norm 2n is 240 times the sum of the 
cubes of the divisors of n. The first few terms of this [theta] series are given by 
(sequence A004009 in ... OEIS) ... 240 ... 2160 ... 6720 ... 17520 ... 30240 ... 60480 ...”.

8D E8 Shell 4 shows explicitly not only the 240 Root Vectors of E8 Physics 
but also 

the 8-fold Octonionic Superposition Structure of E8 Physics. 

 

https://oeis.org/A004009
https://oeis.org/A004009
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences

