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Abstract We use density matrices to explore the possibility that the various
flavors of quarks and leptons are linear superpositions over a single particle
whose symmetry follows the finite subgroup Sy of the simple Lie group SO(3).
Density matrices allow modeling of symmetry breaking over temperature, and
can incorporate superselection sectors. We obtain three generations each con-
sisting of the quarks and leptons and an SU(2) dark matter doublet. We apply
the model to the Koide mass equations and propose extensions of the theory
to other parts of the Standard Model and gravitation.
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1 Introduction

We propose that the various flavors of quarks and leptons arise as linear super-
positions of an underlying fermion we will call the citronen.! The citronen fol-
lows a gauge Lie group SO(3) from which we derive the Standard Model gauge
Lie group SU(3)xSU(2)xU(1). If we SO(3) rotate the citronen far enough, we
get a new flavor citronen in the same way we can SU(3) rotate a red quark to
obtain a green quark. The 24 flavors of citronens are defined by the permuta-
tion group Sy which is a finite subgroup of the Lie group SO(3).

We begin by outlining the density matrix theory needed in this paper.
Starting with the assumption of a general Lie group G with finite subgroup
F, we use the color symmetry of the Standard Model to deduce that F' = S,
so that Sy defines a basis set for the citronens. We show that this implies the
citronen gauge Lie group G = SO(3). Standard Model particle interactions are
left and right handed so we convert the Sy symmetry basis set for the citronens
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1 Citronen means “lemon” in some European languages. Nelogoism due to Forrest LeDuc.
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to four handed basis sets {L - L, L - R, R — L, R — R} , each with S5
symmetry. This converts 24 S, basis elements to four sets of six. We examine
applications of S5 to the Standard Model, especially the Koide mass equations
for the quarks and leptons and propose further work with these ideas including
gravitation.

1.1 Contents

Section 2 covers density matrix ideas that we use to model the Standard Model
fermions. These include temperature dependence, superselection sectors, sym-
metry breaking, the cold limit (pure) density matrices, density matrices using
general algebras instead of matrix algebras, Schwinger’s method of finite quan-
tum field theory using an algebra, and the Standard Model in block diagonal
density matrix form. For complex algebras over finite groups, the symmetry
and particle content for the density matrix particles can be read from the char-
acter table of the finite group, and the internal symmetries of the particles are
representations of F'. This allows F' to be determined.

In Section 3 we determine F' = S, by examining how color SU(3) permutes
the colors of the quarks. We find three copies (or generations) of the finite
group S4. Examining the character table of Sy we deduce that the Standard
Model includes a dark matter SU(2) doublet. We write the quarks and leptons,
and the Gell-Mann color matrices in the complex S, algebra and give the
Young’s tableaux for the fermions.

In Section 4, we consider possibilities for the gauge Lie group G and con-
clude that it is SO(3). This makes S4 a point symmetry, so we write the per-
mutations using gamma matrices. For visualization, we put the symmetries
of the elementary particles into crystal (gyroidal or 432) form. The spherical
harmonics are SO(3) symmetries and with S; a subgroup there is a subtle re-
lationship between the first four spherical harmonics and the quarks, leptons
and dark matter.

In Section 5 we propose the quantum state for the citronen. It must have
the symmetries of Sy. The result is related to the quantum information idea
of “mutually unbiased bases”. These 24 citronens give the basis for the quarks
and leptons. But the Standard Model particle interactions are between left
and right handed particles so we convert from the citronen basis with 24 bases
of S, symmetry to four basis sets depending on the incoming and outgoing
handedness, left to left, etc. These four basis sets each has six elements with
S3 symmetry. We show that the weak quantum numbers are idempotents of
the complex algebra over S3 and hope that a more complete theory can derive
them. Finally we derive the mass interaction and give support to the Koide
mass equations for the leptons and quarks.

Section 6 discusses the advantages of this theory, the problems with it, the
problems with this paper in particular and directions in which this work might
be extended. These include quantum statistics and the quasi-normal modes of
black holes, compatibility with general relativity using Gauge Theory Gravity,
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Gullstrand-Painlevé coordinates and gravitons, and the weak mixing matrices
and parameterizations in S3 circulant form.

1.2 Modified Density Matrices

In regards to the Standard Model, quantum mechanics has been well explored
so a new idea will require a modification of some previous assumption. Since
this is a paper about the flavors of the quarks and leptons, we will be working
in finite dimensional quantum mechanics and we will explain the modifications
using the example of SU(2) spin-1/2.

Assuming density matrices are the fundamental quantum state “opens up
a much larger variety of ways that the density matrix might respond to various
symmetry transformations.” [45] But we will go further than Steven Weinberg’s
2014 paper by reconsidering the assumption that density matrices use matrix
multiplication. Instead, we generalize complex matrices to “algebras”. This
may be confusing to physicists unfamiliar with algebra (as distinct from “Lie
algebra”) so we've tried to be careful with our language. We call su(2) a “Lie
algebra”, SU(2) is a “Lie group”, the permutation group Sy is a “finite group”
and it is also a “finite subgroup” of the Lie group SO(3).

If one begins with the assumption that state vectors are the fundamental
quantum state then a density matrix p is defined by the multiplication of a
ket and bra. For spin-up (+42), the multiplication is:

Pr= = |+ 2)(+2];

(- (e

With kets as complex vectors taken from an n-dimensional Hilbert space,
the above definition automatically defines density matrices as n X n complex
matrices. Our generalization is that we will allow density matrices to live on
more general algebras than the complex matrices. These more general algebras
support density matrices that cannot be immediately translated to bra-ket or
state vector form.

An “algebra” is a vector space with multiplication. To see how we will be
generalizing matrices, we can define matrix multiplication as we would for an
algebra. We begin with matrices as a vector space. A vector space has a set of
basis vectors. An element of the vector space is a sum of complex multiples of
the basis elements. The usual basis set for the 2 x 2 complex matrices is

G (e e

Given two vectors, we define addition by adding them term by term. A vector
can be multiplied by a complex number, by multiplying each term by the
complex number. This scalar multiplication applies to matrices as they are a
vector space. To make a vector space into an algebra we need to define how
to multiply a vector by a vector.
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To define a multiplication on a vector space, we first define multiplication
for the basis elements. Then we distribute multiplication over addition and
reduce the result by using the basis element multiplication. For example, using
the standard matrix basis set,

3O (02 Cpg (104 gy (00 fan (01 i (00
SR B
oot () (32) o (32 (2)

= (—61) (8(1)> + 040+ (—61) ((1)8

B (—0& _()6i)'
(3)

In the above multiplication, the two matrices each have two non-zero entries so
there are four products of bases. Of those four products, the middle two were
zero because the basis elements multiply to give zero. Of the sixteen possible
products of the four basis elements for the 2 x 2 matrices, half are zero.

One chooses the basis for a vector space according to convenience. An
alternative basis for the 2 x 2 complex matrices is the “Pauli basis”:

(00 (80) e (0 - (30)

In the Pauli basis, the multiplication shown in Equation 3 is
(80.)(20,) = (6)(0.0,) = (6)(~ic,) = —Gic. (5)

In the Pauli basis none of products of basis elements are zero. The same is true
of the gamma matrix basis which consists of the 16 gamma matrix products.
Our first modification of density matrices will be to block diagonal form due
to superselection sector rules and is described in Subsection 2.2.

In making a measurement of a spin-1/2 system, we choose an operator,
for example o, for spin in the z direction, and there will be two possible
results from the measurement according to the two eigenvalues of o,. This
works beautifully for spin-1/2 measurements with our present experimental
equipment and we do not propose any changes. The two possible results are a
“complete set of basis states”, that is, a basis for state vectors. One will find
that spin is in the 42z or —z direction.

Our generalization is to consider “over complete” sets of basis states. For
spin-1/2; the natural over complete set of basis states is already in use in
quantum information theory where it is called a “set of mutually unbiased
bases.” [14] For spin-1/2, these consist of the bases resulting from spin mea-
surements in the x, y and z directions. They are “mutually unbiased” in that
the transition probabilities between states from different bases are all equal.
For such a system, there are six possible results for a spin-1/2 measurement
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corresponding to the six directions 4+z, +y and +z. The spin of a classical
system could be measured in any direction, so our modification is part of the
way to the classical situation.

Rather than the Pauli spin matrices, this paper will be dealing with gamma
matrices but the ideas are similar. The (more or less) mutually unbiased bases
will be defined by a finite subgroup F' of a Lie group G. In a certain way, the
finite subgroup F' defines how far one must G rotate to change a state enough
to make it independent (unbiased) with respect to the unrotated state.

An advantage of using over-complete bases is that they have non-zero tran-
sition amplitudes between different bases, such as (+x| + y). The transition
amplitudes define interactions between density matrices so we get interacting
systems without having to specify a Lagrangian or Hamiltonian. In analyzing
the mass interaction we will be making density matrices from density ma-
trices. In doing this, the new density matrix has diagonal elements that are
real multiples of the pure density matrices and the off diagonal elements are
complex (Hermitian) multiples of products of the diagonal density matrices.
In terms of quantum field theory, fermion propagators are on the diagonal
and interactions, where a fermion is annihilated and another created, are off
diagonal.

2 Density Matrix Theory

In this section we discuss the density matrix ideas needed in this paper includ-
ing temperature modeling, superselection sector rules and block diagonal den-
sity matrices, symmetry breaking, cold limit (pure) density matrices, density
matrices derived from an algebra with S3 as an example, Schwinger’s Mea-
surement Algebra and the relation between quantum field theory and density
matrices, and the algebra which supports the Standard Model fermions.

2.1 Temperature and Density Matrices

Density matrices are particularly useful for exploring the effects of temperature
in quantum mechanics. For a Hamiltonian H, there is an associated density
matrix that depends on temperature by the familiar formula:

p(T) o exp(—=H/(kpT)). (6)

In this form, the temperature can be changed by taking powers: p(T/a) x
[p(T)]*. In the high temperature limit we have

p(T=00) =1/tr(1) o 1 (7

The heat bath that one usually associates with a canonical ensemble ex-
changes photons with the ensemble. The effect of temperature on such an
ensemble is described by density matrices. This paper is concerned with heat
baths at extreme temperatures where the photons will be supplemented by
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Fig. 1: (a) Heat bath with photons as the gauge bosons, so the fermions do
not change flavor. (b) Higher temperature heat bath also includes W* in the
interactions converting between neutrinos and electrons.

all the other gauge bosons such as the WW*. At these temperatures, the heat
bath allows the fermions to change flavor and so particle content changes with
temperature. See Figure 1. We suppose that at even higher temperatures the
number of gauge bosons will continue to increase to include ones that can
convert between leptons and quarks so our density matrices will include all
the elementary fermions. And we will assume that some, so far undiscovered,
lepto-quark-dark matter gauge boson converts between leptons, quarks and
dark matter so that they all approach the same state at high temperatures. A
lepto-quark gauge boson has been proposed as an explanation for recently ob-
served 4 standard deviation experimental violations of lepton universality.[10]

2.2 Superselection Sectors and Density Matrices

Given a set of states {|z;)} and probabilities p; that sum to unity, a density
matrix is traditionally given by:

p=X;pj|zj)(x;]. (8)

If the |z;) are all spin-up or spin-down, the density matrix will have the form:

p=pel 2l + pol=aal= (B ) ). )

To get non zero off diagonal elements of the density matrix we have to make

the density matrix from states that are linear superpositions of spin-up and

spin-down. Otherwise, the density matrix is restricted to have a block diagonal
form.

One can represent a beam of spin-up electrons with a state vector | + z).

Such a beam can be rotated to have spin in the +z direction by a suitable
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arrangement of magnets and the new beam |+ ) is given by a linear super-
position of spin-up and spin-down:

[ +a)=(+2) + |-2)/V2 (10)

It is thought to be impossible to produce a quantum state that is a linear
superposition of an electron and a neutrino. The reason for this is that the
particles have different electric charge and so are in different “superselection
sectors”. This type of restriction also prevents the linear superposition of a
fermion with a boson.[46,9] Superselection sectors arise from symmetries and
conservation laws; in this paper we assume that the usual superselection sectors
arise from the symmetry calculations given here. See [42] for a recent discussion
of symmetry and superselection sectors. While it is possible to modify the
symmetry so as to eliminate superselection sectors, this does not give one a
prescription for designing an experimental apparatus which will violate the
superselection rules.[44]

Since the electron and neutrino are in different superselection sectors, our
density matrices cannot use states such as (|e) + |v))/v/2. Instead, we can
only combine superselection sectors incoherently and the density matrix for a
combination of electrons and neutrinos will appear as:

p = peleel + pulvhiv] = (”‘f py). (1)

We've left the off diagonal entries in the above matrix blank because they are
not just zero but are forbidden by the superselection rule. This is an example
of the block diagonal form that arises when density matrices are used for
mixtures of particles from different superselection sectors. For the above, the
two blocks are 1 x 1. If we had included spin-1/2, the p. and p, are replaced
with 2 x 2 density matrices and the block diagonals are 2x 2. This is an example
of the fact that density matrices naturally give rise to particle symmetries of
the form SU(j)xSU(k)x...U(1).

The density matrices given in Equation 11 are elements of an algebra of
block diagonal matrices of general form:

(") w2

where a1 and as are complex numbers. These matrices are closed under multi-
plication and addition and include zero and one. That is, they form an algebra.

An “idempotent” of an algebra is an element that is unchanged by squaring.
This is an attribute of pure density matrices: p p = p. A “primitive” idem-
potent is (by a simplified physicist appropriate definition) one that has trace
1, also an attribute of density matrices. The above algebra has two primitive
idempotents; they correspond to the electron and the neutrino:

()= ()
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Primitive idempotents are also used to identify bispinors defined with gamma
matrices [22], and are the elements of an algebra to associate with particles
[5]. In this section we will be examining an algebra defined by the permutation
group S3. We will put that algebra into block diagonal form and interpret the
blocks as particles.

2.3 SU(2) Symmetry Breaking

Suppose that we have two states that are similar in some way, say p. and p,, for
the weak force and the left-handed electron and neutrino states. Since these
states are in different superselection sectors, the general form for a density
matrix representing a mixture of them at some finite temperature is given by
Equation 11 above. The infinite temperature limit is given by Equation 7.

Now consider what the situation would be if the symmetry wasn’t broken
and the electron and neutrino were a true SU(2) doublet. A general form for
a mixed SU(2) density matrix is

142z x—1y

_1

p(m’y’z)_2<x—|—zy 1—2,)’ (14)
=(1+4z0o, +yo, +20,)/2.

where z,y, z are real with 22 + y2 + 22 < 1. Rotating (z,¥, z) to the z direc-
tion puts this mixed density matrix into the form of Equation 11 so its high
temperature limit is the same Equation 7.

More generally, the high temperature limit of a block diagonal mixed den-
sity matrix is the same as the high temperature limit of the usual (single block)
mixed density matrix. That is, in the high temperature limit, it is not possible
to detect the presence of superselection sectors:

finite T T — o0
coherent: 1 1+2z z—1y 1 10
(State vector) 2 \ x +iy 1-—z, 2\01 (15)
incoherent: 1 ( DPe 1 1
(Density matrix) 2 Dy 2 1

Thus if a boson makes it possible to convert between two similar particles
in different superselection sectors, when described in state vector form it will
have the appearance of spontaneous symmetry breaking. But the description
in density matrices will simply be the usual block diagonal form.

