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Abstract

The G4,8 Double Conformal Space-Time Algebra (DCSTA) is a high-dimensional 12D Geometric
Algebra that extends the concepts introduced with the Gg o Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA) with entities for Darboux cyclides (incl. parabolic and Dupin cyclides,
general quadrics, and ring torus) in spacetime with a new boost operator. The base algebra in
which spacetime geometry is modeled is the Gi 3 Space-Time Algebra (STA). Two G2 4 Conformal
Space-Time subalgebras (CSTA) provide spacetime entities for points, hypercones, hyperplanes,
hyperpseudospheres (and their intersections) and a complete set of versors for their spacetime
transformations that includes rotation, translation, isotropic dilation, hyperbolic rotation (boost),
planar reflection, and (pseudo)spherical inversion. G4 8 DCSTA is a doubling product of two orthog-
onal G2 4 CSTA subalgebras that inherits doubled CSTA entities and versors from CSTA and adds
new 2-vector entities for general (pseudo)quadrics and Darboux (pseudo)cyclides in spacetime that
are also transformed by the doubled versors. The “pseudo” surface entities are spacetime surface
entities that use the time axis as a pseudospatial dimension. The (pseudo)cyclides are the inver-
sions of (pseudo)quadrics in hyperpseudospheres. An operation for the directed non-uniform scaling
(anisotropic dilation) of the 2-vector general quadric entities is defined using the boost operator and
a spatial projection. Quadric surface entities can be boosted into moving surfaces with constant
velocities that display the Thomas-Wigner rotation and length contraction of special relativity.
DCSTA is an algebra for computing with general quadrics and their inversive geometry in spacetime.
For applications or testing, G4 8 DCSTA can be computed using various software packages, such as
the symbolic computer algebra system SymPy with the GAlgebra module.
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1 Introduction

This is an extended paper! on the Double Conformal Space-Time Algebra [10] (DCSTA) G4 5 [7]. DCSTA
Ga g is a high-dimensional 12D Geometric Algebra [13][15][3] over the twelve-dimensional (12D) vector
space R*3 that extends the concepts introduced with the Double Conformal / Darboux Cyclide Geo-
metric Algebra (DCGA) Gs 2 [4][5][6][8][9] with entities for Darboux cyclides (incl. parabolic and Dupin
cyclides, general quadrics, and ring torus) in spacetime with a new boost operator.

The base algebra in which spacetime geometry is modeled is the Space-Time Algebra (STA) Gy 5 [12].
Two orthogonal, and isomorphic, Conformal Space-Time subalgebras (CSTA) G141 (3+1) [2] provide
spacetime entities for points, hypercones, hyperplanes, and hyperpseudospheres (in their intersections)
and a complete set of versors for their spacetime transformations that includes rotation, translation,
isotropic dilation, hyperbolic rotation (boost), planar reflection, and (pseudo)spherical inversion.

The double CSTA (DCSTA) G4 is a doubling product of two orthogonal CSTA subalgebras Gs 4
that inherits doubled CSTA entities and versors from CSTA and adds new bivector entities for general
(pseudo)quadrics and Darboux (pseudo)cyclides in space-time that are also transformed by the doubled
versors. The “pseudo” surface entities are spacetime surface entities that use the time axis as a pseu-
dospatial dimension. The (pseudo)cyclides are the inversions of (pseudo)quadrics in hyperpseudospheres.

DCSTA allows general quadric surfaces to be transformed in spacetime by a complete set of doubled
CSTA versor (i.e., DCSTA versor) operations. General quadric surface entities can be boosted into
moving surfaces with constant velocities that display the Thomas-Wigner rotation and length contraction
of special relativity. DCSTA also defines an operation for the directed non-uniform scaling (anisotropic
dilation) of the bivector general quadric entities using the boost operator followed by a spatial projection.

1. First preprint version vl (viXra), 22 Aug 2017. This paper was written as an invited extended paper, extending on
the published 10-page conference proceedings paper Double Conformal Geometric Algebra (DOI:10.1063/1.4972658), for
possible later submission to the journal Mathematics in Engineering, Science and Aerospace (MESA). If later submitted,
the paper may then include a certain corresponding coauthor that helps handle the entire publication process, in which
the paper then also undergoes further collaborative revision.
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As will be explained further in more detail, the new DCSTA bivector entities for quadrics and
Darboux cyclides are formed by extracting polynomial terms from the coefficients on the basis 2-blade
terms of the DCSTA 2-blade point entity using reciprocal (or pseudoinverse) basis 2-blades as extraction
operators. The reciprocal basis 2-blades that extract the same polynomial term s from the DCSTA point
entity are added and averaged as the DCSTA 2-vector extraction operator for value s.

The DCSTA G4 8 D has a basis of twelve orthonormal vector elements e;, 1 < i < 12, with metric
(squares or signatures) mp:

m=mp = diag(l,—1,-1,—1,1,—1,1,—1,—1,—1,1, = 1) = [m;}] (1)
= diag(me1, me2) = diag(1, mest, 1, mes2) (2)

= diag(maq, 1, —1,maq2, 1, —1) =diag(1l,ms1,1,—1,1,mg2, 1, —1) (3)

mps = diag(mest, mes2), m;;=€;-ej. (4)

The above metric also includes the metrics of the subalgebras:

e Go4 CSTALC: mea o Gy 4 CSTA2 C% me:

e G4 Conformal SA1 (CSA1) CSh: mest e G4 CSA2 CS%: mese
e Gi3STAL MY mpp e Gi3STA2 M2 mppe
e Go.3 Space Algebra 1 (SA1) St mgs: e Go3SA2 8% mge

e §s s Double Conformal SA (DCSA) DS: mps

2 Notation of Space-Time Algebra (STA)

The basis of the space-time algebra G; 3 STA M 2 G; 3 STA1 M1 is {~0, V1,72, v3} = {e1, ez, €3,€4}, and
for the second copy of the space-time algebra G; 3 STA2 M? we have the basis {70, 71, 72, 73} = {er, es,
eg,e10}. The space algebra Gy 3 SA S basis, included in the space-time algebra, is {1, v2,v3}. The STA
unit four-dimensional pseudoscalar is I n = ~97y179273, and for SA the unit three-dimensional pseudoscalar
is Is = y1v27y3. Moreover, STA defines a symbolic space-time “test” position with symbolic coordinates
(w=ct,z,y,z) by the four-dimensional (4D) vector

t=ty=wyo+ v+ yy2 + 273 =wyo + ts, (5)
a specific space-time position with specific coordinates (pu, Pz, Py, Pz) by the 4D vector
P=PM=PuYo+ PaV1+ DyY2+ P=Y3= PuYo T Ps, (6)
and a 4D space-time velocity
V=UM=CY0+ U1+ Uy Y2+ VY3 =CY0+ Vs, (7)

with 4D STA vectors in bold italic, and 3D SA spatial v,y1 + vyy2 + v,ys vectors v =vs in bold. An
algebra symbol S as a subscript of an element Ag indicates that As € S, and similarly for the other
algebra symbols.

The geometric product of vectors w and v is

uv=u-v+uNv, (8)
where the inner product is the symmetric product
u-v=(uv+ou)/2 (9)
and the outer product is the anti-symmetric product
uAv=(uv —vu)/2. (10)
We will make frequent use of the square of £, known as the space-time interval,

tiy=w?—a?—y?— 2% (11)
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A vector tq is time-like for t34 >0, space-like for t3, <0, and null (or light-like) for t3,=0. The interval
a? is often used to avoid imaginary numbers. In (137), the interval a? is the square of a hyperbolic
radius 72 = a?. A null radius r =0 is associated with a null hypercone. A real radius r > 0, for a® > 0,
is associated with a (hyper)hyperboloid of one sheet. An imaginary r = |r|v/—1, or a® <0, is associated
with a (hyper)hyperboloid of two sheets. The (hyper)hyperboloids are circular and are also called real
or imaginary hyperpseudospheres, respectively.

A null vector a® = (s +t)? = 0 is the sum of space-like s? < 0 and time-like ¢? > 0 vectors that are
orthogonal 2s -t = st +ts =0 and of equal magnitude |t|=|s| (31), where a®=s?+t2=t|? — |s]?=0.
A non-null vector @ has a non-zero interval a0 and has an inverse a~'=a/a?

The vector projections [13] of any vector u = ull? + uL? parallel /¥ and perpendicular u? to any
non-null vector v is defined by

u=(uv)v = (u-v)v '+ (wAv)v ! =ul? 4+ ult? =P, (u) + Pi(u). (12)
The untranslated (at origin) observer worldline, in the rest frame of the observer, is
ot = cty (13)

with proper time (coordinate time) ¢ and light speed c. See also, the CSTA line entity L¢ of (150).
The SA spatial dualization of SA spatial vector n is

nk=-ngslz'. (14)

For an SA spatial unit vector rotation axis n, the unit directional 2-blade n* of the rotation plane is
isomorphic to a pure unit quaternion, where (d*)?2 = —1. Using (14), the correspondence with unit

quaternions is {i,j, k} = {7, v3, 73 }.
The STA space-time dualization of STA space-time vector v is
vig=vmlyg. (15)

The vector (1-blade) conjugate a' [16] of any vector a, written using Einstein notation as

_ p ) p+q _
a=a'e;= E a'e; + E a'e; | € 917(1 (16)
i=1 i=p+1

on the standard orthonormal basis of vectors { e; : 1<i<p+q } having pseudo-Euclidean sig-
nature (p, ¢) with Euclidean signatures { e : e=1,1<i<p } and anti-Euclidean signatures
{e: ef=—1p+i<i<p+tq}l,is

P . P+gq .
at= Z a'e; — Z a'e;, (17)
i=1 i=p+1

such that all of the anti-Euclidean basis vector terms are multiplied by —1. For any STA vector (1-
blade) @ =a,Yo+a=awYo+ azy1+ayy2+ a3 € 91173, its conjugate is (changing the sign of the spatial
component)

al = ~Y0aY0 = GuYo — A= GuYo — G2Y1 — GyY2 — G273, (18)
A k-blade Ay, of grade k denoted by subscript (k) [16], is the outer product of k vectors a;,

k
A(k):/\ az-:/\ ai=aiNasA...\ay. (19)

1=1

A scalar a is also called a 0-blade. A k-vector A ), often denoted Ay, is a sum of k-blades. A multivector
A is a sum of k-vectors of various grades k. The reverse A™ of any multivector A reverses the products
of all vectors in A (e.g., IX = ¥3¥27170). The reverse of a k-blade Ay, is

A@>:(—1)k(k_1)/2A<k>:ak/\ak_l/\.../\al. (20)

The k-blade conjugate AIM [16] of any k-blade Ay is (n.b. the reverse order)

k
Aly= N\ aly i=ajral_ A..nal. (21)
i=1
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For any STA k-blade A(xy=ai1Nazx\...Na, € Qfg, 1<k <4, its conjugate is (a composition of reversion
ATy with sandwiching between g factors)

AZM:70A&>70:a};/\a,1_1/\.../\a1. (22)

The Fuclidean norm (lg-norm [14]) ||la||2 of any STA vector a is
lall2=Va-a® >0, (23)

which is positive or zero. Similarly, the Euclidean norm || A ||z of a k-blade Ay is

1A ll2= /A - Aly,y > 0. (24)

The Fuclidean normalization of any (but restricting to null) STA vector a is the Euclidean normalized
vector

a=allla| (25)

where ||a|j2 =1 is unit Euclidean norm. Although the Euclidean normalization (25) is defined for any
STA vector a, in this paper we restrict the Euclidean normalization to STA null vectors a, where a?=0.
For any STA non-null vector a, we define a by the pseudo-Euclidean normalization (30) as a unit vector,
where @2 ==1.