2.4 Density Matrix Cold Limit Particles

Suppose we begin with a randomly chosen mixed density matrix and repeat-
edly lower its temperature by squaring and dividing by the trace (to keep the



Density matrices and the Standard Model 9

trace 1). For 2 x 2 matrices we can either have a single 2 x 2 block or two 1 x 1
blocks. These are the cases of the electron and neutrino mixture being either
coherent or incoherent. Beginning with arbitrary legal initial conditions, the
limit result of repeated cooling is:

finite T =0
1+2 z—iy L2 o —iy
o1 3
2 x 2 block: 2<x+iy 1_2’)%2(33’-5-@’ 1—2, (16)

two 1 x 1 blocks: é(pep ) — <1O> or <01>

where ' = x/y/x2 4+ y? + 22 etc., and the “or” follows as p. is greater or
smaller than p,. That is, for the 2 x 2 case we get an SU(2) doublet state that
mixes an electron and neutrino with weak isospin in the (2/,y’, z’) direction,
and with the two 1 x 1 case we get either an electron or a neutrino. This is how
density matrices model weak isospin either remaining unbroken or breaking to
the electron and neutrino.

Let Py be a projection operator for the kth block. So if the kth block is a
7 % j block, then Py has j ones on the diagonal in that block and is elsewhere
zero. Such a projection operator annihilates anything outside of the &k block and
it is the identity operator on things that are in the k block. Thus P, commutes
with any element of the algebra. In particular, if p is any pure density matrix
state so that p is a primitive idempotent, then pPj is idempotent and so is
either zero or is p and we have that the pure states of a block diagonal matrix
algebra are associated with one block or another. So given an algebra in block
diagonal form, we can read off the particle content by looking at the sizes of
the blocks.

Cooling a random mixed density matrix will form a limit that approaches
a pure density matrix. As a visual example of how density matrix renormal-
ization produces pure states by cooling, see Figure 2. The details of the group
theory behind this example will be give in the next subsection.

2.5 Density Matrix Algebras

As algebra elements, density matrices can be added and multiplied. The results
are generally not another density matrix, but make sense mathematically. As
an example of the usefulness of adding density matrices, consider two density
matrices p; and ps. Given two real numbers p and ¢ = 1—p we can combine the
two density matrices by pp1 + gp2. This describes a mixture that corresponds
to a mixing of the contents of the two ensembles.

The procedure of squaring a density matrix is a way of changing its tem-
perature. So squaring is a mathematical operation that makes sense physically.
To enlarge squaring to multiplication, consider what happens when we square
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T="T, T =Ty/2

Fig. 2: Density matrix renormalization flow of C(S3) with 3,000 states. As the
mixed density matrices cool down they approach pure states. The symmetry
and representation is SU(2) x U (1) xU (1) with one SU(2) doublet and two U(1)
singlets. The two axes of the SU(2) Bloch sphere are given by Ps, = —i[(123) —
(132)]/+/3 and Ps, = [(23)—(13)]/V/3. The vertical separation between the two
U(1) singlets is given by the commutative center element (12)+ (13)+ (23) and
these two states are horizontally separated from the SU(2) doublet by another
central element (123) + (132). Thus the graphs are obtained by plotting Ss
quantum states at (z,y) = ( Psy + (123) + (132), Ps, +(12)+ (13)+ (23) ).
Central elements commute with the whole algebra and so cannot be a part
of any internal SU(j) symmetry and define the particle charges. Thus they do
not distort the SU(j) j-plets and can be used to separate them in graphs like
this.
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a sum such as pp; + gp2. Then the products of density matrices contribute to
the result and so density matrix multiplication also makes sense physically.

This suggests we should analyze “density matrix algebras”, that is, the
mathematical objects that contain density matrices. We’'ve shown that super-
selection sectors direct our interest to block diagonal matrices and while these
are always algebras, and their particle content can be read off from the block
sizes, we will be interested in algebras that have more direct physical content.

This paper considers a finite subgroup F'. Finite groups can be used to
create algebras called “complex finite group algebras”, called “group algebra”
n [18]. We will designate the complex group algebra as C(F). The algebra is
defined by using the group elements as a basis for a vector space. To describe
the structure of these algebras we will use the finite group S3, the group of
permutations of three objects to create the finite group algebra C(Ss).

The group S35 has six elements {( ), (123), (132), (23), (13), (12) }with a mul-
tiplication table:

Ss | () (123) (132) (
() | () (123) (132) E
(

(123)[(123) (132) ()
(132)[(132) () (123)
(23) [ (23) (13) (12)
(13) | (13) (12) (23) (132) () (
(12) | (12) (23) (13) (123) (132) ()

(17)

The six group elements are a basis for the algebra. So an element of the algebra,
say a € C(S3) is given by six complex numbers a,:

a=a()()+aques(123) + ausz) (132) + a(s)(23) + a@13)(13) + a2) (12). (18)
Addition is the same as in any other vector space so that, for example:
[8() +2(123) + 3(13)] + [5(123) — 4(12)] = 8( ) + 7(123) + 3(13) — 4(12). (19)

Multiplication is defined by using the group multiplication. Since ( ) is the
multiplicative identity and (12)(13) = (132), we have

[2() +3(12)] [4( ) +5(13)] = 8( ) + 10(13) + 12(12) + 15(132). (20)

The finite group elements have inverses, for example, the inverse of (123) is
(132). This falls through to the algebra so the inverse of 0.5(123) is 2.0(132).

The six basis elements of the algebra follow the multiplication of the fi-
nite group and so are a faithful representation of the finite group. And when
the algebra is put into block diagonal form, each block can be taken sepa-
rately as a representation of the finite group.[18] Since (12)(13)=(132) while
(13)(12)=(123), the finite group is not commutative. Therefore at least one
of the blocks has to be at least as large as 2x2. Such a block would use four
degrees of freedom and there are only six degrees of freedom available so there
must be three blocks with degrees of freedom given by their sizes:

6=1%+1% 422, (21)
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that is, there are three blocks, two are 1x1 blocks and one is a 2x2 block.
In the C(S3) algebra there will be a projection operator for each of the
three blocks. These are easy to write in block diagonal form:

1 0 0

0 1 0
oo | 2= oo | 3= 10
00 00 01

P = (22)

The other three C(S3) degrees of freedom are in the traceless part of the 2x2
block and so can be written using the Pauli spin matrices as a basis.

0 0 0
0 0 0
o1 | Tw= 0 —i | Ts== +1 0
10 +i 0 0 —1

These six elements {Pi, P, P3, P3;, Py, Ps,} provide a basis for the C(S3)
algebra that is convenient for block diagonal form. With this basis, an element
of the algebra can be written as:

Py, = (23)

a=a1P1 +asPs + a3Ps; + a3, P3, + a3yP3y + a3, Ps3.. (24)
These six basis elements have the following multiplication table:

Sz |PL Py, Py Py, P Ps,
PP, O O 0 0 0

Pl0P 0 0 0 0
Ps|0 0 Py Ps, Py Ps (25)
Ps,|0 0 Py, Py +iPs, —iPs,
Psy|0 0 Py, —iPs, P3 +iPs,

Ps.|0 0 Ps, +iPs, —iPs, Ps

The density matrices for the 1x1 blocks are simply P; and P». the 2x2 block
has SU(2) symmetry so its density matrices are defined by a Bloch sphere.
Letting (z,y, z) be a real vector with length less than or equal to 1, a density
matrix is given by

pz,y,z = (Pg —+ "E.Pgm + ypgy + Z.sz)/2 (26)

This gives the particle content of the block diagonal version of the C(S3)
algebra, at least using the block matrix algebra description of the algebra. This
basis is how elementary particle physicists would see these three particles.

It remains to describe the block matrix algebra in terms of the Ss basis.
The three projection operators {P;, P», Ps} can be read off of the group’s
character table:[18]

S | () (abe) (ab)

Size: | 1 2 3

i | 1T 1 1 (27)
X2 1 1 -1

X3 2 —1 0
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In the above table, the top row gives the classes. For example, the “(abc)”
class consists has two elements: {(123),(132)}. The number of elements in
each class is given in the second row. Below that, each row corresponds to an
irreducible representation of the finite group Ss. The three x; correspond to
the three projection operators P;. The first two x; correspond to 1x1 blocks
and are used exactly as shown in the character table, divided by 6 which is
the number of elements in S3. The last x; corresponds to a 2x2 block and so
is multiplied by 2:

Pr=[() + [(123)+(132)] + [(23)+ (13) + (12)]}/6,
Br=[0) + [(123) +(132)] — [(23)+ (13) + (12)]}/6, (28)
Py =[4() — 2[(123) + (132)]1/6

These projection operators sum to unity.

The remaining density matrix basis elements { Ps,, Py, P5.} are similar to
the spin-1/2 matrices so their definition is subject to an SU(2) symmetry. So
rather than define them directly, let’s first choose a representation of Ss in the
block diagonal algebra. The representations for the elements in the 1x1 blocks
are defined by the character table; that is, x1 is the trivial representation where
all elements are represented by 1 and y» is the alternating representation that
gives -1 to the odd permutations and +1 to the even. Beyond that, we can use
the diagonal part of the 2x2 block for the representations of even elements
and the off diagonal parts for the odd elements. We have:

1 1 1
1 1 1
()= 1o | (123) = wo | (132)= o0 |
01 0 w* 0 w
1 -1 1
(23) - 0 OJ* ) (13) - 0 w I (12) - 01 )
w 0 w* 0 10

(29)
where w = exp(2in/3). From the above definitions of the elements of S3 in
block diagonal form, we obtain the Ps,:

Py, = [(23) - (13)]/V3, (30)
Py, = —i[(123) — (132)]/V/3.

The reader can verify the above by noting that they each square to P3 and have
the correct commutation relations for su(2). Note that the Ps, are orthogonal
in the S5 basis just as they were orthogonal in block diagonal form.

The 2x2 block gives a representation of S3 as:

0=(1) 0m=(52) wm=(50).

2= (%) w=(s). w=(17).
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The above is a faithful representation of Ss3. It suggests a process for reverse
engineering the symmetrization of the Standard Model. We will attempt this
in the next section; that is, we will look for F, a finite subgroup of color SU(3),
that happens to define a density matrix algebra with quarks and leptons. In
our search, we will know that the size of the finite group has to equal the
number of degrees of freedom in the block diagonal algebra. And that number
we can approximate by counting the Standard Model fermions.

Random mixed density matrices cool down to the pure particles. This can
be done with computer calculations. If the simulation is plotted using two of
the Ps, axes one gets a Bloch sphere shell for the su(2) doublet. The 1x1 U(1)
singlets show up as single dots. They would be in the center of the Bloch sphere
unless we add some center charges that distinguish between the particles. See
Figure 2 for the renormalization flow from high temperatures to low in C(S3).
The three particles found from S3 are a doublet and two singlets. This is a
pattern seen in the Standard Model: the left handed leptons form a broken
SU(2) doublet while the right handed leptons are singlets.

2.6 Schwinger’s Measurement Algebra and Quantum Field Theory

In 1955, Julian Schwinger “began to write an article on the Quantum Theory
of Fields. The introduction contained this description of its plan. ‘In part A
of this article a general scheme of quantum kinematics and dynamics is devel-
oped within the nonrelativistic framework appropriate to systems with a finite
number of dynamical variables.” ”[37]. This was published as “The Algebra of
Microscopic Measurement”[35] in 1959 and it’s now known as “Schwinger’s
Measurement Algebra”, and has been rediscovered.[1]

The objective of Schwinger’s Measurement Algebra is to put the founda-
tions of quantum mechanics in how measurements relate to one another. It be-
gins with the algebra of Stern-Gerlach experiments. Such an experiment splits
a beam of particles into two beams, one with spin-up, the other with spin-down.
Then addition means the combining of two beams while multiplication means
taking the output of one beam and putting it into another experiment. These
ideas are used to introduce quantum mechanics in his introductory textbook,
“Quantum Mechanics, Symbolism of Atomic Measurements.” [38]

Our work here is an extension of Schwinger’s Measurement Algebra. Our
first extension is to include temperature. In terms of particle beams, this can be
modeled by Stern-Gerlach experiments that are imperfect. For a measurement
of spin-1/2 in the (x,y, z) direction that has an efficiency 0 < p < 1, then
the algebra element that represents the experiment is a sum of the p scaled
pure measurement and the 1 — p scaled no measurement. Instead, the 1 — p
operator splits the beam into two equal parts ignoring the incoming beam spin

orientation.
_1-p/(10 p z T—1y
=3 (Ol) + 2(x+iy -z ) (32)
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This extension of the Measurement Algebra allows for the analysis of imperfect
measurement apparatus.

If one wishes to produce (in the limit) a perfect spin-up beam from im-
perfect Stern Gerlach experiments, one takes the spin-up result of a first ex-
periment and sends it into a second imperfect Stern-Gerlach experiment. In
the algebra, this is modeled by squaring the element given in Equation 32.
Of course the beam is attenuated by this process. If one is not interested in
the attenuation, one can correct for it by dividing by the trace. This gives a
physical meaning of the density matrix renormalization process we use in this
paper; the squaring corresponds to repeating an experiment and the division
by the trace corresponds to removing the attenuation.

More generally, one can take the beam from one imperfect Stern-Gerlach
experiment and send it into a different, imperfect Stern-Gerlach experiment
and this physical process is modeled by the matrix multiplication of two differ-
ent mixed density matrices. Thus Schwinger’s Measurement Algebra provides
physical meaning for the multiplication and addition of mixed density matri-
ces.

A second extension of Schwinger’s Measurement Algebra is that we take
notice of superselection sectors. A third modification is that we will be keep-
ing track of Berry-Pancharatnam or quantum phases and will avoid splitting
measurements into creation and annihilation operators as we discuss next.

Schwinger extended the “Measurement Algebra” to a quantum field theory
in an article published in 1960.[36] The paper gives the procedure for convert-
ing between finite density matrices and quantum field theories. In the bra ket
notation, one writes a density matrix as:

Pz = |2)(z|. (33)

Schwinger splits the bra and ket into annihilation and creation operators by
introducing what he calls a “fictitious null state” or vacuum. The vacuum is
also a density matrix |0)(0] so (0|0) = 1 and this can be inserted between the
ket and bra to give

pa = |2)(0]0)(z]. (34)
These are split into creation and annihilation operators? as:
¥l = 10)(z],
. 35
e = |a) 0] (%)

Thus the density matrix is an annihilation followed by a creation: p, = 1, 1.
As an example of Schwinger’s idea, the CKM matrix[34] gives the transition
amplitudes for weak force conversion between the three +2/3 charged quarks

{u, ¢, t} and the three —1/3 quarks {d, s,b}:

(uld) (uls) (ulb)
Vorm = | {c|d) (c|s) (c[b) (36)
(tld) (t|s) (t[b)

2 Schwinger’s notation has been translated here into the usual modern form.
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Fig. 3: Jarlskog amplitude 27 = kgusca — Kdesud = PdPcPsPuPd — PdPuPsPePd
written as quantum field theory per Julian Schwinger’s 1960 prescription.

The CKM matrix is the source of CP violation in quark weak interactions.
Since CPT is conserved, CP violation implies T violation so it appears in a
finite field theory as a dependence on the time ordering of a process. That
is, reversing the process will convert the transition amplitude to its complex
conjugate. For these to differ, we need a transition amplitude with a nonzero
imaginary part.