A null vector (1-blade) a has a zero interval a® =0 and no inverse, but has a pseudoinverse [16]

a*=a'/||all3, (26)
where a-at =1.
For any k-blade Ay, its pseudoinverse [16] is

Afyy= Al /| Aw 3= Ay / (Auy - Al (27)
where A ) -AZ% = 1. For any non-null k-blade A ), its pseudoinverse A&) equals its inverse A<_kl> =
+
Ay 1 2
Ay = ATy [ (A ATiy) = Ay / Alry, (28)

which follows from Azk) =+ AT,y when no vector a; in A,y is a null vector.
The pseudo-Euclidean norm (or seminorm) |la|| of any STA vector a is

lal=vla*=+/la-a| >0, (29)
and the pseudo-Fuclidean normalization of any non-null vector a is the unit vector
a=a/lal, (30)

such that if a is time-like (@? > 0) then a?>=1, and if a is space-like (a? <0) then a?>= —1. For a null
(light-like) vector a, the notation @ is the Euclidean (I3) normalization ¢ =a /||al|2 (25). The pseudo-
Euclidean norm ||la|| is a seminorm since ||a| =0 for a null vector a # 0 [14].

The pseudo-Euclidean norm ||a|| (29) is equivalent to hyperbolic modulus [20] (or magnitude)

ja| = [la] = /a~a] = /a3 — (2 + a3 +a2)], (31)

and the non-null unit vector @ (30) is also called a unimodular vector. For scalar a, |a| is the absolute
value of a. For SA spatial vector a, the pseudo-Euclidean norm and Euclidean norm are equal,

lal|=la] =la]lz=Va-af = =a-a>0. (32)
Similarly, the pseudo-Euclidean norm [|A )|l of any STA k-blade A 4, is

|A | = Al = 1/ |ATe) | = VTA®) - Ay > 0. (33)

For any STA vector (1-blade) a, the unit vector a is defined by

a— ] alllal=a/Via® : a®#0 (34)
a/lal:=a/Va-al : a®=0.
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For any STA k-blade A1), the unit k-blade A<k> is defined by

. Ay /[ Agll = Awy/ /A iA%m
Ay = (35)

Ay [ Awyll2= Ay /1] Aq

In STA, null k-blades exist, such as the null 2-blade (o + 1)~2, where ((yo + 71)72)? = 0. Note that,
the conjugate Azrk)’ Euclidean norm || A)||2, and pseudoinverse A?k) exist for null k-blades A%M =

4
(an)

(including null 1-blade vectors) and are mainly used for the algebra of null k-blades.
The canonical basis of G, 4 has n=p+ ¢ orthonormal basis vector elements a; =e; and a total of 2"
basis unit k-blade elements

/\ eli=ebel. e, (36)

where the exponents b; are n binary digits of the binary number b = bibs...b,, essentially acting as
presence bits (generally A°=1, A'=A). A k-blade has a number b with k ones. The basis unit 0-blade
(unit scalar) is Ag = 1, and the n-blade unit pseudoscalar is I = Agn_; = e1es...e,. However, for the
decimal number dec(b) of b, in general dec(b) #i of e; etc., and the binary number b is the subscript on
A, since it intuitively relates to the construction of Ay as the product of canonical basis unit vectors e;
in ascending order of subscripts i. The basis k-blade Ay on an arbitrary basis a;, where the a; are not
necessarily orthonormal vectors, is

Ay= N\ a=ai' NaP A Aay (37)

which is not in general equal to the geometric product of the ai”, as for orthogonal vectors.

On an arbitrary vector basis a;, 1 <7 <n, of an n-dimensional algebra G, ;,, n=p+ ¢, where a=a;
is the jth linearly independent basis vector, the pseudoscalar is I = A,y = A a; (19) (not necessarily a
unit n-blade) and the reciprocal basis vector a’, to a=aj, is [13, page 28|

ol = (~1)) " (T\a,) I, (38)

where I\a; = /\#j a; (i.e., I without a;) and j is still the index (not exponent), such that

a;-al = (~1)7la;- (I\a;)-I1) = (~1)1~}(a; A (T\a,))I ' =T = 1, (39)

and a;-a’ =0 for i # j. Using the Kronecker delta

6 = {O it (40)
1 : 9=y,
the reciprocal basis vectors are often defined by the expression a;-a’= 65 .

The reciprocal basis vector a’ is a coefficient extraction operator that extracts the (contravariant)
scalar coefficient v7 on (covariant) basis vector a; in any vector v = v'a; = v;a’ as v/ = v - @/, and
vj=v-a;. For basis vector a =a;, its reciprocal basis vector @’ and its inverse a ™! are not necessarily
equal, especially since a null basis vector has no inverse but does have a reciprocal.

Similar to the case of vectors (1-blades), it is possible to compute the reciprocal basis k-blade of a
canonical (non-null) basis unit k-blade Ay (36) as

A= s A)T, (41)
where b is still the index (not exponent), and
= (Ab A ANOT b) -I"! and AnoTy= I\Ab where (I =1IA 1)\1 =1, (42)

such that A,- A®=1 and A= A; = A; ' on the canonical basis. The notation NOT b=bXOR (2" — 1)
is the bitwise complement. The formula (41) can also be used to compute the reciprocal basis k-blade
A? on an arbitrary basis a; by replacing I with the pseudoscalar Ay (19) of the arbitrary basis a;, but
then A®= A = A; ! does not hold in general on an arbitrary basis.

There are distinctions between pseudoinverse a®, reciprocal a’, and inverse a=' vectors (and of k-
blades A ) that can be clarified in the context of STA by some further explanation, which follows (until

(45))-
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In STA G 3, an arbitrary basis can include null basis vectors. There are three Minkowski planes,
oY1, Yoy2, and ~g7y3, that each span g, so we have to choose one Minkowski plane for any STA basis.
A 2D Minkowski (pseudo-Euclidean) plane can be spanned by two null vectors, e.g., no—1 = Y9 — 71
and ngpr1=v+7= ngfl, using (25) for a null unit vector 911 (25), and then the rest of 4D space-
time is spanned by the other two vectors, e.g. 2 and ~3. Such a basis is comprised of orthonormal
vectors a; € {fig—1, Mo+1, Y2, Y3}, as are the canonical basis vectors a; € {~o, ¥1, Y2, Y3}, so it is not
an entirely arbitrary basis, but a special basis. The three different unit pseudoscalars, for a different
orthonormal basis with null vectors, are Iy =n9_1 AMgr1 A Y2 A3 or Ing=mng_2 A~y ANgra A~ys or
Ivi=70-3A 71 A v2 Anfges (19), but they are not actually different since all equal I, which is the
unit pseudoscalar of the canonical basis of STA. For the canonical basis unit vectors a; € {vo,71, ¥2, V3 }
and the null basis unit vectors ngy; (25), it can be shown that their pseudoinverse vector (26) and
reciprocal basis vector (38) are equal, and we find it more convenient to use the pseudoinverse to obtain
a reciprocal basis vector, since we are then not concerned with determining the sign (—1)7 =1 in (38).
More generally, for any pseudo-Euclidean ~yyy;-plane, with 4¢ =1 and ~? = —1, the canonical orthonormal
basis {~0,v;} and any basis of pseudoinverses {a =|ald=a;,a” =a'/|a|=a’} in the plane, have the
property that their pseudoinverses (26) equal their reciprocals (38). The basis {a,a™} includes the null
basis {afg_;, o4i/a} or any non-null skew basis { a=a~vyy— Bvi,a* : a+# B } around 7 in the
~oyi-plane. The choice of basis for STA, between the canonical basis (of vectors) a; € {~;} or a special
basis a; € {7¥;¢10,i}, @, at}, having a particular skew basis {a, at} for just one of the three particular
Minkowski ~o7:-planes, is arbitrary since the pseudoinverse basis k-blade Aj (27) provides a uniform
expression of the reciprocal basis k-blade A®= A;" (41) on these special choices of basis. For the general
choice of an arbitrary STA vector basis a;, the pseudoinverse a; (26) is not in general equal to the
reciprocal a’# a;" (38), and then the general reciprocal vector a’ by (38) can always be used instead of
the pseudoinverse to obtain the correct reciprocal.

If we arbitrarily choose one of the three Minkowski planes ~¢7y;, then the special null basis for STA is
an orthonormal basis, a;e {ﬂo_l, ﬂ0+1, Y2, 73} or a; € {fl,o_g, Y1, ﬂ0+2, ’Yg} or a; € {ﬁ0_3, Y1, Y2, ﬂ0+3}
with unit pseudoscalar I, that includes the two null unit vectors 7+, of the ~¢y;-plane and the two
other canonical basis vectors ;¢ (0,s}- Then, a basis unit k-blade A; (37) that includes one of the null
basis unit vectors ng+; is a null basis unit k-blade A? =0, where its reciprocal basis k-blade (41) A and
pseudoinverse k-blade (27) A; are equal A’= A;", but no inverse exists. For a null basis unit k-blade, we
find it again convenient to use its pseudoinverse (27) as its reciprocal (41) and avoid the determination
of the sign s in the more general formula for a reciprocal (41).

For a canonical (non-null) basis unit k-blade (36) or special null basis unit k-blade A, we have

A=\ @i =a naf AL nal=alab. el (43)

where the basis unit vectors a; (34) are orthonormal, and where just one of d?i = a; may be present
(b; = 1) that is a special null basis unit vector @; = Mo4; for a special null basis unit k-blade Ay. Its
reciprocal basis unit k-blade A® (41) equals its pseudoinverse (27) Aj as (n.b. the reverse order)
n
AP = Af = N\ (42Dt = (@) (@)t AL A (@] = (@) (@)t (@)t (44)
i=1
This result A;", on the canonical or any special null basis, is easy to use in the sequel on DCSTA, where
the DCSTA bivector (2-vector) extraction operators T, are sums of 2-blade extraction operators Aj.
We simply multiply pseudoinverse (reciprocal) CSTA basis vectors a;-L, as CSTA extraction operators
al=T5i (128), in reverse order to form a DCSTA 2-blade extraction operator A;" =T =TZ3TSt (Table
1) for polynomial term s = sgs7. In further extensions of CGA beyond doubling, called Extended CGA
(k-CGA), this result A is used for defining the k-vector extraction operators T, of k-CGA, which are
sums of k-blade extraction operators Aj .

A E-versor Vj is the product of k non-null vectors a; with inverses a; *

=a;/a? as
Vk:akak,l...al. (45)
A unimodular k-versor Vj is the product of k unimodular (non-null) vectors a? =+1 as

Vie = Gr@p_1...41. (46)
The modulus |V| of k-versor Vj is

[Vi| = \/|VkaN| = \/|V1€Vk| = \/|akak_1...a1a1...ak_1ak| = |ak||lak—1]..-|a1], (47)
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and the unimodular k-versor Vj can be expressed as

sz|Vk|_1Vk=Vk/\/|VkaN|. (48)

The inverse V! of k-versor Vj, is

Vil = Vi /(W) =artay o ap (49)
The 1-versor V; =a is an operator for vector reflection v’ = Vl'val =ava~'=a24va=v'1* —vlte The
negative, —ava ! = —a2ava =v1% —vll% reflects v in the hyperplane orthogonal to a. The unimodular

1-versor V; = @ is an operator v’ = VjvV; = dva for reflection in the vector @ = a~! when a2 =1, and
for reflection in the hyperplane orthogonal to @ = —a~! when a?=—1.
A unimodular k-versor Vi operates on a vector v using the versor “sandwich” operation

’Ul = Vk’UV]:, (50)
where Vj, = in_l (use Vk_l when + orientation is significant). The general k-versor Vj operation is
v' =Vl L (51)

We primarily use (50) since the £ orientation is usually not significant for CGA geometric entities.

The unimodular k-versor Vj, is an operator for successive reflections in k vectors or hyperplanes,
depending on the particular signatures of the unit vectors a@? = +1. Reflection in two unimodular spatial
vectors 4; is spatial rotation in the plane of the two vectors by twice the angle § between them. Reflection
in two unimodular time-like space-time vectors a@? =1 in the same space-time v~g-plane is hyperbolic
rotation (boost in direction v) by twice the hyperbolic angle ¢ between them.