Suppose a quark begins as a d and it is converted by W™ absorption to a
u, then W™ absorption to an s, then W absorption to ¢ and finally a W~
absorption back to d. Each of these transitions takes an amplitude from the
Vexm matrix or its inverse. Since Vo is unitary, the inverse transition
amplitudes are the complex conjugates and the overall transition amplitude
kqusca for this sequence is:

Kausea = (dc)(c|s)(s|u)(u|d). (37)

The imaginary part of kgyseq is known as the Jarlskog [24] invariant J; the
transition amplitudes for CP violation are proportional to J. The above is
almost in density matrix form. Since it is just a complex number, take the
trace and use (d|d) =1 to get

kausca = tr( |d)(d|c){c|s)(s|u)(uld)(d] ), (38)

= tr( pa pe s Pu pa )-

The above begins and ends with the projection operator (pure density matrix)

pd S0 it is a complex multiple of p;. The density matrices can be translated into

creation and annihilation operators by Schwinger’s prescription, see Figure 3.
Since reversing the order takes the complex conjugate, twice the imaginary

part is:

2 Im (kduscd) - kduscd - kdcsud- (39)
To see that the above is invariant, note that pg+ps+pps = 150 ps = 1—pa—pp

can be substituted into Equation 37 eventually giving kquscd —Kkdesud = Kdebud—
kauped, etc. For a state vector approach to this idea, see [15].
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2.7 The Standard Model Density Matrix

The four Standard Model fermions {v, e, u, d} are described as having symme-
try SU(3)xSU(2)xU(1) in that this is the symmetry of their gauge boson cou-
plings. Since the weak interactions depend on the handedness of the particle,
there are eight symmetry conditions. But the left handed leptons I, = {vy,er}
and the left handed quarks qr, = {ur,dr} are treated as (broken) SU(2) dou-
blets:

SUB) SU@) Ua)
I, 1 2 —1/2
qr, 3 2 +1/6
VR 1 1 0 (40)
eRr 1 1 -1
UR 3 1 —|—2/3
dr 3 1 -1/3

The two doublets allows the 8 cases to be described with 6 representations.

The rule for cold density matrices is that a particle has to fall in a single
diagonal block. The ¢; does not fit in this scheme; in the above it is a triplet
in SU(3) and a doublet in SU(2). However, the SU(2) doublet is a broken
symmetry and thus doesn’t count as a block for density matrix purposes.
In addition, the above symmetries are for the right handed and left handed
particles. These are limiting cases. The probability that a random hot density
matrix spin-1/2 state would be pure left or right is zero so random initial
conditions cannot give these states; they’re a consequence of a particular choice
for the external degrees of freedom.

So far we’ve not been using the external bispinor symmetry of the quarks
and leptons so we’ve not been able to split the quarks and leptons into their
handed parts. In a later section we will use the handedness operator i~%~~2~3
to perform a basis transformation from S, bases to handed bases. To do that
we will have to define our symmetry group in terms of gamma matrices. For
now, under the rules of the previous section for density matrices, the up and
down quarks require different SU(3) blocks. Similarly the electron and neutrino
require separate blocks. So the density matrix particle symmetry of the quarks
and leptons is SU(3)xSU(3)xU(1)xU(1):

e
14

Uil U2 U13

U21 U22 U23 (41)
U3zl U32 U33

dy1 di2 di3

da1 daa das

d31 d3o d33

where u;, (djx) are the degrees of freedom for the up (down) quark.
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The above block diagonal density matrix has a total of 20 complex degrees
of freedom:
20 = 12 + 1% + 3% 4 32 (42)

These 20 degrees of freedom can be split into four degrees of freedom for the
particle projection operators and 20—4 = 16 degrees of freedom for the internal
degrees of freedom of the two quarks. For example, the projection operator for
the up quark is:
0
0
100
010
001
000
000
000

The electron and neutrino have no internal degrees of freedom while the quarks
have 16/2 = 8 each, which we will now explore.

A pure 3 x 3 density matrix can be derived from a state vector with three
elements. Such a state vector has 3 complex degrees of freedom or 6 real degrees
of freedom. Of these six, one is lost in the arbitrary complex phase and another
in the normalization requirement. Therefore pure 3 x 3 density matrices have
4 real degrees of freedom. An Hermitian 3 x 3 matrix has 9 real degrees of
freedom but mixed density matrices require that the trace is 1. This leaves 8
real degrees of freedom.

Since the trace of a mixed density matrix is 1 and, for 3 x 3 matrices,
tr (1/3) = 1, when we subtract 1/3 from a mixed 3 x 3 density matrix what
is left is a traceless Hermitian matrix. Such a matrix can be defined using the
Gell-Mann matrices as a basis. So we can express any mixed 3 x 3 density
matrix p, as:

Pa=1/34+5%_ ap \x (44)

where ay, are eight real numbers and the \; are the eight Gell-Mann matrices.
The Gell-Mann matrices are used to parameterize the su(3) Lie algebra, but in
the above we are instead using them to parameterize mixed density matrices.
These mixed density matrices transform according to the SU(3) Lie group.
These calculations generalize so we have established that when we rewrite
an algebra into block diagonal form, the degrees of freedom of the algebra will
appear as projection operators (one for each particle) and real multiples of the
symmetry operators for the su(j) Lie algebra defining representation.

3 The Standard Model Finite Group F = S,

Following the method suggested in subsection 2.5, we will now look for F' by
finding a finite subgroup of color SU(3). The density matrix algebra for the
Standard Model given in Equation 41 has 20 degrees of freedom, however the
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possible presence of dark matter gives us some latitude so we will look for a
finite subgroup with 20 or more elements.

Suppose that p is a Standard Model fermion, that is a pure density matrix.
Then p is an Hermitian primitive idempotent.[12] Now consider the transfor-
mations of p by an element g of G:

p—yglp) =g ' py. (45)

These transformations preserve Hermiticity, idempotency and traceso g~ ! p g

is also a pure density matrix. Lie groups are continuous so g(p) can be in-

finitesimally close to p and therefore the difference between p and g(p) must

consist of continuous internal degrees of freedom such as color. Since F' is a

subgroup of GG these observations also apply to rotations by elements of F'.
Consider the set of rotations of p by elements of F:

F(p)={f(p) | [ € F}. (46)

F(p) is a finite set of particles. If we choose p to be a red quark ug, then there
are only three possibilities for f(ug), it must be one of {ug,ug,up}, that is,
rotations by elements of F' will preserve the leptons and can only change the
colors of the quarks. Accordingly, we now look for elements of color SU(3) that
permute color.

3.1 SU(3) Color Permutations

We will now look for a finite group F' of elements of SU(3) that permute colors.
We want the finite group to have 20 or somewhat more elements. Since there
are only 6 elements in the permutations of three objects, we will have more
than one representation of a permutation.

P. O. Ludl’s PhD thesis[30] lists the finite subgroups of SU(3). There is
only one that has around 20 elements and treats the colors equally, the oc-
tahedral group Sy with 24 elements. Given one representation of Sy we can
make another by making an SU(3) transformation. But we are interested in
finite groups that permute colors; this eliminates most SU(3) transformations
from consideration. The result is that there are exactly three representations
of S4 that permute colors. We now derive them.

Since Sy has 24 elements while the permutations on 3 objects has only
6, we must have that each permutation will have four representatives. They
will differ by phase so we can keep track of them by using a notation of the 3
object permutation with a subscript giving the complex phases. In addition, we
will distinguish the permutations of four objects (Sy) from the permutations
of three objects (S35) by putting a bar on top of the permutations on three
objects. See Figure 4.

The general SU(3) matrix that swaps green and blue is

a 0 0
(23)0p = 0o o0 g (47)
0 —a*p* 0
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where v and (8 are two phases. For example, the action of this element on ppg
is indeed pg:

a* 0 0 000\ fa 0 O 000
00-as|l000]|[0 0o B]=[010 (48)
08 0 001/ \0—-a*p*0 000

Squaring (23),,5 gives an SU(3) matrix that is the identity when acting on
PR, pc and pp:

- a? 0 0
23)25=0ap=| 0 —a* 0 (49)
0 0 —a*

The above is not the only representation of the identity (7). We also have the
identity matrix and considering the requirement that all colors are treated
equally we have two more representations of (7):

—a* 0 0 —a* 0 0
0 —a*0 |, 0 o> 0 |. (50)
0 0 o? 0 0 —a*

Altogether this gives four representations for (7). A multiplicity of four, applied
to all six permutations gives 24 distinct matrices. This implies that F' has 24
elements which is compatible with the minimum 20 we were looking for. These
four representatives of (7) need to be closed under multiplication (and also
distinct). This implies @ = 1 and the four representations of (7) are:

100 10 0 ~10 0 ~100
otol], fo-10 ], [o10], [0 -10]. (51)
001 00 —1 00-1 0 01

Putting oo = 1, and multiplying by the four representations of the identity, the
four versions of (23) are:

100 -1 0 0 ~100 10 0
008],(0o o -],0o08], |o0o-8]. (52
0—8*0 0 —8* 0 0 80 08* 0

Treating the colors equally gives four representations of (12):

0 B0 0 -8 0 080 0 —B0
00|, (=0 o), [sBoo], [s 00 (53)
0 01 0 0 -1 00-1 0 01

and four representations of (13):
0 08" 0 0 -8 008" 00 B
o10]. {o=101] [o1ro]), [o=10 (54)
—500 -5 0 0 80 0 B 0
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But we can compute (13) from (12) and (23). First multiply the representatives
of (12) and (23) together to give four representatives of (12)(23) = (123):

0 0 B2 0 0 —p2 0 0 -3 0 0 B2

-~ 0 0|, B0 O |, (=80 0], {(B°00],

0 —B* 0 0 —B8* 0 0 B8 0 080
(55)

Multiplying (123) by (12) gives (123)(12) = (13). The four representatives of
(13) are:

0 0032 0 0 —p 0 0—p32 0 0 B
0 10 |, 0o =10 |, (o100 ], o0-10
—/82* 0 _ﬁQ* 0 0 ﬂQ*O 0 62* 00

Comparing with Equation 54 and requiring that the colors be treated equally
leads to 82 = B* or 82 =1, so we have three solutions for :

By = exp(2igm/3), (57)

for g = 1, 2, 3. We will associate these three solutions with the three generations
of elementary fermions.

Examining the above equations involving 3, we see that it is a modification
of 3x3 matrices according to

a1 G12 013 ain Paiz Brais
B(| a1 az2 ass | ) — | frasr aze Pass |. (58)
as1 asz ass Bas1 B*asy ass

This is an SU(3) transformation:

aii aiz ai3 100 aii aiz ai3 100
B(| az1az a3 | ) = | 050 as1 G22 G23 080 ], (59
a3y asz ass 0023 a3y asz ass 00p"
given 3% = B*.

We’ve shown that the SU(3) color matrices that permute colors are three
copies of Sy. Later we will associate the three possibilities for $ with the three
generations of elementary fermions. For now, we will restrict to the g = 1
case. For this case, the SU(3) color permuting matrices are all real and can
be thought of as elements of SO(3). Choosing coordinates with z = R, y = G
and z = B, then the octahedral group S4 corresponds to permutations on the
paired corners of a cube while S3 is the permutations on the paired corners of
an octahedron. See Figure 4.
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(b)

Fig. 4: Orientation of the permutation groups Sy (a), and S5 (b), relative to
coordinate system. For example, the rotor (1 —~y'y3)/y/2 gives a rotation by
+90° about the y-axis. This rotation is the permutation (1243) in Sy, and is
one of the four rotations that give the (13) swap in S3. The other three S,
permutations corresponding to the (13) swap are (14), (23), and (1342).

3.2 Quarks and Leptons as F' = S, Particles

We saw in Section 2.5 that the particle content of a complex finite group
algebra can be read off of its character table. The character table for Sy:

O |E CQ Cg Cé C4
Sy () (ab)(cd) (abe)|(adb) (abed)

Size:| 1 3 8 6 6
Ay |1 +1 +1 |+1 41 |leptons
Ay |1 41 +1]-1 -1 (60)
E |2 +2 —-11]0 0 |dark matter
T |3 -1 0 |—-1 +1 |quarks
3 -1 0 |+1 -1

The top line of the above is the chemistry notation for the Octahedral group O.
There are five classes in the group {E, Cs, C3, C4, Cy}. The next line gives per-
mutation group Sy names for these classes, {( ), (ab)(cd), (abe), (ab), (abed)}.
The sizes of each class are given in the next line. For example, the (ab)(cd)
or Cy class has three elements: {(12)(34), (13)(24), (14)(23)}. The first three
of the classes, {( ), (ab)(cd), (abc)} are even permutations while the last two,
{(ad), (abed)} are odd and are separated by a vertical bar from the even permu-
tations. The relationship between these permutations and the 3 dimensional
rotations of SO(3) are given in Figure 4.
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The sums over each class are particularly important. The notation we will
use for them is:

{Or=10),
{(ab)(cd)} = (12)(34) + (13)(24) + (14)(23),
{(abc)} = (123) + (132) + ... + (243), (61)
{(ab)} = (12) + (13) + (14) + (23) + (24) + (34),
{(abed)} = (1234) + (1243) + ... + (1432).

These five form a basis for the center of the algebra, that is, the elements of
the algebra that commute with the entire algebra. The projection operators
for the five particle types use the sums over classes. These projection operators
commute with the entire algebra and so can be written as sums over complex
multiples of the class sums.

Par=( {0} + {(ab)(cd)} + {(abe)} + {(ab)} + {(abed)} )/24,
Paz = ( {0} + {(ab)(cd)} + {(abe)} — {(ab)} = {(abed)} )/24,
Pp = (4()} + 4{(ad)(cd)} — 2{(abc)} )/24, (62)
Pry = (9{()} — 3{(ab)(cd)} — 3{(ab)} + 3{(abcd)} )/24,
Pra = (9{()} — 3{(ab)(cd)} +3{(ab)} — 3{(abcd)} )/24.

These projection operators are idempotent, sum to unity and annihilate each
other, and they can be deduced from the character table. They are five of the
24 degrees of freedom of the block diagonal algebra version of Sy. The first two
projection operators are primitive and correspond to the leptons. The others
are an SU(2) doublet E and two SU(3) triplets 71, T5. In terms of defining the
So algebra in block diagonal form, it remains to specify the traceless parts of
the 2x2 and 3x3 blocks.

The traceless parts of the 2x2 block can be defined by operators that
correspond to the Pauli spin matrices:

P, = [2(12) — (13) — (14) — (23) — (24) + 2(34) — (1234)
—(1243) + 2(1324) — (1342) + 2(1423) — (1432) ]/12,

Ppy, = [(13) — (14) — (23) + (24) + (1234) — (1243)
—(1342) + (1432) ]/v/48,

Pp, = [—(123) + (132) + (124) — (142) — (134) + (143)
+(234) — (243) ]i/V/48.

(63)

The above square to the 2x2 block projection operator Pgr and they satisfy
the usual commutation relations for Pauli spin matrices. They are arbitrary
in that they can be changed by an SU(2) transformation:

Py — exp(—00,) P, exp(0oy,),
Py, — exp(—00,)Pg, exp(fo,), (64)
Pg, — exp(_aav)PEz exp(gav).

This rotation is about the real vector v = (vg, vy, v,) for an angle # The spin
matrix o, is for spin in the v direction so 0, = v, Prs + vy Pry + v, PE..
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Similarly, the Gell-Mann matrices can be used to define operators for trace-
less parts of the 77 and 75 matrices. The two T, cases differ only in the sign
of the odd permutations so we can combine them into a single set of eight
equations with upper signs for 77 and lower signs for T5:

Pyr = [F2(14) £2(23) + (123) + (132) — (124)
—(142) — (134) — (143) + (234) + (243)]/8,

Pypy = [(123) — (132) + (124) — (142) — (134) + (143)
—(234) + (243) 4+ 2(1243) F 2(1342)]i/8,

Pyps = [£(12) F (13) F (24) £ (34) £ (1234) F (1324)
F(1423) £ (1432) + 2(12)(34) — 2(13)(24)]/8,

Pyry = [£2(13) F2(24) + (123) + (132) — (124)
—(142) + (134) + (143) — (234) — (243)]/8,

Pyips = [—(123) + (132) — (124) + (142) — (134) (65)
+(143) — (234) + (243) F 2(1234) + 2(1432)]i/8,

Pyre = [£2(12) F2(34) + (123) + (132) + (124)
+(142) — (134) — (143) — (234) — (243)]/8,

Pyrr = [(123) — (132) — (124) + (142) — (134) + (143)
+(234) — (243) F 2(1324) + 2(1423)]i/8,

Pypg = [+£(12) + (13) F 2(14) F 2(23) £ (24) + (34)
F(1234) 4+ 2(1243) F (1324) 4+ 2(1342) F (1423)
F(1432) + 2(12)(34) + 2(13)(24) — 4(14)(23)]/v/192.