By outermorphism [16], the unimodular k-versor Vj, (46) transforms the k-blade Ay (19) as
A2k> = VkA<k>Vk~ = (Vkalvkw) A (VkaQVkN) JARSWAN (VkakV[), (52)

which rotates or reflects the k-blade A ) by rotating or reflecting each vector a; in the k-blade. By the
linearity of the versor operation (50), as a linear operator, a unimodular k-versor Vi can also transform
any k-vector Ay or multivector 4

An STA unimodular 2-versor Vs is the geometric product of two unimodular vectors a? = =+1,

‘?2:&2&1 :dQ . d1+d2/\d1:iexp(OéA), (53)

which is a scalar a@s - a; plus a 2-blade A = as A a; with unit 2-blade A by (35) in the direction of the
plane of rotation. A unimodular 2-versor Vs is a geometric number [20] that is isomorphic to an elliptic
a+bi (i=+/—1), parabolic a+ be (¢2=0, #0), or hyperbolic complex number a+bj (j2=1,j# £1),
and is generally a rotation operator that preserves the modulus |a;| (31) of vectors a; (52). The angle
a of rotation in (53) is given by

0 =acos(—azq-a1) A= —1 (Vo X elliptic complex number)

a=y |az-a1| 7Y Al- : A’=0  (Vaparabolic complex number) (54)
¢ =atanh(|A|/(G2-a1)) : A’=+41 (Vo= hyperbolic complex number).

A unimodular 2-versor V5 operates on a vector v using the versor “sandwich” operation
v =V, (55)

where the reverse Vg~ corresponds to the compler conjugate Vo = V35”. For the unimodular exponential

form Vo= exp(mzl), which is our usual preferred form, we have Vo = Vs ' exactly.
In (55), the vector v is rotated by twice the angle a (i.e., 2a). To rotate by angle «, we define a 2-

versor V, for angle a as the square root

Va:\/‘}2:\/6!2&1:\/&2'@1-‘1-@2/\@1 ZGXP(OéA/Q). (56)
We usually assume that our 2-versors are unimodular Vo= Vg and use Vg or its square root, Va in operation

(55), but for non-unimodular versors Vj # Vi the operation (51) could be used.
It can be useful to interpret the product of vectors asa; = I;/d =ba~" as a certain ratio of vectors “b
1 1

by @’ that transforms @ into b as (b/a)a = (b/a)za(b/a) 2, and also transforms other vectors by the
same proportion, which is by the same angle in the same plane of rotation.
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In (53) and (54) for A2 =0, the null unit 2-blade is A = A /|| A2 by (35) and |Va| = /|VaVy | =

[(@2-@1)% = |da - G| by (47), where by (48) Vo = [Vo|"1Va = |G - 41| 71Va = fexp(ad) = £(1 + 0 A)
(n.b., Vo = +|Valexp(aA), but in (55) + is canceled). Then, V; is a unimodular 2-versor for a special
type of translation (rotation around the point at infinity), such that the modulus |v’| = |v| is invariant.
General translation does not preserve the modulus. For example, using as =~y + 71+ 2 and a1 = —~s,
the product @2d; is the ratio aa/v2=1+ v A (v +71)=14+ A=exp(A) = Vs, and then the versor
V, = exp(A/2) transforms s into do = VCmVJ , which is - translated by the null vector n =~y + 1,
where |2+ n|=]|v2|=1. Other vectors are transformed by V,, by the same proportion, which are special
translations by various null or non-null vectors (not a constant vector) in the plane of A that preserve
the modulus. When STA G 3 is viewed as the CGA Gj 241 of the voys-plane (CSA in 2D), then the
translator T=1—d(~v0+ 1) /2 =exp(e.od/2) translates CGA entities by d in the ~y2-ys-plane (see CSA
in [7] for details).

If a is a null vector, then a is Euclidean norm by (34), which is not unimodular since the modulus
is || =0 # 1. The reflection v’ = ava of any vector v in any null vector a produces v’ with modulus
|v’| =0, which is a null vector or the zero vector 0. Therefore, if any vector a; in the k-versor Vj is null
a?=0, then the modulus is | V| =0 by (47) and the operation v’ = V}vV§~ produces a vector with |v’| =0,
which is a null vector or the zero vector 0. For a 2-versor Vo = aqas, if either vector a; is a null vector
then the modulus is |V3| =0 by (47), V> has no exponential form (thus, not a proper 2-versor), and all
resulting vectors v’/ = VvV~ are zero modulus |v’|=0. In general, a null vector a; is not admitted in a
proper k-versor Vj, (45). For example, using as =~y + 1 and a; = —~, might be interpreted as the ratio
as /2, but the attempt to transform as a versor operation gives Voy2 Vs~ =0.

The k-versor (46) for even k=2m is a composition of m 2-versors, and the k-versor for odd k=2m+1
includes one more 1-versor for a final reflection in a vector or hyperplane.

An STA 1-versor a is any non-null STA vector a = axq with an inverse a~! = a/a® The reflection
p’ of vector p in vector a is given by the versor “sandwich” operation (or conjugation)

p' = apa '=p/l*—pre=P,(p)-Ps(p)=(p-a)a' - (pAa)a'. (57)

Two successive reflections (57), in vector a and then in vector b, forms the 2-versor ba. In general,
in the geometric algebra of an nD vector space, k successive reflections (57) in 1 < k < n vectors a;
forms a k-versor ay....asa; for an orthogonal transformation (CARTAN-DIEUDONNE theorem). All of the
versors in this paper can be derived from successive vector reflections (57). The 2-versors are generalized
rotation operators with unimodular exponential forms exp(A4) = e“. The opposite orientation to (57),
p’ = —apa~!, is reflection in the hyperplane orthogonal to a. The geometrical distinction between
reflection in vectors or in hyperplanes is not very important in this paper since we will only use even
k-versors as products of unimodular 2-versors in exponential forms, or transform homogeneous entities
in CSTA and DCSTA that are equivalent up to any non-zero scalar multiple, where any changes in
orientation (4 sign) or scale are usually of little significance.

The STA 2-versors include the spatial rotor R and the spacetime hyperbolic rotor (boost) B. The STA
2-versor spatial rotor R is defined as (n.b., (25)?=—1, see (14))

R=R,= (B/é)% =exp(fns/2) = ¢7005 _ cos(6/2) +sin(6/2)n% (58)

for spatial rotation around the spatial unit vector axis ns through the origin by the radians angle 6
subtended from a to b (by right-hand rule) in the ab-plane orthogonal to n. Two successive reflections
(57), in vector a then in vector b, rotates by twice the angle § = Zab, but R rotates by just 6. The ratio

b /4 is isomorphic to HAMILTON’s unit quaternion versor [11].
The STA 2-versor space-time hyperbolic rotor (boost) B is defined as (n.b., (V)2 =+1)

B=B, = (yv/0) = exp(p¥0/2) = cosh(ip/2) + sinh(ip/2)¥ 70, (59)

where three-dimensional spatial speed v in physics is

v=Be=|lvl= /v +vy+02, (60)

light speed is ¢, natural speed (8 is
0<(B=Bv=Ivll/lloll=v/c)<1, (61)
space-time velocity is by (7)
v=0+Vv=cyy+ fcv, (62)
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and rapidity (hyperbolic angle in (59)) is
© = py =atanh(f). (63)
The Lorentz factor

’y:’y‘,:dt/dT:\/OQ/’UQ:|O|/|’U|:1/\/1fﬂ\2,:1/d (64)

is related to special relativity length contraction (from Lo to L) as

L=+/1—-3%Lo=Lo/y=dLo, (65)

where T =t,, is the proper time of the observable with space-time velocity v. The proper time of o is
tpo=1, which is also the coordinate time t., =t of any vector v =0+ v directly relative to an observer o.
The proper time of vi =0+ vi=0—v (see (17) and (18)) is ti- Relative to o with coordinate time ¢,
then ¢, =1,,t =7 and 75+ = v, but these are not equal relative to another observer u #+o0. A space-time
velocity u =0+ u is a spatial velocity u relative to the spatially stationary observer o. The coordinate
time of w is tcy =1tpo, and the proper time of w is tpq.

The unimodular boost operator B is either an active boost B = B, by v =0+ v into the rest frame
of v or an equivalent passive boost B = B;Tl relative to v, boosting o as

ByoB,'r=o0®vr = =70+ Vv)=t(o+Vv)=0vt (66)
B 'oByit=00v't = v itv=9yit(o—vl)=7r(0—vl)=w0r. (67)

The above active and passive boosts, while algebraically equivalent, have different interpretations, espe-
cially of the time transformations. For B = By then 7 = vtpy = tpo, and for B = B;Tl the relatively
corresponding (and numerically equivalent) times are v, it = 7y itpo = t,,,1. We also use the alternative
notations

Yv="08v="Tev="Tdv= Yodv; (68)
where Ygv = Yev emphasizes the spatial velocity boost by v = o + v from velocity 0 or from an
unspecified arbitrary initial velocity, and ¢g, = Yoq» emphasizes the space-time boost by v and that
(0@v)So=v and (0®v) ©v =0 (and similarly for initial velocity u instead of o).

The notation for the active boost of u by v is

ByuB,'=u®v="ugv(0+udv), (69)
where the active dilation factor (including an alternative notation subscript) is
u-v
'YuEBv:'YuEBv:'YV(l - 2 ) 7& (,YO@U@V:,Y@U@V:’YO@U@’U)? (70)

the active time transformation (7 =tp,) = (t =tcw =tpo="tco) is
TuevT =1, (71)
and the spatial velocity addition u® v (“u boosted by v”) is

[I¥ 1v . -1 -1
wulV 4+ v +u )fy“@vT(fyv(u V)V + v+ (uAv)v )t. (72)

udv T=
( ) Yudv ( Tay Tay

The active time transformation is a relative time transformation of the proper time t,, of v into the
coordinate time t,, of u, which is the proper time ¢,, ="t of 0. Then, (u®v)r =(0o+udv)t is a relative
transformation of the velocity audition ué® v back into the frame of o with coordinate time ¢. In general,
u® v+ v P u, otherwise the direction of length contraction would be ambiguous. The formulas for v,y
and u @ v can be derived and verified by algebraically expanding the boost versor operation ByuB; .
For any boost By, we must limit Sy to less than light speed 0 < 5, <1 such that 1 <+, <oo and 1> fy;l >0.

Note that, in some other literature yygv (70) is sometimes defined differently, as we define yguev (80)
for the composition of two boosts (two @), by w and then by v. Our definition of v,y is for one boost
(one @) of u by v, boosting u into the rest frame of v with new time 7=1p,,, which passively transforms
back to ¢, where uw and v are both in the frame of o with coordinate time ¢. Also note that, due to the
anti-Euclidean metric of spatial vectors u and v, the sign on u- v is negative compared to some other

literature that uses the positive Euclidean metric for spatial vectors. The expression (u®v)= Ty (udv)
v

—1
v

may appear more like some other literature.
The notation for the passive boost of u relative to v is

By'uBy=uSv="yuov(0+usv), (73)
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where the passive dilation factor (including an alternative notation subscript) is

u-v
’Yuev:’)’uev:’)/v(l‘i’?) # (Yosusv = Yauev = Yosuow) (74)
the passive time transformation (¢ =tey ="1tpo =tco) = (T =1pv) is

Yuovt =T, (75)

and the spatial relative velocity u© v (“u relative to v”) is

[V _ 1v . -1 _ -1
v YV +u )’Yuevt<%’(u v)v YWV + (uAvV)v )7. (76)

UOV)vyuovt=
( ) © < ’Yuev ’Yu@v

The passive time transformation is a relative transformation of the coordinate time t., of w, which
is the proper time ¢,, =t of o, into the proper time ¢,, = 7 of v. Then, (u S v)t = (0 + u S V)7 is
a relative transformation of the relative velocity u © v into (relative to) the rest frame of v, where
(vov)t=(o/w)t=o1 and ((0 B v) ©v)T =o07. In the rest frame of v with proper time 7 as coordinate
time, the worldline o7 represents observable vt that is in the frame of o (i.e., o is the observer space-
time velocity within any rest frame). Velocity subtraction (u@®v')t=(u©v)t in the frame of o uses the
spatial velocity addition (72) with a negative velocity v = —v, which is not actually the same as the
spatial relative velocity (76) in the frame of v since the frames o and v and their proper times ¢ and 7
are different.