The above commute with the projection operators Pry or Pro and satisfy the
structure constant equations for the Gell-Mann matrices, i.e. [Pip;, Piri] =
2i f7*m P p,.. These traceless operators can be rotated by SU(3) transforma-
tions similar to the SU(2) transformation given in Equation 64.

The above 16 Pir, and 3 Pg, matrices give all the 19 traceless degrees
of freedom so together with the 5 projection operators P,, they are sufficient
to define any of the 24 elements of the block diagonal matrix algebra. Of
particular interest in the algebra are the diagonal pure density matrix states
py- For the leptons, these are P41 and Pay. Using + (—) signs for the A1 (A2),
the lepton pure states are:

pra =[()+ (ab)(cd) + (abe) £ (ab) £ (abed)]/24 (66)

For dark matter, the SU(2) up and down pure states are (Pg + Pg,)/2:

pEi—[() (ab)(cd)
+1((132) + (124) + (143) + (234)) (67)
+¢ﬁ1(( 23) + (142) + (134) + (243))]/12,

where w = exp(2i7/3). Each of the quarks has three diagonal pure states, the
red, green and blue. Like the lepton doublet, the quark doublet differs by the
signs of the odd permutations. Using the upper signs for 77, lower for T3, the
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quark pure density matrices are:

prer = [() + (12)(34) — (13)(24) — (14)(23)
£(12) £ (34) F (1324) F (1423)]/8

prec = [() — (12)(34) + (13)(24) — (14)(23) (68)
+(13) + (24) F (1234) F (1432)]/8,

prep = [() — (12)(34) — (13)(24) + (14)(23)
+(14) + (23) F (1243) F (1342)]/8

This defines the pure diagonal states for the Standard Model fermions in terms
of the permutations of Sy.

Young tableaux are often used for state vector symmetries. Linear super-
position allows one to describe any SU(j) j-plet state vector with just j states.
For example, spin-1/2 state vectors use two states as a basis, spin-up and
spin-down. Converted to density matrix language, these j states of SU(j) are
all on the diagonal. Accordingly, state vector analysis of quantum symmetry
tends to concentrate on just the diagonal states.

The usual Young tableaux uses different diagonal states, by an SU(3) trans-
formation, from the ones used here, but adding all the diagonal states for a
particle together, one obtains the same projection operators. For example,
adding SU(2) doublet spin-up to spin-down gives the projection operator for
SU(2). The projection operators are the same whether one uses Young tableaux
or the states given above. The particle projection operators written in Young
tableaux are:

1(2 1
PA1:7 Pas = ) PE:34+2§1a
(69)
12[ 13[ 14[
| M x ik v i M ic)
4 4 3 L= 2] <]

The S4 versions of the dark matter Young’s tableaux diagonal pure density
matrix states are:

= [O)+ 4] () + (123) + (132) — (12) - (13) — (23)]

A= O+ 2] [0+ GO~ 1)) - (24)], -
70
L= O = (1210 = GO O+ (13)] [ + (24)],
the Sy versions of the T7 Young’s tableaux states are:

1[2]

B = [0+ (D)0 + 130 + (143) - (13) - (14) - (30,

73]

2 = [0+ (9]0 + 120+ (12) = (12) = () - 0L (7

T

el

3]
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and the Sy versions of the T, Young’s tableaux are:

LBIAJ — 1) — (2)] [() + (134) + (143) + (13) + (14) + (39)].
LI — ) - @)1 [0 + (120) + (142) + (12) + (1) + 20)], (72)
II3] () = (4)) [() + (128) + (132) + (12) + (13) + (23))

The next section discusses the gauge group G.

4 The Standard Model Gauge Group G = SO(3)

In this section we explore the possibilities for the gauge group G. We begin
with the conclusion of the previous section: the finite subgroup of G is F' = Sy.
The two obvious candidates for G are SU(3) and SO(3). Our conclusion is that
SO(3) is the gauge group. We will write Sy using rotors made from gamma
matrices (we use signature -+++), but first we will look at the possibility that
G =8SU(3).

4.1 Why SU(2) or SO(3) instead of SU(3)?

In the previous section we showed that the only candidate for the finite sub-
group F'is Sy. A typical member of Sy is the matrix that swaps green and
blue:
1 0 0
0 0 B (73)
0-p*0
where 3% = 1. The above element, and a similar matrix for one of the other
two color swaps, generate F' so it is sufficient for us to examine this element.

For the case f = 1, we can write this as an exponential of a Lie algebra element
by

100 . (000
00 1) =exp(5 (00-i]) (74)
0-10 0i 0

and we see that this copy of Sy is in triplet SO(3) or SU(2). But general-
izing to cover all three generations requires SU(3). Using Equation 59, the
generalization to any § = (exp(2i7/3))" = w" is:

1 0 0 i 0 0 0
0 0 w'|= exp(i 0 0 —w"|]). (75)
0—-w™ 0 Oiw™ O

The above matrix is in SU(3) and not SO(3).
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The gauge group G is a Lie group so before we conclude that G is SU(3)
we need to look at the infinitesimal transformations. For the colored quarks,
F permutes the colors, so we look for the infinitesimal color transformations.
Reading off the infinitesimal color rotation for 5 = w™, from Equation 75 gives:

0 0 0
Sen=10 0 —iw | . (76)
Ow™ 0
The rotation matrices for the other two color rotations are:
0 Odw™ 0 —iw™0
Syn = 0 0 O , Sop=(w™ 0 0]. (77)
—w™0 0 0 0 0

We'’ve used S, notation as these matrices follow the rules for the su(2) spin-1
Lie algebra. For example:

[Seny Syn] = 1w S,y = iS.n. (78)

For any n, the three {Sun, Syn, S2n} are closed under commutation and form
a complete basis for a Lie algebra. By inspection this is the su(2) or so(3)
triplet.

So for any generation m, the appropriate gauge group for G is SU(2) or
SO(3). The argument for SU(3) requires transformations between generations.
But the generation transformation cannot be made infinitesimal. The red up
quark and the red charm quark are in the same superselection sector so we can
consider mixtures of them such as a|ug)+fS|cg) for o and 8 complex numbers.
But such mixtures are not particles (as the mass is not defined) and so cannot
be used as a path of pure density matrices that connects the generations. We
will pursue the assumption that G is SO(3) but we understand how another
researcher may wish to explore SU(3).

The Hilbert spaces for the SU(3) and SU(2) triplets are both 3-dimensional
so a complete basis for state vectors can be taken to be the same for the two.
The usual choice for SU(3) are the three colors, red, green and blue. These

1 0 0
BR)y=10]), 1G)={1], [B)={0]. (79)
0 0 1

When interpreted as SU(2) triplet states, the above three states are respec-
tively annihilated by Sgn, Syn, and S, and so are the SU(2) triplet states
for spin-0 in the =, y and z directions. Note that this is not the usual conven-
tion for a complete set of triplet states which would be eigenstates of S, with
eigenvalues {—1,0,+1}. Instead, we are taking a triplet su(2) subalgebra of
triplet su(3) that amounts to assigning:

Se =X, Sy =-Xs5, S.=X, (80)

where A, are the Gell-Mann matrices with the appropriate generation SU(3)
transformation.
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4.2 Gauge Symmetry and G = SO(3)

In the Standard Model the fields transform according to their representation
of the gauge symmetry SU(3)xSU(2)xU(1). If h is in this gauge symmetry a
gauge field A, has a global transformation of A — A;L = h A, h™'. Making
this global symmetry into a local symmetry requires an additional change:(8]

Al = hA, b — ;UL@Lh_U, (81)

where g is a coupling constant. But the Dirac operator is v*0,,, so when one
rotates the gamma matrices by v — h~! 4* h one expects to see a modifi-
cation of the above form, h 9, h~'. This suggests that the gauge symmetry
of the Standard Model arises from an SO(3) rotation of the spatial gamma
matrices: {v!,v2,v3}. Such a simple gauge symmetry is not possible for the
Standard Model but we saw in the previous section that it is compatible with
the assumption that G = SO(3).

With the previous section’s conclusion that F' = S, having G = SO(3)
becomes attractive in its simplicity. In addition, it provides a means of com-
bining the internal degrees of freedom we’ve been discussing so far (particle
identity and color) with the external degrees of freedom as those external de-
grees of freedom are defined using gamma matrices. This gives us a method
of describing all the features of the elementary fermions in the language of
gamma matrices.

4.3 Sy as a Finite Subgroup of SO(3)

So far, this paper has been treating only the internal degrees of freedom of the
quarks and leptons. Since the external degrees of freedom are described using
gamma matrices, it is attractive to write the internal symmetries using gamma
matrices. To do this one uses rotors, a convenient way of describing the Lie
group of rotations with gamma matrices. To simplify calculations, begin with
a real unit vector that defines the rotation axis v = (vg, vy, v,) and define a
gamma matrix pseudovector in that direction by

7Y = (et + vy 0y0) PR (82)

Then ¥ squares to -1. Multiplying it by a real rotation angle 6 gives a set of
pseudovectors that are a Lie algebra. Exponentiating gives an element of a Lie
group that is called a “rotor”. These rotate gamma matrix algebra elements
by 26 around the axis defined by v.

We'll use the notation r,(f) to denote these rotors. The formula for one is:

Ty (0) = exp(0v”) = cos(#) + sin(0)~". (83)

) ro(@) = ro(0 + ¢).
The inverse rotor is obtained by negating the angle: r; () = r,(—0).

Rotors for a given v are a 1-parameter Lie group so 7, (6
o (



Density matrices and the Standard Model 29

As a rotation example, let v = z = (0,0,1) so v* = 3 y142y3 = 4142

Then

7.(0) = cos(#) + sin(0)y'~?. (84)
For calculations, it is useful to know that 4° and 4® commute with r,(6). Also,
~' and 72 when commuted around 7, have the effect of negating the angle:
r.(—0) vt =41 r,(). The action of r,(f) on the four gamma matrices is:

ro(0)°] =21 (0) 70 ra(0) =70 v H(O)ro(0) = 7,

r ()] =71 (0) v ra(0) = 71 r2(0) m2(0) = cos(20)y! + sin(20)7?, (85)
()] =71 (0) v? ra(0) =2 rz(9) r+(0) = cos(20)* —sin(20)7",
r(0)[y’] = r>1(0) 73 (0) =72 1 (O0)r-(0) = 7.

so r,(0) rotates the 4! and 4? matrix axes by 26. The action of r,(f) is
identical to that of —r,(f) so the rotors are an SU(2) triplet double cover of
triplet SO(3).

Rotors give us another way of describing the 24 elements of S;. Each
of these rotors performs a distinct rotation to the three axes {+z, 4y, +z},
sending them to {£x,+y,+z}. We could label the rotations according to
this action. We can also consider the rotors as permuting the three objects
{%x,ty, £z} and this gives an Ss label to the rotations that is identical to
the permutations on the quark colors. The relationship between these descrip-
tions is given by the drawing of the axes in Figure 4. We list the 24 elements
of S4 by these four notations in Figure 5.

4.4 S, as a Crystal Point Symmetry

In 1826, Moritz Ludwig Frankenheim[2] showed that crystals could appear
in only 32 “crystal classes”. Equipment limitations of the day prevented the
detection of the microscopic internal details of crystals so his calculations were
motivated by observations of the external morphologies of crystals. The crystal
classes are also known as “point symmetries” or “point groups”.

In an analogy to the days of the early 19th century, present day equipment
limitations prevent us from observing the internal details of the Standard
Model fermions. And after 200 years we again attempt to describe what is
observed at long distances by extrapolating from a model of what we guess
happens at short distances. Today we call this concept “renormalization”. This
paper is concerned with the renormalization of particle identity so it’s not too
surprising that it reuses Frankenheim’s results.

The 32 crystal classes fall into 6 or 7 crystal systems depending on the
shape of their unit cell. In space-time we observe no preferred direction so the
only system possible is the Isometric or Cubic. Of the five isometric crystal
classes, only one is compatible with the observation that elementary fermions
are handed. It is the Gyroidal class, international notation 432, the symmetry
that Frankenheim called abwechselnde Hilfte® and that we call Sj.

3 As of 1977, the existence of gyroidal symmetry minerals was denied in mineralogy text-
book used by the present author,[11] but a few rare examples are mentioned in the literature.
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0) O +z+y+z Q) ,
(12) (12) —y-az-z (' +9%7)/V2
(13)  (23) —z+z+y (VP -0)/V2
(14)  (13) —z-y—= (v!7* =9*1)/V2
(23)  (13) +z—y+z (2 ++*°)/V2
(24) (23) —z—z—y (P +)/V2
(34) (ii) +y+x—2 (7173 - 7273)/\/5
(123) (123) —z+az—y L+~ +719% —4%93)/2
(132) (132) 4y—z—xz (1—~12 =193 +4243)/2
(124) (132) +y+z+z (1 =492 44193 —4243)/2
(142) (123) +z+az+y (L+992 =23 +4297)/2
(134) (123) +z—z—y (1—~'92 —419% —4%43)/2 (36)
(143) (132) —y—z+z (L+y'92+9"2 +9297)/2
(234) (132) —y+z—z (L+7'9° —7y19° —92%)/2
(243) (123) —z—a+4y (1—~4'2 47198 +4293)/2
(1234) (23) +x—=z+y (1+7°7°)/V2
8 S
1324) (12) —ydatz (1+72)/V2
(1342) (13) —z+y+a (1++'9%)/V2
(1423) (12) +y—=z+z (1-+9H)/V2
(1432) (23) 4z +z—y (1 —+24%)/V2
(12)(34) () —z-y+z (v'9?)
(13)(24) () +z-y—z (¥*7%)
(14)(23) () -—z+y—z (')

Fig. 5: The first column lists the 24 permutations of the F' = S, group. The
second column gives the corresponding Ss permutation. The third column
describes how the rotation acts on the coordinate axes. The fourth column
gives the rotor with a sign convention that the leading term is taken positive. A
sign convention is needed as the rotors form a double cover of Sy, for example,
the rotor for (12)(34) squares to -1. The swaps (ab) are 180 degree rotations
about axes with Miller indices like 110. The (abc) are 120 degree rotations
about 111 axes, the (abed) are 90 degree rotations about 100 axes, and the
(ab)(cd) rotations are 180 degrees about 100 axes.

Crystals typically grow at different rates in different directions. A direction
where a crystal grows particularly slowly forms a crystal face. These directions
are lattice planes for the crystal and are described by “Miller Indices”. Miller
indices are written as three small integers. Negative integers are written under
a bar. For example, 123 corresponds to the vector (1,2, —3). These vectors
are rotated by the 24 elements of S; to give equivalent crystal faces. For the
24 faces to be distinct we must have that the three integers are nonzero with
three different magnitudes, for example, 152.