Our notation u® v, which we define by (72) as “u boosted by v,” is also found in some other literature,
where the notation “u @ v” is defined differently as “v boosted by u” with a reversed sense of operator
and operand (or some other definition). In the expression u @ v, our operator @&v is a RHS operator
that acts on LHS operand u, while some other literature may define the LHS operator u® that acts on
v. By our definitions of RHS unary operators @v (72) and &v (76), we arguably write more intuitive
expressions such as u®veov=(u®v)Sv=u with conventional left to right precedence of operations,
while in other literature defining LHS operators this may be written backwards as v (v@u) =u or
perhaps as ©v @ (v @ u) =u, which requires the parentheses to order the operations as right to left. The
form of a relative vector u — v, of u relative to v, better agrees with our choice of notational definition,
expressing u relative to v as u © v (76). However, in other literature using LHS operators this same
expression would be written v © u or perhaps ©v @ u, which is misleading or less intuitive. Some other
literature may try to work around this notational problem by defining our RHS operators with other
notations, such as Bv and Bv, but whatever the exact differences may be in our definitions of &v (72)
and ©v (76) compared to other literature, we stand by our more general definitions of ®v (69) and ©v
(73), which can operate not only on vectors w but also on versors and geometric entities.

The notations for the relatively equivalent active and passive boosts are

BB, '=B uB,i=ud®v=uovi=,,,i(0+uov), (77)

with the relatively equivalent active Yugvlpy = lew and passive vy, gyileu = tp,t time transformations,
which are numerically equivalent for t,, =%, since Yugv = Yaovt- An active boost can be viewed as the
equivalent passive boost, and vice versa, but their interpretations are different.

For the composition of active boosts By By, as o0 & u & v = ByByoB, lB; 1, we use the following
notations

BuoBi'=08u = Ygu(0+08 1) =76u(0+1) = 1u(0+ 1) = Yogu(0+u) (78)
By(0®u)By'=00u®v = Youuav(0+UdV) = Yguav(o+udv) (79)
u-v
Youdv = Yodudv = YouTudv = ’Yu’)’v(1 - 7) (80)
u-v
Youev="Touevt = V@uVuGVZWu’Yv(l +—3 ) (81)
’YoEBu@vtpv - ’Yo@utpu:tco:t (82)

1

For the composition of the relatively equivalent passive boosts By By = B\]lB;T , we use the following

notations
B;TloBuT:oeuJf = Voeuf(o_uT) :’YO@uT(O_ uT) :Veuf(o_uT) = Youl (83)
B\TTl(O@uT)Bv*:O@uT@vT = ’Y@uTPYUT@vT(OfuT@VT):Vo@ufe'uT(O*uT@VT) (84)
= Yoougv(0+tudv)=0dudv
tco’Yo@'u,T@vT = t;zru,ff)/'lﬁ@'uT = t'p'uT' (85)
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Although BB, = B\]lBl}l, their interpretations and time transformations are different.

For continued compositions of boosts t P u® ... Pvdw and tEOu S ... S v S w etc., the notations
7t69u€9...®v€9wtpw = 7t®u€9...€9vtpv = e = 7t®utpu =t and tetYtous...ovow = tpu’}/ue...evew = e =
tpvYvew = tpw etc. may be most intuitive for the time transformations from frame to frame. For a mixed
active/passive composition Vougveow = Ytousvow (8s an example), we must have t .t Vicugvow = tpw
since the last boost is passive into the frame of w, and then we make an equivalent purely passive factor
Ttoudvow = Vtouoviow: where tCt,Yteu@vT@w = tpuyuevTew = tll‘U,YUTew = tll‘w’ nOting that tp‘U = tva
etc. Similarly, a continued boost that ends active V¢gwsvew must have Yiguovgwlpw =tct, and then we
make an equivalent purely active factor Yt@pucvew = Vegumvi®w WIETE Viguavt owlpw = Vedumvitpy =
Yedulpu =tct- A continued active boost has a time transformation taking a proper time ¢, of w through
many proper times to a coordinate time t; of ¢, and a continued passive boost takes a coordinate time t.¢
through many proper times to the proper time ¢, of w. Note that, ¢ can be replaced with o®t=06 tf,
and then the purely active boosts convert time into .o =1p0, and the purely passive boosts convert from
tco =tpo =tct, such that only proper times are transformed from frame to frame.

For the active boost u @ v, the spatial velocity u® v generally has a natural speed

Puev=lusdvl/c, (86)
and for the special case u||v of parallel velocities
Bu+ Bv
AR :» 57
For the passive boost u © v, relative to v, the spatial velocity u& v generally has a natural speed
Busv=|lucvl/c, (88)
and for the special case u||v of parallel velocities
_ Pu—By
Puov=1"3,5, (89)

For the special case u_Lv of perpendicular velocities

Buav = Puev =1/ (1 - B3) B2+ 55 (90)

The boost notations and formulas given above are derived directly from the boost operations. The
notations can extend to further compositions of boosts.