Given a Miller index with no zeros or duplicate magnitudes, we can rewrite
it as a gamma matrix vector using !, 42 and 3. for example, 345 becomes
37! 4+ 4+% — 543. And then we can use the 24 S, rotors given in Figure 5 to
rotate that gamma matrix vector to get 24 gamma matrix vectors with Sy

Perhaps the nearest locality to the author is the De Lamar mine, Owyhee county, Idaho,
USA where a gold silver selenite, Fischesserite AgsAuSes appears as a small pink crystal.[4]
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symmetry. If we use these vectors to define the perpendicular vectors from
the origin to the 24 faces of a crystal we can draw a crystal with gyroidal
symmetry as this author did to draw the crystal illustrations in Figure 6.

If we begin with a vector that has two components the same magnitude or
zero elements, we will find that more than one rotation will rotate the vector
to the same new vector. The resulting crystal will have fewer faces and the
gyroidal symmetry will no longer be apparent. For example, beginning with
100 there will only be six different results corresponding to the six faces of a
cube.

4.5 Visualizing S, States

As was noted above, the Sy rotors have arbitrary signs so we expect them
to be more similar to the SU(2) triplet double cover than SO(3). Pursuing
this hand waving argument, we can group the S; pure density matrix states
into five SU(2) weak isospin doublets. The dark matter doublet has no odd
Sy permutations and is unbroken while the four visible matter doublets are
broken by odd S, permutations. Then we can associate dark matter with the
lowest spherical harmonic Y and visible matter with another copy of Y for
the leptons and the next three real spherical harmonics, {ps,py,p,} for the
three colors of quarks:

SU(Q): good broken
up: X' v UR e up (87)
down: Xi e dr da dp
Yoo=s| Yoo=s Yii=p. Yi1=py Yio=p:

Next we illustrate the S4 density matrix states by crystal drawings. This shows
the relation to the spherical harmonics.

In the previous section we associated the 24 Miller indices for a gyroidal
crystal with the 24 S, rotations. We designate an arbitrary face of the crystal
as (), and then apply rotations to the crystal to obtain the designations for
the other faces. For example, from Equation 68, taking the upper sign to be
the up quark, the red up quark is the pure density matrix:

pur = [() +(12)(34) — (13)(24) — (14)(23) + (12) + (34) — (1324) — (1423)]/8.

(83)
We therefore create a gyroidal crystal and put a 4+ on each of the (), (12)(34),
(12) and (34) faces, and a — on the (13)(24), (14)(23), (1324) and (1423)
faces. The remaining 16 faces receive a 0. Then we have the computer write
out ITEX for an illustration. See Figure 6.

5 Fermion States and External Symmetry

The previous sections have been about the symmetry of the citronen. We found
that its symmetry is G = SO(3) with a finite subgroup Sy. In this section we
move on to a model of the citronen itself.
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Fig. 6: Visualization of the S; quantum states by gyroidal crystal drawings.
MI: Miller indices for faces of gyroidal crystal. Ss: Faces labeled with permuta-
tions from S, symmetry group. v, e: Neutrino and electron coefficients, £1/24.
Xu, Xd: Dark matter SU(2) up and down coefficients, +1/12 or w/12 where
w = exp(2ir/3). ugr,ug, up,dr,dg,dp: Up and down quarks, red, green and
blue coefficients, £1/8. Coefficients are from Equations 66 through 68.

Quantum Field Theory (QFT) is required in problems where particles are
created or destroyed. This paper has used density matrices (quantum mechan-
ics) as the calculations are easier but this limits the subject to a situation
where the particle number does not change: propagators. The simplest gen-
eralization we can make of this situation is to consider the mass interaction
which relates the left and right handed parts of a single particle. In this situ-
ation the external symmetry of the particle changes but the particle number
(and identity) does not change. We will attack that problem in this section.

The idea of this paper has been to propose that the quarks and leptons are
composed of density matrices made from a citronen, an underlying quantum
state. Our first task in this section will be to propose a gamma matrix algebra
quantum state to model the citronen. Such a state has to support the Sy
symmetry calculations and will be the subject of our first subsection. In later
subsections we will consider how citronens can interact to produce mass. We
will be making a complicated density matrix out of simpler density matrices
with the interactions defined by the transition amplitudes between the 24 Sy
rotations that define a basis set. The result will be an S3 model of mass which
is compatible with the Koide quark and lepton mass equations.
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5.1 The Underlying G Gauge Quantum States

We've written F' = Sy in terms of a finite set of gamma matrix rotors in Figure
5. The complete Lie group of rotors includes boosts as well as rotations. These
act on the gamma matrices so it’s natural to seek the basic quantum states
among the gamma matrix algebra. Since the rotors act on the gamma matrix
algebra elements on both sides, the quantum states we seek are in density
matrix form. So we will look for a quantum state p ) among the gamma
matrix algebra. The symmetry Sy when applied to that state will give 24
different states. And those 24 states will be the basis for a 24-dimensional
Schwinger Measurement Algebra.

Any pure density matrix in a 4x4 matrix can be transformed by an SU(4)
transformation to a state p( ) that is diagonal with (1,0, 0,0), on the diagonal.
Such a transformation defines four diagonal states. We can use sums and
differences of these four states to get a set of three commuting matrices:

410 0 0 410 0 0
[ o+10 0 [o-10 0 3
A=l oo 10| B o o410 | =48 (89)
00 0 —1 00 0 —1

The above matrices each square to unity, are different, and any two multi-
ply to give the third. Any two of them form a Complete Set of Commuting
Observables (CSCO). The p(y state can be written as

p() = (1+A+B+C)/4=(1+4)/2(1+B)/2. (90)

The other three diagonal states are obtained by independently changing the
signs in (14 A)/2 (1 £ B)/2. If we are to use p( ) as the original pure density
matrix we will be rotating by Sy, we see that it has three parts that can have
direction, A, B and C.

To get a faithful algebraic representation of S4, we can’t have {A, B,C}
all oriented in the same direction. Such an arrangement would not give 24
different bases but instead would have the equivalent of 100 Miller indices and
there would be only 6 different elements in the basis. The smaller basis would
not give a faithful representation of Sy and so the character table would not
include the quarks.

If we begin with a primitive projection operator among the gamma ma-
trices, it seems plausible that we can use SO(3) to rotate away all the partial
angles and so be able to choose A, B and C' = AB from the sixteen products
of the four gamma matrices {y',v2,v3,4*}. These sixteen products of gamma
matrices either have no orientation or are oriented in the z, y, or z directions
as follows:

1 T Y z
1 ,71 72 ,73
~° y1q0 240 340 (91)
717273 ,YQ,YS ,yl,yS 7172
2.3.0 1.3.0 1.2.0

T e e RS e e S £ e N G B0
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We can’t use 1 which leaves 15 choices for A, B and C. Any of those 15
will commute with eight of the sixteen but those eight include 1 and itself.
Therefore there are 15 ways of choosing A and then 6 ways of choosing B.
This gives 90 possibilities but order of choosing doesn’t matter so there are
90/3! = 15 ways of picking a CSCO from the products of gamma matrices.
For each CSCO, there are four sign choices so there are a total of 60 different
pure density matrices derived from CSCOs.

Since 60 is not a multiple of 24, some of these pure density matrices have
less than the symmetry needed to be an element of a faithful basis for S4. In
fact, only one set has the right symmetry. The other 60 — 24 = 36 pure density
matrices are oriented in a single direction and so S; acting on them puts them
into bases of size 6. The seven cases are as follows:

A B C MI #CSCO #States
S e 7Y 321 6 24
~1 +iv?y® Fivly2y3 100 3 6
1 —iv2y3 —iyly243 100 3 6 (92)
V3 iy —i7® 100 3 6
230 23 +i70° 100 3 6
Y0 iy’ +iy'*y%0 100 3 6
Y0 =iy —iy'y?y?y0 100 3 6

The first line is the only faithful representative of Sy symmetry and it is the
one that we will use for the citronen. This chosen p( ) has A, B and C oriented
in the z, y and z directions, respectively. The remaining six cases have A
and B oriented in the x direction and C has no orientation. Since C has no
orientation, it cannot be rotated by S, to reverse its sign and consequently
these three pairs are split into six cases. The final pair are the right +iy!y2~34°
and left —iy'y2434° handed states. The #CSCO gives the number of complete
sets of commuting observables. For example, the line ', +iy2vy3, +iyla2+3
has three CSCOs, they are {v!, iv?y3, iv'293}, {v2, —ivty?, ivle?qy3),
and {73, iy!'y2, iv'y?y3}. These three sets of CSCOs define three orthogonal
bases so the states are equivalent to a complete set of mutually unbiased bases
for the Pauli algebra.

The bottom six cases in Equation 92 have their A and B parts oriented
in the same direction so rotors act on them as a 3-vector. Thus they have
two real degrees of freedom (Bloch sphere) and have the symmetry of SU(2)
spin-1/2 doublets. In contrast, the first case has three perpendicular vectors
and the rotors will rotate these with three real degrees of freedom. The final
pair of states are the left and right handed spin-1/2 states.

5.2 Geometric Phase and Mutually Unbiased Bases

The first several sections of this paper have been concerned only with the
symmetries of the propagators. We had stable particles that did not interact
so we could analyze them using density matrices rather than quantum field
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theory. Now that the previous subsection gives a proposal for the underlying
quantum states we can look at how those states interact.

The common method of giving interactions to elementary particles is by
creating a Lagrangian that is carefully crafted to have symmetries that are
compatible with the observations of experiments. Since we have a theory that
purports to explain the origin of the quarks and leptons we hope that the
interactions can be derived from the states.

In the usual quantum mechanics, one uses a CSCO to describe a set of
basis states. These basis states annihilate each other. For example, with spin-
1/2 the usual basis states are spin-up and spin-down. In density matrix form
these are:

ot =on = (g0 ) 1= == (1) @)

The above states have zero/one transition amplitudes. That is, (+z| | —z) = 0.
Therefore transition amplitudes cannot provide interesting particle interac-
tions in the usual quantum mechanics; hence the need for Lagrangians to
describe particle interactions.

The subgroup Sy is created by considering 90 degree rotations on SO(3).
If we instead applied 90 degree rotations to spin-1/2 SU(2) we would have
only six basis states corresponding to spin in the {+z,—z,+y,—y,+z, —2z}
directions. From the point of view of state vector quantum mechanics, this is
an “over complete” basis. That is, the basis for this Schwinger Measurement
Algebra includes six states:

pras=(1£02)/2, pry=01=%0y)/2, pr.=(1=%0.)/2, (94)

instead of the usual two. The six states come in three traditional bases, one
each oriented in the z, y and z directions. The transition amplitudes for states
from bases with the same orientation are the usual zero or one. What’s new are
the transitions between states with different orientation. These transitions tend
to have the same magnitude so the information content is in their geometric
phases which we will now discuss.

For a sequence x of pure density matrix states that begins and ends with
the same state, the transition amplitude o, is defined as the ratio of the
product state to the state at the beginning and end. For example, we define

Opgty—z—y+a DY
Apaty—z—y+z Ptz = P+a Pty P—z P—y Pta- (95)

The magnitude can be computed by noting that each 90 degree transition
contributes /1/2. For the above there are four transitions so the magnitude
will be (1/1/2)* = 1/4. If the sequence defines a path on the Bloch sphere
that carves out an area, the transition amplitude will pick up a complex phase
proportional to the area. The above path cuts out two octants, 111 and 111,
but in the negative direction so the area is —2/8 of the sphere. The sphere
has a total “geometric phase” area of 27 so that a spin-1/2 particle rotated
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through 360 degrees around a vector perpendicular to its initial spin direction
will trace a path that splits the Block sphere in two, and so picks up the
familiar fermion rotation factor of exp(2im (1/2)) = —1. Since the above +x +
y — z —y + x path cuts out —2 octants (or —2/8), the geometric phase will be
exp(2im (—2/8)) = —i and the amplitude will be (—#)(1/4) = —i/4 as can be
verified by multiplying out the states. Computing the amplitude using state
vectors we have

—i/4 = (+z[ + y)(+y| = 2) (=2 = y)(—y| + 2). (96)

Note that the above product is an observable; it includes a ket for every bra so
there is no arbitrary complex phase. This is why the density matrix amplitude
(trace) requires a path that begins and ends with the same state. A state
vector product such as (+z| + y) depends on arbitrary complex phases and
so only its magnitude is an observable. The state vector version amounts to
dividing both sides of Equation 95 by p1, = |+z) (+=z|.

The transition amplitudes between states of different orientation in Equa-
tion 94 are all the same \/1/72 so the transition probabilities are the square,
1/2. In quantum information theory, these three bases are “mutually unbiased
bases” or MUBs. Thus, in a certain sense, the meaning of F' = Sy is that, for
the underlying quantum states, “unbiased” implies something like “different
degrees of freedom”. For finite dimensions, mutually unbiased is equivalent to
being orthogonal in a metric induced by an inner product in a real Hilbert
space.[41, 3]

When one makes calculations by products of states chosen from mutu-
ally unbiased bases, the only information content is in the phases. George
Svetlichny noticed that this is also a feature of the Feynman path integral
and wrote an arXiv paper proposing that there is a relationship.[40] Jiri Tolar
and Goce Chadzitaskos confirmed the relationship by analyzing the short-time
propagator on a finite dimensional analogue of a free quantum particle.[43] The
central connection lies in the fact that two complementary observables are mu-
tually unbiased. If one has a state with a precisely known momentum then one
can know nothing of its position and vice versa.

The standard quantum mechanical example of complementary observables
are position and momentum. The relationship between their bases is the
Fourier transform. The Fourier transform works on situations with transla-
tional symmetry. The discrete Fourier transform has a similar form and ap-
plies to situations where there are a finite number of positions with discrete
translational symmetry. The corresponding relationship for rotational symme-
try are the spherical harmonics with the related finite symmetries being the
point groups such as the Sy used here.

5.3 Left and Right Handed States

The Standard Model fermions are split into left and right handed parts by the
handedness operator iy'y2734°. This operator commutes with rotors, both



Density matrices and the Standard Model 37

rotations and boost. What we will be doing is defining an alternative basis for
the Sy algebra. There will still be 24 elements but they will be left or right
handed, and we will lose the explicit S4 symmetry.

The left and right handed projection operators are:

R = (1+iy'*y%%)/2,

L= (1—iv'y*y*y%)/2. ®7)
These satisfy the usual equations for projection operators:
RR =R,
LL =1L, (98)
RL=LR=0.

We can rewrite any pure density matrix (or any gamma matrix algebra ele-
ment) four different ways with these handed projection operators. Define them
as follows:

prr =L pL,
pLr =L p R,
prL = Rp L, (99)
prr = R p R.

Since L + R = 1, the four p,, add up to give p:

P =pLL+ PLR + PRL + PRR- (100)

Applying the R and L operators to the 24 S, basis states gives 96 states but
these can be recombined.
We begin with the primary state:

pOy = 1+ (1 ++*7°) /4. (101)

Since y29° commutes with iy'y2v34Y, it also commutes with L and R. On the

other hand, 7! anticommutes with iv1v2y39° so /'L = Ry! and v'R = Ly
Using the above rules we can compute the four handedness portions of p ).
Since the Standard model particles are described in terms of handedness and

spin, we rearrange terms to get:

5)(1 + 271727370)/4,
(1- iy v273”y°)/4,

. 102
1- zy Y*7340) /4, (102)
1+ iy'y?y40) /4.

pOrr = (L+iv'y%)
pOyr = (L—iy'y?)
P( YRL = (v +i®)(

JLR = (71 - WS)(

The above equations could be interpreted as a way of rearranging the Sy basis.
For example, the first line pirp is oriented in the y direction so when Sy is
applied to it the 24 results will duplicate to leave only six different cases which
can be written as:

Sa(p(yrr) = {1 £ iv* y'2®) (1 + iy 24?40 4}, (103)
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where k = 1,2,3. Similarly for pyrr. The p( L r and p g would appear
to give 12 cases each but they can be combined in pairs by factoring a +i
out. For example, (y2 — iy!) is one of the transformations of (y! + iv3) but
(72 —iyt) = —i(y* +iv3). Thus Equation 102 defines a basis change from Sy
to a basis that is natural for computing handed interactions.

5.4 Weak Couplings and S3

In the previous subsection we split p(y into its left and right handed portions
and found that they split the 24 basis elements of the Sy states into four groups
{RR,LL,LR, RL} each with six bases. The p(ygr and p(.p parts are each
closed under multiplication and so form groups. As a 6 dimensional subalgebra
of the S4 complex finite group algebra we expect them to be S3 complex finite
group algebras.

Recall that in Subsection 3.1 we found that the color permuting SU(3)
subgroup consisted of S3 permutations. We used bar notations for these ele-
ment so that (23) stands for the swap of the 2nd and 3rd colors. When we
converted the Sy elements into rotors, we kept a column in Figure 5 giving
the S3 permutation corresponding to each rotation. Note that the even (odd)
permutations of S; correspond to even (odd) S5 permutations. The particle
definitions given in Equations 66 through 68 have the weak isospin doublet
elements distinguished by the signs of the odd permutations. This suggests
that in looking for a way of describing the weak quantum numbers with S5 we
should use the three odd S3 permutations to describe weak isospin.

With the standard definitions of weak hypercharge ¢ty and weak isospin t3,
electric charge is given by Q = t3/2 4 t3. To make this a bit simpler, we will
deal with t(/2 in our equations. With this change, the weak hypercharge and
weak isospin quantum numbers for the quarks and leptons particles are:

to/2  t3  Q=to/2+ts

VRl 0 0 0

dp| +1/6 —1/2 ~1/3

ur| +1/6  +1/2 +2/3

dg| =1/3 0 ~1/3 (104)
vi| —1/2  +1/2 0

er| —1/2 —1/2 ~1

ug| +2/3 0 +2/3

er| -1 0 ~1

Antiparticles negate the charges and reverse R with L. Accordingly, we’ve
listed the above in increasing |to/2|.

The natural S3 element to associate with ¢o/2 is the identity (7). So far
in this paper we’ve required our particles to have trace 1 but the Schwinger
Measurement Algebra allows any trace. Since the trace corresponds to the
probability of finding a particle, it’s necessary that a description of the propa-
gators restrict to trace 1. But here we are looking for an equation for coupling
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constants and this restriction disappears. The natural generalization is to lift
the requirement that the basis element have trace zero but retain the require-
ment that it be idempotent.

With these notes, we can associate two of the S3 central charges with weak
hypercharge and weak isospin:

% . (105)

Recall that the central charges are the basis for the algebra elements that
commute with all the algebra and so correspond to conserved quantities. Our
assignment uses only two of these central charges; the third appears related
to the baryon number.

The idempotency equation for Ss is obtained by defining an arbitrary ele-
ment of the complex group algebra of Ss:

a = ar) () +amz)(12)+ags) (13) + a3 (23) +aas) (123) +a(132) (132), (106)

then simplifying o = o? by using the S3 group multiplication rule, then break-
ing the single equation into six according to the S3 basis. This gives a set of six
coupled quadratic equations in the six unknowns. The «, are simply complex
numbers and so one can collect terms in the six equations to obtain:

ae) = af,) + 200123)0(139) + gy + Aliz) + O3,
(123) = 20()(123) + O‘zﬁ’) + z)23) + a(23)0(13) T ¥(13)X(12)
asz) = 200sy T ) T Aan@s) T @) taanea, 1oy
Q(13) = 20(13) + O(123)0(13) T Q(123)(23) T Q(132)(13) T Q(132)(23)>
Q(i3) = 20q13) T (123)0(12) T (123)0(23) T ¥(132)Q(12) T ¥(132)Q(23),
Q(33) = 20¢(33) T O(123)0(13) T Q(123)(12) T Q(132)(13) T O(132)Q(12)-

The above six equations are fairly difficult to solve; the solutions include eight
2-manifolds. Fortunately we can simplify by putting a(i3) = a23) = a(13) =
t3/3. This reduces to four equation:

Qe = a%) + 20733)(133) + 313,
(i) = 200)0125) + g + 305, (108)
a(13z) = 20)0(132) + A3, + 313,
t3 = 20tz + 2(123) + (132) )13

Writing ¢9/2 for o), we get solutions for the left and right handed fermions
along with a few extra solutions. Six of the extra solutions are different choices
for o133y and o133, which we will ignore. The other two extra solutions are
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sums of pairs of other solutions:

to/2 13 a123)  (132)
vr, 0 0 0 0
d, | 1/6 —1/2| 1/6 1/6
up |16 +1/2 | 1/6 1/6
d, |13 o0 1/3 1/3

vr | 172 —1/2| —i/V12 +i/V12 (109)
er | 1/2 +1/2 | —i/V12 +i/V12

ur | 2/3 0 ~-1/3  —1/3
er 1 0 0 0
ur+dg| 5/6 —1/2 | —1/6  —1/6
ur+ur| 5/6 +1/2| —1/6  —1/6

Thus the weak quantum numbers are idempotents of the S3 symmetry of the
handed Sy states. This provides hope that the weak force could be put into
density matrix form where the coupling constants are coefficients for an Ss
symimetry.

5.5 Quark and Lepton Masses

Penrose’s Zig-Zag model of the electron has a mass interaction that is par-
ticularly simple.[33] The left and right handed portions of the same particle
interact with a coupling constant m. The interaction converts a right handed
er, EeER €er, €R .
propagator to a left handed one and back: - - - -—>—e—>—o -+ In this
chain, the left and right projection operators would annihilate each other but
the Dirac wave function assigns ¢ = 1170 so we get a factor of 4% between
the left and right handed projection operators. Writing py, and pr for the left
and right handed propagators the mass interaction becomes:

- pr (my°) pr (m°) pr. (M) pr -+ (110)

Since L1 R = R 1 L = 0, we can replace (m~°) in the above with (2m(1 +
7%)/2). This has the advantage that (1+~")/2 is a projection operator which
we will write P;:

P = (14+17%)/2. (111)
And since P, = P; P, we get:
2m(1++%)/2) = (V2mP,) (V2mP,). (112)
Replacing m~A" with this lets us rewrite the mass chain as:

- (V2mPippV2mP,) (V2mP,prv2mP;) -+ or

113
- 2mPpr P) 2m P, pr Py) -+ (113)

So each propagator has associated with it a coupling factor of 2m.
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Since Y is an eigenvector of P, with eigenvalue 1, the operator P, will
take every 70 in py, or pg and turn it into unity. So we need consider only the
spatial gamma matrices when solving for py, and pr. And each is composed of
a projection operator (1 4 iy'y2734%)/2 so they correspond to the 6th or 7th
cases listed in Equation 92. The remaining commuting observables are '~
or +iv2~3 and their S, rotations. We will use the +iv2+? as they are a copy
of the Pauli matrices according to:

or = +iy?y, o, = -y, o, = +iv'yt (114)
So the over-complete set of states are:
(1 +iv*y%)/2, (1 +iv'4%)/2, (L +iv'y?)/2. (115)

Since these use only the spatial gamma matrices, we can label them according
to Miller indices:

proo = (L4 iv*7*)/2, poro = (1 —iv'7*)/2, poor = (1 +iv'y?)/2,

: ; ; 116
pio0 = (1 —iv*7*)/2, poio = (1 +v'9%)/2, poor = (1 —iv'y?)/2. (116)

Next we use these six projection operators to create a density matrix model
of the electron mass.

The six projection operators of Equation 116 will be the diagonal states
of our density matrix. The off diagonal elements of a density matrix act as
raising and lowering operators. For example:

(0) = (30) (2) ar

With the six states on the diagonal, there will be 30 off diagonal degrees of
freedom corresponding to the products of different projection operators. Since
we have an over-complete basis, most of our off diagonal matrix elements can
be defined by products of the six diagonal states. The six that cannot are
annihilating products like pi100 p1g9 = 0. So our matrix will be missing 6
complex degrees of freedom which leaves 36 — 6 = 30.

The off diagonal matrix positions are products such as pigopgoi. To save
space we will abbreviate these with Miller indices. The left p will take a 1 while
the right will take a 2 so that p100pgo7 = p103- Each of these will be a basis
state in a basis for a Schwinger measurement algebra. For an algebra we need
a rule for multiplication. What we are doing here is quantum field theory in
density matrix form; that means our multiplication is actually concatenation
of Feynman diagrams. The diagonal elements are propagators while the off
diagonal elements are gauge boson interactions that annihilate a propagator
and create a replacement for it. Thus we only consider products where the
propagators match. For example, pg12 p201 can be multiplied because the sec-
ond projection of pg12 and the first projection of pag; are both (1+0,)/2. This
rule turns our algebra into a sort of matrix algebra. The difference is that if
two matrix elements are both off diagonal, their product will be multiplied



42 C. A. Brannen

by a complex coefficient consisting of a transition magnitude and a geometric
phase.

The diagonal matrix elements are Schwinger’s “elementary selective mea-
surements” that he denotes by M (a’), while the off diagonal matrix elements
are related to the “most general selective measurement(s)” he denotes by
M(a’,b"). Here o/ and V' are possible measurements of the physical quanti-
ties A and B respectively.[35] In our case, A and B for example, are o, and
0z. Schwinger avoids dealing with geometric phase by simplified multiplica-
tion relations for his M(a’,b’). His measurement symbols satisfy:

M@ty M(V',a") = M(a',a") = M(a). (118)

In our case we keep the phase and amplitude information in the off diagonal
elements so that, with M (a’) ~ pgo1 and M (b") ~ p1go we have

(poo1p100) (Proopoo1) = (v/1/2)*(poo1) (119)

as the product contains two ninety degree transitions or as can be verified by
using the Pauli spin matrices. The difference here is the result of our assuming
that it is the finite subgroup F' that defines a complete set of observables.
To get an algebra that fits into Schwinger’s assumptions, we would need F
to have size 2 and arrange for spin-up to be rotated only to spin-down. Since
those states annihilate each other, our method of defining the off diagonal
basis elements would fail and we would have to use Schwinger’s method.

Products of the p;x; can be computed by using the geometric phase method
given in Section 5.2. For example:

1+0y)/2(1+40.)/2(140,)=0+10)/2(1+0y)/2(1+0)/2,
(I4+0y)/2(1—0.)/2(1+0,)=(1-14)/2(1+0y)/2(1+0,)/2.

Alternatively, one could replace the central ¢, with —ioy0o, and use o, (1 +
0:)/2 = (1+ 0,)/2 and similarly for o,. This gives the product rules:

(120)

po12p201 = (1 —1%)/2 pa1o, (121)
Po12P201 = (1414)/2 p21o-

The calculation can also be done with bras and kets as (+y| + 2)(+z| + z) =
(1 —1)/2 (+y| + z). Off diagonal products that give a diagonal element will
pick up a factor of 1/2:

poi2 po21 = 1/2 poio. (122)

With bras and kets, the 1/2 factor is given by (+y| + 2){+z| +y) = 1/2.
We can write the collection of a;xipjr as a matrix:

&100P100 0 1200120 ®130P120 ¢1020102 X102P102
0 a100P100 120PT20 X120P120 XT02PT02 X102P102
P = Q2100210 32100210 ¥010P010 0 Q0120012 ¢13P012 (123)
“ Q2700210 2100210 0 Qp10P010 C012P012 C012P012
201201 301P201 ¢021P021 Cp321P021 C001L001 0
Q201P201 ¥201P201 X021P021 *021P021 0 &001Po01
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and the equation we will be solving is

Pa Pa = Pas (124)

with the off diagonal products of p;i; reducing to complex coefficients. This
is 30 quadratic equations, each with 4 or 5 non-zero complex coefficients,
written in 30 unknown complex numbers. Symmetry considerations simplify
it considerably.

As a start, we write out the quadratic equation for asi;g. We begin by
taking the pa19 part of the equation p, = p, po and obtain:

2100210 = (210P210%¥100£100 T Q010P010Q2100210
Q0120012201201 + Q1200120201 P201 5 (125)
= (a2100100)(P210P100) + (Q0100210)(P010P210)
(a01200201) (Po12201) + (913%201) (P012P201)-

Referring to Equation 116 and Equation 121 we reduce the p;; products as:

P2100100 = (P010P100) (P100)7

= P010P100 = 0210,

£010P210 i (po10) (Po10p100)s B (126)
= P010P100 = - P210

po12p201 = (po10poo1)(poo1p100) = 6_2"”/8\/ 1/2 paio,

P013P201 = et27/8, /172 paso.

All the terms in the above are complex multiples of ps19 so we factor them
out to obtain the quadratic equation for asig. With the geometric phases
exp(£2im/8) and transition magnitudes y/1/2, we have:

Q210 = Q2100100 + Q2100010

+e= 28\ [1/2 agraanor + e 2/E /172 agizagr.

Repeating the process for p1g9 we get the quadratic equation for aqgg as:

(127)

a100 = (@100)? + (v/1/2)% 2100120 + (1/1/2)? 1000130

128
+(v/1/2)%az010102 + (v/1/2)*asg1 103 (128)

The off diagonal terms in the above equation are associated with factors of
\/m and if we multiply Equation 127 by \/m, all its off diagonal terms will
also have a factor of 1/1/2 and so the \/1/2s can be removed. Removing the
geometric phases exp(42i7/8) is our next task.

Our objective is to define matrix coefficients 3;1; that differ from the o
by complex ratios that take the p;r; products into account. Then the §;i; can
be assembled into matrices that use regular matrix multiplication (except for
the entries that have to be zero). The factors of \/m can be removed by
writing Bjr = \/m ajiy for the off diagonal elements, but we also want to
get rid of the geometric phases so our transformation will have a phase ¢;x;:

Bikt = V/1/2exp(id;ri) ajp  (off diagonal entries) (129)
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If we were doing the calculation using bras and kets our problem would be
solved by choosing an arbitrary phase for each state. With density matrices,
we can choose all the phases in a consistent manner by selecting a “fictitious
null state” or vacuum state. We will use:

pin = (1+ (05 + 0y +02)/V3)/2. (130)

Now the geometric phase contributed by a segment such as p210 = p100 Po10
will be the geometric phase of a path that begins at 111 goes to 010 then 100
and finally back to 111. Reading the path right to left, the geometric phase of
p210 can be calculated using bras and kets by:

Phase(p210) = Phase((111| + y)(+y| + x)(+x[111)). (131)

Each bra appears with a ket so that the arbitrary complex phases cancel.

To compute ¢o19 using geometric phases, note that the 111 octant is sur-
rounded by a closed path consisting of three segments: ¢219, ¢102, Po21- The
path goes in the negative direction around the octant so the geometric phase
for the path is exp(—2i7/8). By symmetry, each segment contributes equally
so they each represent a phase exp(—2in/24) and we have:

B210 = \/1/2 exp(—2im/24) aa19 and cyclic permutations. (132)

Similarly, the three segments on the opposite side of the cube, ¢51¢,0703,0031,
make a closed path, but it is in the positive direction and it encloses 7 octants
instead of one so their transformation is:

Ba1o0 = V'1/2 exp(+2im 7/24) as1g and cyclic permutations. (133)

The remaining six segments pass between the 111 and 111 octants. They form
a closed path that encloses four octants. In the positive direction, the path
segments are pi03,0021,0310,0702, Lo31,P210- S0 the transformation is:

Broz = /1/2 exp(+2im 4/24) a2,

134
021 = \/1/2 exp(+2im 4/24) ayo7, and cyclic permutations, (134)

This defines the conversions for half of the 24 off diagonal 8;x;. The remaining
12 are these reversed so that 1 is swapped with 2. For example p;o3 and py7 are
the same segment in reverse. The reversed paths have their geometric phases
negated. And the diagonal 5 are the same as the diagonal a.

With these definitions, the quadratic equations for /3;5; correspond to the
algebra defined by complex matrix multiplication for a 6 x 6 matrix with 30
non-zero entries:

6100 ﬂlQO 61?0 5102 610?
Bioo Bi20 Bizo0 Bioz2 Bioz
ps = B210 Ba10 Boto Bo12 Bo12
Ba10 Ba1o Boto Boiz Boiz
/8201 /3201 5021 /BOQI Bom
Bao1 Bzo1 Po21 Bozt Boot

(135)
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We're interested in the pure density matrices supported by the algebra de-
fined by B;; multiplication. This is not an algebra over a finite group so we
can’t read off the particle content by looking at a character table. Instead, we
can use the method described in Subsection 2.4, that is, begin with random
mixed density matrices near the high temperature limit (the unit matrix) and
repeatedly squaring them and renormalizing them to keep the trace 1 until
they are approximately a pure density matrix. This procedure is straightfor-
ward, but for a lot of algebras, on completing it one frequently ends up with a
dog’s dinner that is difficult to organize. Fortunately, in the case of the above
algebra, a random matrix quickly converges to a result that has obvious SU(3)
symmetry. For example, cooling this high temperature matrix:

AT2 644 + 4600 —.170 + .312i —.453 + .832i —.147 + .462i
—.193  —.436 — .523i —.758 + .059i —.676 + .120i .769 + .070i
1| 644 .d60i 43645231 926 238+ .530i 690 — .509i (136)
& 00 | —.170 — .312i —.758 — 059 878 142 .028i 272+ 221
— 453 — 8320 —.676 — .120i .238 —.530i .142+.028i  —.494
—.147 — 462i 769 — .070i 690+ .599i 272 — 221i 619
one obtains
.334 256 +.373¢ 0 0O .102+ .0833
0 0 0 O 0
256 —.3731 0 .615 0 .171 —.050¢
Pr=0 = 0 0 0 0 0 (137)
0 0 0 0 0
102 —-.083¢ 0 .1714+.050¢ O .052

The above matrix is nonzero on three rows and columns, those corresponding
to 100 = 4=z, 010 = 4y and 001 = —z so the pure density matrix is restricted
to the 111 octant. The result is generic in that all the results one obtains
this way are nonzero on only one of the eight octants. By restricting itself to
just three rows and columns, the result is able to avoid any of the six missing
matrix spots. This is the largest n x n matrix one can fit into the 6 x 6, while
avoiding one of the blank entries.

Since the pure density matrices of ;i all live on a single octant, we will
specialize to the 111 octant. The symmetry of the electron and neutrino given
in Figure 6 in Subsection 4.5 indicates that we should have all the off diagonal
entries identical (subject to hermiticity) so a general solution for the electron
or neutrino needs to be an idempotent unit trace 3 x 3 matrix of form:

B1oo Bi20 Bioz 1/3 a a*
pa = | Ba1o Boro Borz | = [ a* 1/3 a (138)
B201 Boz21 Boo a a* 1/3

where a is a complex constant. Solving for p2 = p, we have three possibilities
for a: {1/3, exp(+2in/3)/3, exp(—2imw/3)/3). The three cases can be combined
as powers of exp(2im/3) as:

1 1 exp(+2igm/3) exp(—2ign/3)
pg =7 | exp(—2ign/3) 1 exp(+2igm/3) (139)
exp(+2igm/3) exp(—2igm/3) 1
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where g = 1,2,3. The above three solutions are the same three cases for Sy
that we associated with the three generations in Equation 57. Recall that when
considering any single generation, F' was a finite subgroup of G = SO(3) but
requiring all three generations to appear in the same G meant that we had to
have G = SU(3). The above makes it clear that the generation structure is the
same for all three generations except the different generations allow a relative
phase between the +z, +y and +z axes.

There is another way of obtaining Equation 139. One can begin with the
three pure states p1gg, po1o and poo1, along with their six products, and com-
pute all possible path integrals over them, looking for what is stable in the long
term. This is somewhat more involved than the method shown here but the re-
sult is the same and in 2010, the author published the result in this journal.[7]
The present paper is about the Standard Model fermions losing the stability
of their identity at high temperature, the 2010 paper was about fermions los-
ing their spin-1/2 stability at high temperature. The paper resulted in new
equations relating lepton masses. Since then, the subject has been extended
by other authors as we describe in the next subsection.

5.6 Koide Mass Equations

In 1982 Yoshio Koide published papers[25,26] with a model of the charged
leptons masses that gave the formula:

2
Mme +my +m, = g(\/me +/m, + Vs )2 (140)

The charged lepton masses have three real degrees of freedom. The above for-
mula removes one of them. At the time the prediction was off by two standard
deviations but later corrections to the 7 mass brought the error to near zero.
At this time, the Particle Data Group[32] gives the electron, muon and tau
masses (MeV) as:

me = 0.5109989461(31),

m,, = 105.6583745(24), (141)

m, = 1776.86(12)

So the latest experimental value for the 2/3 fraction is 0.6666605(70). As far
as mass formulas go, the accuracy has attracted some attention. We will stick
to papers that are connected to this narrative; the literature is far richer than
what we cite.

Koide wrote a 2005 conference proceeding [27] which describes three mys-
teries of the formula: (a) It’s about squared root masses. (b) It’s invariant
under exchange of masses. (¢) It’s satisfied at low energy scales but not at
high, due to renormalization group equation effects. The usual assumption
is that masses come from Yukawa couplings which wouldn’t naturally give a
square root mass formula. But energy is proportional to the square of mo-
mentum and so a formula that gives the square root of mass is natural when
that mass comes about from relativity. Koide notes that the invariance under
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exchange of masses suggests an S3 symmetry and this is compatible with our
model. Finally, this paper’s approach to unification at high temperature is
to use the mixed density matrix model. In this model the particles are most
distinct in the low temperature limit so this is the only temperature where a
mass formula can be exact.

The matrix solution for p, given in Equation 139 is circulant. That is, the
top row of the matrix appears two more times in the next two rows, but shifted
by 1 and 2 places to the right. So the top row contains all the information.
Leaving off the overall factor of 1/3 that row is:

(B100, B120, Bro2) = (1, exp(+2ign/3) , exp(—2ign/3) ). (142)

These [ were the result of eliminating the geometric phases and transition
probability information present in the « coefficients. Reversing Equation 132,
the values for the « are:

(0410070412Oa04102) (143)
= (1, V2exp(4+2im(4g — 1)/12) , V2exp(—2im(4g — 1)/12) ).

The three o, components above are coefficients on the three p;z;:

(P100s P120, P102) = (1 +02)/2, (1 +04) (L +0y) /4, (1 +02)(1 +02)/4). (144)

Mass has no orientation so we’re interested in the scalar part s, of this vector:
(5100,8120,8102) = (1/2,1/4, 1/4) (145)

Combining the above with Equation 143 and summing over the terms we
presumably have something that is proportional to the square root of the
mass:
Vg = (1/2)(1) + (1/4) (V2 exp(+2im(4g — 1)/12))
+ (1/4)(VZexp(~2im(4g — 1)/12)), (146)
=1/2 4 /1/2cos(2n(4g — 1)/12).

In computing sums of ,/m4 and mg, two trigonometry identities are useful:

Zé 1 cos(2mg/3+46) =0,
291 cos®(2mg/3 4 6) = 3/2,

(147)

where ¢ is any real number. Summing up the ,/m, and their squares my, we
have:

(Vs + vimg + i) = (1/2) + (1/2) + (U2)?=9/4 0
my 4+ mg + mg 3(1/2)% 4+ (3/2)(\/1/2)* = 3/2.

The good news is that these three masses satisfy the Koide relation:

2
mq +m2—|—m3:g(,/ml—i—\/mg—i—\/mg)z. (149)
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The bad news is that the three square root masses are not proportional to the
square root masses of the charged leptons. In addition, one of them is negative:

Vit =1/2 4 \/1/2cos(2r/3 — 27 /12) & +0.500,
Vg = 1/2+ /1/2cos(47/3 — 21/12) ~ —0.112, (150)
Vs =1/2 4 /1/2cos(6m/3 — 27/12) =~ +1.112.

Of course if these equations did give the charged lepton masses it would be
an improvement on the Koide equation in that it removes a second degree of
freedom.

The trig relations in Equation 147 give some hope as they show that “ad-
justing” the phase J might move the masses around enough to match the
charged leptons. In 2006 this author found that the charged lepton masses
were accurately described when one replaces the —27/12 of Equation 146
with 2/9. In 2010 the result was published in this journal [7] as

Vg = 17716VeV (1 + V2 cos(2gm/3 +2/9)), (151)

accurate to O(1075). The neutrino masses are not well measured but neutrino
oscillations give the differences between the squares of their masses. The same
2010 paper found that the neutrino data could be fit to the Koide equation
with masses

VMg = 0.1000(26)VeV (1 + v2cos(2g7/3 + 7/12 + 2/9)), (152)

one of which has a negative square root. Thus the charged and neutral lepton
mass equations both take the curious angle 2/9 but only the neutrinos need
the expected geometric angle 7/12. Perhaps the difference has to do with the
neutrinos having a simpler symmetry as illustrated in Figure 6.

The puzzle over the 2/9 angle was made deeper by two papers[47,48] by
Piotr Zenczykowski in 2012 and 2013. He parameterized masses by generation
using a formula

Vg = /My(1+ V2 ky cos(2gm/3 + d,)) (153)

where M, k, and d, are three real numbers. This parameterization is useful
in that Koide’s equation follows from k, = 1. He applied the parameterization
to the up quarks {u,c,t} and to the down quarks {d, s,b}. He found that the
up quarks required a § value very close to 1/3 of the 2/9 used by the charged
leptons and the down quarks needed 2/3 of 2/9. This removes a degree of
freedom from the up and down quark masses. Bringing all the fermion mass
parameterizations together we have, to close approximation:

vg = VM, (1++/21 cos(2gm/3 + 6/27 + 27/12)),
VM, (14 /21 cos(2g7/3 4+ 6/27)),

VMy(14+ V2 kg cos(2gm/3 +4/27)),

VM, (142 k, cos(2gm/3 +2/27)).

(154)
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If we can find a derivation for the multiples of 2/27, this will reduce the 12
fermion mass degrees of freedom to six.

In Equation 154, only the neutrino has the geometric phase 7/12. Two
explanations for this come to mind. Only the neutrino has a character table
entry of all 1s. The other particles are orthogonal to this entry so perhaps that
implies that their geometric phases are zero. Alternatively, the mass scale for
the neutrinos are much smaller than the others so perhaps all of them have a
geometric phase but it is too small to be noticed in the other particles. This
could explain some deviations from exact match in the charged lepton masses.

Two unspecified parameters in Equation 154 are k, and kg. The corre-
sponding values for the electron and neutrino equations indicate that the Koide
equation is satisfied. Instead, the quark values are approximately: [47]

ky = 1.29,

kq = 1.12. (155)

The present paper finds the k. and &, values from the ratio of the scalar parts
of the off diagonal to diagonal values of the a;y;s. The calculation given in this
subsection was apparently sufficient for the leptons; perhaps expanding it to
the quarks would fix these parameters.

The different values of 6/27, 4/27 and 2/27 are mysterious in that they are
not the angles one usually feeds to the cosine function. The cosine came from
the sum of two exponentials. Quantum field theory, in dealing with infrared
divergences in gauge boson interactions can put charges into exponents. When
m virtual photons are considered with charge ¢ and a symmetry factor of 1/m!,
one gets X¢™ /m! = exp(q). Also the signs are not determined. If it is a charge,
one supposes that it is a central charge for an algebra. It is not proportional
to electric charge as the up quark takes the 1/3 of the electron value of 2/9
while the down quark takes 2/3.

The last four free parameters in Equation 154 are the masses:

M, = 0.0098, (eV)
M, = 3.14 x 108,
My = 6.75 x 108,
M, = 2.05 x 101,

(156)

The presence of factors of 1/27 in the phases suggests that the fundamental
charges are 1/3. One can get large ratios by using symmetry to cancel low
power contributions to an amplitude calculation so it’s interesting that the
ratio /M, /v/M, is only a few percent different from (1/3)!!. Three more
powers of 3 separate /M, from \/M,. This paper has been primarily directed
to the symmetries of the stable states; to calculate these factors may require
working out the Feynman diagrams.
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6 Discussion

We discuss the advantages of this theory, the problems with the theory, the
problems with this paper in particular, and directions in which this work might
be extended.

6.1 Advantages of Theory

Ignoring generations, the Standard Model fermions use six representations of
the SU(3)xSU(2)xU(1) symmetry. For example, the left-handed electron and
left-handed electron neutrino are an SU(3) singlet, SU(2) doublet and a U(1)
singlet. Of course the authors of the Standard Model had an infinite number
of alternative choices for the symmetry and for any choice of symmetry there
were then an infinite number of choices for the representations. Experiment
determined which of these to use. This paper unites the symmetry, represen-
tation, generation structure, symmetry breaking and gauge structure of the
Standard Model. It provides a hope that many of the experimentally deter-
mined parameters of the Standard Model can be calculated from theory.

Grand Unified theories assume that the symmetry of the Standard Model
arises as a result of the breaking of another symmetry. To the people who have
been working on it for years, this must seem normal but this is not the usual
use of symmetry. One normally begins with a model of a system and from that
model one derives a set of equations. Solving the equations is eased by noticing
that they possess a symmetry. But the underlying object is not assumed to be
a symmetry; it’s an object that has a symmetry. An advantage of this paper
is that it returns to the traditional use of symmetry as a mathematical tool
instead of a physical reality.

A problem with symmetry is that it is difficult to use it to calculate the
relative parameters of objects in different representations. For example, the
spin-1/2 of the electron, along with the spherical harmonics, will give a great
deal of information about the excited states of a hydrogen atom. But the sym-
metry cannot specify the 1/r2 potential which is necessary for Schroedinger’s
equation and emission spectrum. This paper proposes a model for the objects
that possess the symmetry and so we can hope that it will allow calculations
beyond those of theories limited by symmetry.

Preon models of the Standard Model fermions assume that they are com-
posite. The oldest of these is the 1979 Rishon model independently proposed
by Haim Harari[19] and Michael Shupe[39]. The problem with preons is that a
composite particle has a size and scattering experiments show the quarks and
leptons are smaller than 108 meters. Preons would have to be smaller yet,
but this implies that their binding force must cancel their mass-energy almost
exactly. In this theory the elementary particles are linear superpositions and so
are naturally point-like. Instead, what we are doing in this paper is proposing
a symmetric basis for the Standard Model fermions. In the new basis there
are 24 particles with F' = Sy symmetry, all subject to the gauge symmetry
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G = SO(3). The difficulty is that the basis is in density matrix theory and
cannot easily be put into the usual state vector form.

6.2 Problems with this Theory

This theory is written in a variation of quantum mechanics. A variation like
this has consequences all over physics. The author’s claim is that the methods
used here can also be described using quantum field theory and perhaps that
would eliminate the need to show that it is self consistent, but this claim has
not been shown.

Quantum mechanics is a big subject that is deeply interwoven so there
must be many points where changing its assumptions will create problems.
As an example, if measurements of spin-1/2 particles can give six possible
results {4z, +y,+z} instead of the traditional two {£z}, then the counting
of spin-1/2 states has to be modified and this has consequences in quantum
statistics. The claim of this paper is that such results only appear at near
Planck temperatures and integrate out naturally at low temperatures.[7] We
will discuss this again, later in this section.

This paper spends most of its effort on what appears to be a derivation of
the symmetry of the Standard Model. It has been designed so that it seems
that ' = Sy is the natural consequence of assuming a gauge group G with
finite subgroup F'. This is not at all how the research proceeded. The author
spent a lot of effort trying hundreds of density matrix ideas with the idea
that “if you dig enough holes eventually you’ll find gold”, no deep thinking
required. So the paper has been made to appear as if it were intelligently
thought out as the only possible consequence of a simple assumption. This is
not so, it’s essentially the result of a random walk through ideas related to
density matrices. Once one finds a coincidence it’s easy enough to rationalize
motivations. For this reason, the reader needs to consider the possibility that
the equations here are similar to Standard Model symmetries only as a result of
random coincidence. This applies doubly to Subsection 5.6 on mass equations.
Try enough equations and it’s easy to get 5 or 6 digit coincidences. Reader
beware.

6.3 Problems with this Paper

Some of the problems with this paper are simply missing calculations that
someone may someday complete. Ideally, a paper proposing an explanation
for the Standard Model should provide a calculation for all of its many ex-
perimental parameters. The calculations here have been done with a variety
of quantum mechanics intended to model the part of quantum field theory
that deals with situations where there are no particles created or destroyed.
A better paper would use quantum field theory to cover the situations where
this does not apply. The primary missing piece to this paper is a model of
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the gauge bosons. The creation and annihilation of gauge bosons may require
quantum field theory.

Of the parameters of the Standard Model, the only ones discussed are the
generation structure of the quark and lepton masses. The biggest improvement
from here would be a calculation for the weak quantum numbers. Beyond that
derivations of the CKM and MNS matrices would be nice.

6.4 Further Work

On the subject of quantum statistics, there is an interesting paper by Lubos
Motl [31] on the ringing of black holes. This is classical general relativity.
A stable black hole “has no hair”, that is, it is characterized only by mass,
charge and angular momentum. If something perturbs the black hole, it relaxes
to such a stable state. The deviation from symmetry can be described by the
normal modes of the black hole. Unlike the usual normal modes of a vibrating
object, these modes decay away so they are called “quasinormal” modes.

A black hole that has hair radiates it off by Hawking radiation. Which
particles are radiated presumably depends on the shape of the perturbation.
So Motl found the quasinormal modes and determined their spin and the
quantum statistics implied by their asymptotic frequencies (or decay rates).
The poles and statistics he found were:

Spin Pole Naively Implied statistics

j c Z —+ 1/2 # Fermi—DiraC

. . s . (157)
] € 7 + 1 W BOSG-ElnSteln

where By = 1/(kpTh) is the Hawking thermodynamic beta. The spin-1/2
and spin-1 cases are the expected Fermi-Dirac and Bose-Einstein statistics
but spin-2 (graviton) gets a doubly unexpected result. First the sign is positive
rather than the negative for Bose-Einstein. Thus the quantum states satisfy
the Pauli exclusion principle. Second, it takes a 3 instead of the usual 1. This
implies that the quantum state can have three “different forms”. It may be
just another coincidence but could it be possible to describe gravitons with
bases tripled like the ones used here? And does that have anything to do with
the mass calculations?

Another question is how to extend this theory to cover gravitation. This is a
gauge theory where the symmetries are rotations of objects defined by gamma
matrices. Elementary particles have short wavelengths compared to gravitation
so a compatible gravitation theory would involve the long wavelength rotations
of gamma matrices. Anthony Lasenby, Chris Doran and Stephen Gull found
such a gravitation theory called “Gauge Theory Gravity” (GTG) and pub-
lished it in 1998 [28], but the reader may prefer their improved 2004 version
on arXiv. They use the “spacetime algebra” (STA) of David Hestenes which
is like gamma matrices but with no matrices ever specified. The reader is also
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recommended the 2005 Hestenes introduction to GTG.[21] Unlike this paper,
they use the + — —— sign convention for the gamma matrices. Their the-
ory gives the same results as general relativity restricted to a flat background
metric. This amounts to general relativity with a specific choice of metric, sub-
ject to a Minkowski transformation. And the flat background prevents science
fiction ideas like worm holes but gives identical results to all of the reason-
able predictions of general relativity. The GTG gauges local displacements and
Lorentz rotations which makes it compatible with this paper.

Since the GTG defines a particular coordinate system for GR problems,
one is naturally curious what the simplest GR objects, black holes, look like in
GTG form. The idea is to learn something about gravitons. The GTG version
of a rotating charged (Kerr-Newman) black hole was found by Doran[13] but
the best pedagogical description of the metric, especially in the Cartesian
coordinates used in this paper, is the “River Model of Black Holes” by Andrew
J. S. Hamilton and Jason P. Lisle.[17]

The non rotating, uncharged black hole is the simplest black hole case.
For the GTG, one uses Gullstrand-Painlevé coordinates.* If the gravitational
force is to be transmitted by a gauge boson (graviton), they must be radially
symmetric so this author converted Gullstrand-Painlevé as well as the usual
Schwarzschild coordinates into exact Newtonian form, that is, as would be
used for a small test mass by Newton’s equation F = ma.[6]

In Gullstrand-Painlevé coordinates, the difference in velocity between in-
coming and outgoing (radial) light beams is always 2c. Far from the black
hole the two speeds approach c¢. At the horizon the outgoing speed of light
is zero and the incoming speed is 2c. Closer to the singularity both incoming
and outgoing light speeds are above 2¢. So these coordinates do not treat the
event horizon as a particularly special case. In analogy with the electric force,
we suppose that the gravitational force is due to the differential change in
the density of gravitons and from this calculate a graviton density that de-
pends on distance from the singularity. This allows us to conclude that, with
either coordinate system, as gravitons move away from the singularity their
number increases proportionally to 1/r% so the process that is making more
gravitons does it proportionally to the square of the graviton density as a sort
of stimulated emission of gravitons.

Eight of the experimental parameters of the Standard Model have to do
with how the weak force changes fermion generations. The author worked
on this problem with Marni Sheppeard. She pointed out the importance of
the discrete Fourier transform, circulant and anti-circulant matrices. Her ap-
proach to these problems uses Category theory. Most of her papers are on
www.vixra.org; the ones particularly related to this subject are 1004.0083
“Quark Lepton Brainds and Heterotic Supersymmetry” (2010), 0711.0001 “
Mass Matrix Transforms in Qubit Field Theory” (2007), 1008.0015 “Arith-

4 Gullstrand is said to be the physicist who delayed Einstein’s Nobel prize partly out of
a lack of satisfaction with Schwarzschild coordinates.
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metic Information in Particle Mixing” (2010), and 1010.0029 “On Neutral
Particle Gravity in Particle Mixing” (2010).

There are two 3 x 3 unitary matrices, the CKM gives how the quarks
are changed by the emission or absorption of a W gauge boson while the
MNS matrix does the same for the leptons. Ideally, we should be able to
calculate these from first principles. The weak force is handed so perhaps we
should try writing the entries of these matrices in terms of the density matrices
given in Equation 139. The generation model for mass described in this paper
associates the generation g with a phase exp(2im ¢g/3). We expect interactions
that depend on generation to depend on the relative phases. If g and ¢’ are
the generation numbers for two particles, we have two ways of combining the
signs: exp(2im(g/3 + ¢’/3)). The — sign means that the effect depends on
the difference in generation so the 3 x 3 matrix that gives the interaction
will be circulant. Similarly the + sign gives an anti-circulant matrix. These
sorts of matrices were suggested for the MNS matrix by P. F. Harrison, D.
H. Perkins and W. G. Scott in 2002. [20] The form they suggested is called
“tri-bimaximal” and is the subject of a great many papers. This gives the form
of the matrices we expect, but there also may be coincidences in the values.
The one that comes to mind is the Weinberg weak mixing angle that obtains
the Z% and photon from the weak gauge bosons, the Koide 6 angle, and the
Cabibo angle in the CKM matrix; all three of these are near 2/9.

A problem with the CKM and MNS matrices is that experiments can define
their entries only subject to arbitrary complex phases multiplying their rows
and columns. A unitary 3 x 3 matrix has 9 real degrees of freedom. When the
rows and columns take arbitrary complex phases there are only 4 real degrees of
freedom left. The industry parameterizes these matrices with various inelegant
methods.

The elimination of arbitrary complex phases has a great deal to do with
density matrices so it’s natural to look for a parameterization of the weak
mixing matrices based on density matrices. The number of parameters for a
U(n) matrix is n?. There are n columns and n rows, but one overall complex
phase so in total there are 2n — 1 arbitrary complex phases in the rows and
columns. That leaves n? — (2n — 1) = (n — 1)? parameters for a U(n) mixing
matrix. This suggests that the U(n) mixing matrices can be put into a form
that is equivalent to the U(n-1) unitary matrices.

For this idea to work, we first must find a Lie subgroup of the U(n) matrices
that only needs (n — 1)? parameters. This is most easily done by defining a Lie
subalgebra of the u(n) Lie algebra and exponentiating. Such a Lie subalgebra
is defined by the u(n) matrices whose rows and columns all sum to zero. This
feature reminds one of magic squares so call these matrices magic, or mu(n).
Writing down the definition of matrix addition and multiplication is enough
to show that mu(n) is closed under addition and multiplication and so they
are also closed under commutation and are a Lie subalgebra of u(n). We can
parameterize u(n) by the n real elements down the diagonal and the n(n—1)/2
complex elements above the diagonal. To make this into a parameterization of
mu(n) we adjust the parameters in the bottom row and the rightmost column
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so that the rows and columns sum to zero. This removes 2n—1 parameters and
we're left with the expected (n — 1)? parameters. To show that mu(n) indeed
is equivalent to u(n — 1) we need to provide a transformation that puts these
parameters into an Hermitian (n — 1)? block. Such a transformation would be
of the form:

X'=HXH" (158)

where H is Hermitian so it preserves Hermiticity. Such a transformation pre-
serves addition and multiplication so it will transform a Lie subalgebra into a
Lie subalgebra.

A pure density matrix is Hermitian so things that we make out of it will
be Hermitian and will preserve Hermiticity. So let py be a pure n x n density
matrix. Since py is idempotent, its 1-parameter Lie subgroups are particularly
easy to calculate and since it’s Hermitian those Lie subgroups are unitary. For
a real number 6,

exp(ifpy) = 1 — py + € pyr, (159)
so a unitary matrix that transforms by inverting the py projection and leaves
everything else unchanged is

H(py) = exp(impy) =1 —2ppy. (160)

The above is the Householder transformation [23], derived using density ma-
trices. If we transform py into the (1,0,0,0...0) diagonal matrix, then H (p)
will be the diagonal matrix (—1,1,1,1...1) and the py projection is indeed
negated. Also H? = 1 and the trace is —1.

We need a transformation that takes a mu(n) matrix into one that is
nonzero only for the top left (n — 1) x (n — 1) portion. So the p we need
must be of the form:

pu = H)(H| = | " | (a..ab) (161)

b

where a and b are real numbers so that (n — 1)a? + b = 1 to keep the trace
1. And we can test for the right transform by inserting a trivial example into
the transformation to obtain 1 — (n — 1)(2a?) — 2ab = 0. Solving these gives:

B B VAU S VA (et
=\ 3 =T b N (162)

This proves that mu(n) is equivalent to u(n-1) and so MU(n) is equivalent to
U(n-1), and we can parameterize MU(n) by exponentiating and then House-
holder transforming any convenient parameterization for u(n-1).

The fact that any U(n) matrix can be put into MU(n) form by multiplying
rows and columns by phases was discovered by this author by testing random
matrices but without proof beyond 2 x 2 matrices. Philip Gibbs provided the
proof for 3 x 3 matrices in 2009. [16] In 2011, this author posted to the Math
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StackExchange the question “Given two basis sets for a finite Hilbert space,
does an unbiased vector exist?” which, if true, is sufficient to show that any
unitary mixing matrix can be put into magic form. Sam Lisi responded with an
unpublished proof using symplectic geometry of Lagrangian intersections.[29]
This method gives a parameterization of U(3) mixing matrices where the
four parameters correspond to permutations, either swaps, 012, 013, 023 or the
rotation #,23. These parameters are correctly labeled in that 615 defines a 1-
parameter subgroup that reaches the unitary swap matrix (12) when 615 = 7.
The permutation group Ss includes a (132) rotation but no such parameter
is included. This is because (123)? = (132) so (132) is on the 1-parameter
subgroup generated by 6123. In exponential form the parameterization is:

O12 + 613 —012 + 10123 —613 — 16123
exp(i —015 —if123 G124+ 033 —0O3 + 0103 ) S MU(3) (163)
—013 + 10123 —023 — 6123 013 + 023

The above can be put into closed (but complicated) form by using a House-
holder transformation to convert the mu(3) matrix into u(2) form which is
easily exponentiated. The result is a symmetric parameterization.

Since the CKM matrix is close to unity, the swap parameters, 60,, are
within 0.0004 of the same labeled parameters of the standard parameterization.
The lack of symmetry in the standard parameterization is maximum at the
“democratic” mixing matrix, that is, the one with all magnitudes equal. This is
the 3 x 3 mixing matrix with maximum CP violation. To reach that matrix, one
puts 612 = 013 = 023 = 27/9 and 1235 = 0 while the standard parameterization
has 912 = 923 = 7T/4, 913 ~ (0.61548 and ¢ = 7T/2.

The above parameterization has the swap parameters 612, 013, f23 used in
anti-circulant mode while the rotation parameters 6153 takes an imaginary
unit and is used in circulant mode. This is a hint that we can manipulate
the algebra and rewrite the parameterization in circulant and anti-circulant
fashion. (And this is also a hint on how one can put Equation 163 into closed
form.) One finds a parameterization that mirrors the mass density matrices
defined in Equations 139 and 132:

C, Cy C3 ;. [ D1D>Ds
M(o, 8,7,60) = 3 C3CL Oy | + 3 Dy D3 Dy |, (164)
02 03 C1 D3 Dl D2

where
Cy, = cos(d) + 2 cos(7) cos((a + 2nm)/3),

D,, = sin(d) + 2sin(vy) cos((5 + 2nm)/3).

The above matrices have rows and columns that sum to exp(id). They are
closed under multiplication so they form a Lie subgroup of U(3) suitable for
unitary mixing matrices.

Experiments can only measure magnitudes of the CKM matrix elements.
It’s up to us to choose the phases. The diagonal entries have magnitudes near 1
while the off diagonal are, to a first approximation defined by the Cabibo angle.

(165)
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Putting the Cabibo angle to 2/9, we get a real unitary CKM approximation
by using cos(2/9) on the first two diagonal entries and £sin(2/9) on the off
diagonals:

cos(2/9) +sin(2/9) 0 0.98 +0.22 0
CKM =~ [ —sin(2/9) cos(2/9) 0| ~ [ —0.22 098 0 |. (166)
0 0 1 0 0 1.00

When this matrix is written as the sum of a real circulant matrix and an
imaginary anti-circulant matrix we get:

cos(2/9) 0 0 0 sin(2/9) 0
CKM =~ 0 cos(2/9) O +i | sin(2/9) 0 0
0 0 cos(2/9) 0 0 sin(2/9)

(167)
The hope is that the above is the leading contribution in a Feynman diagram
series for the CKM matrix.
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