Hyperbolic rotor (boost): B= B, = e(l/2)¢v¥7 Gl By = (1v/0)"/? = (7 + ywBu¥v0) /2
. 1 1 . 0,3 space B,i=BY
By =exp((1/2)pvV0) =ch(5¢v> +sh(5wv)vz% L v (¥v0)2=1
YV =1 Bveiy vy
Hyperbolas of constant (rapidity)
space-time interval: Observer: ;
Boost velocity: v =0+ v =cvy+ Bt o=cYo perbolic arc length:
WV = Bved] = =)=
Natural speed: Bv:% v v Pv ath< run) ath(fy)
_ / 2
Lorentz factor: Wv=1/v1— 6y v = fycv) v=0+ Py vCPv
Vv =dtpo/dtpy =dt/dT
v = ByoyBy = By(o/w)BY b v
W = ByoBY = 1veyo + v Bve? v
Observable velocity: % =0+u=cy+ Buc o N Y0 = VYo 1 .
. 5 i g1,o time
Bu=|%| m=1/VI= 52
t.
Active @ and passive © boosts: Observer:) OTr v
(0® V)t py = (BvoBY)tpy = Vwlpy = Vi, 0,i=BJw'B,i=0/vy
—Vvy ~
(O@’U)tcO:(BVNOBv)tco:"/o@vatcof’UT pv ’UT:O N ov:BV 'UBVZO/"/V
o TR + Proper times:
u@v:u }\/l ey -y v t=tey =teyt=tpo
a2 T=tpy=tpyi =tpo/ W
u °+ /‘l* Vz‘gllf"fv 2
uSv= \ E — Y Ve /\'YQIUT
1+ o
Yudv = ::m:')’v(l L .zv)v Yuov = j:“vf‘yv(l + “r.zv) (u @)= (ByuBy )T =mgv(o+udv)Tr=(0+udv)t
Lpo

Y ¢ (usv)t=(ByuBy)t=yuov(0o+uov)t=(o+uov)r

Figure 1. Space-time diagram of space-time boost B operations.
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Figure 1 shows a space-time diagram of space-time boost B operations on space-time velocities as
hyperbolic rotations. The orientation places the pseudospatial time axis g € 91170 horizontal and the anti-
Euclidean spatial axis v € g&g vertical. The slope 8 of a space-time velocity v =0+ v =c7yy+ fcv is the

natural speed 3= 3, = |[v||/|lo|| =v/c. The Lorentz factor of v is v =, =|o|/|v|=c//? — f2c* =
1/+/1— B%. In close analogy to elliptic trigonometry in a Euclidean plane where 2 =7 cos(), y=1rsin(6),
and 0 = atan(y /), in the Minkowski space-time plane of Figure 1, we have hyperbolic trigonometry
where z =r cosh(y), y =rsinh(p), and ¢ =atanh(y/x) = atanh(B). Here, r is the constant hyperbolic
radius under hyperbolic rotations (r? is the constant interval), and ¢ is the hyperbolic angle (rapidity).
The stationary observer has space-time velocity o = rvy9 = c¢vyp. The observer worldline is ot. The
hyperbolic rotation v’ = u ® v = ByuBY of a space-time velocity w by angle ¢, = atanh(fy) is an
active boost by spatial velocity v = fcv that transforms the slope [, of the space-time velocity u
into Bf, = Buav of ' =u @ v, while holding the interval |u|? = |u’|> constant. In the figure, the active
boost of o by v is 0 © v = B,oBy = v, where the new time 7 = t,, is the proper time of v, where
YT =1t and y,v7T =vt = (0 + V)t is in the frame of o. Note that, no boost B can ever boost a speed
to exactly B’ =1 since the hyperbolic rotation can only asymptotically approach, but never reach, the
direction of a light-speed null vector ¢y =+ ¢v on the light-like null hypercone. The time-like hyperbolic
(pseudo-Euclidean) length |vt| = |(0 4 v)t| = \/(cy0 + Bc¥)2t2 = /1 — f2ct = ct |y = cT = ctpy gives the
proper time 7 =%, of v. Proper time is the pseudo-Euclidean length of the worldline when using only
natural speeds with ¢=1. For =0, the observable vt coincides with the observer ot, and the observer
measures time ¢ = Lq. For 0 < 3 <1, the observer computes the time ¢,,=L=+/1— 2Lo= Lo/ ~, which
is the special relativity length contraction formula (65) for length (and time, or space-time) contraction
in direction v as experienced by the observable v relative to o. In effect, vt = (v © 0)t, relative to ot,
experiences contraction or =ot /v, = (v O v)t.

A composition of two successive unimodular boosts By By = 3v§u = BWREﬁ, by velocities u then v, is
equivalent to a Thomas-Wigner rotation Res that is followed by a single resultant boost By by a velocity
w=00u®v=u®v. The Thomas-Wigner rotation R.j is a spatial rotation in the plane of u and v
(with normal n =en) by an angle e. However, the factoring of By By can be done in two different ways

as ByBy= szﬁin = Ranl, where BW2 = By. The product of two unimodular boosts By B, expands as
B,B, = exp(%gpvflﬂy())exp(%cpuﬁ'yo) (91)

1 1 . 1 . 1 .\ n
cosh(igp\,)cosh(Egpu) + smh<§<pv)smh<5g0u> (—va) + (92)

cosh(%ga‘,)sinh(%cpu)ﬁ'yo + sinh(%gpv)cosh<%gou)\7'yo

= hee t+hes (=V) + (hest+ hse¥) Yo0. (93)

The part of the expanded product By By that is purely a spatial rotation is
B = heet hos(—¥i) = e+ has(—¥ - = ¥ A 8) = e + g c03(6) + sin(6) A ﬁl) (94)
Ry = |Rn| 'Rn= exp(%eﬁfg) = cos(%e + sin(%e)ﬁfg = Rea, (95)

where the angle 0 <6 <7 between 1 and V is
0 = acos(—V - 01), (96)

—~\2
the modulus of Ry, as an elliptic complex number with (f%)?= (ﬁ/\\?J—“) =—1,1s

|Rn| = /Ry Rn=+/RyRn=\/h+h%+ 2hcchsscos(0), (97)

and the spatial Thomas-Wigner rotation angle € of Ry is

_ |Rn— R3]\ hsssin(6)
e=2 atan(—Rn TR ) 2 atan Troot hascos(@) )’ (98)

Using trigonometric identities, the Thomas-Wigner rotation angle € is also expressed as [19]

2
(1 + '769u@9v+'7u+'7v) 0. (99)

L o8l = T e T T ) (- )
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The axis ng of the Thomas-Wigner rotation Rn= Res is (by the “undual” operation),

. vy [ Ban— Ry o —VAQ
s =815 =~ 7= 7y J1s= Gy e (100)
where the rotation is from @ toward v by angle e. With the anti-Euclidean metric of SA, the rotation

direction is the reverse of the direction of a similar rotor using Euclidean metric.
Using the pure rotor Ry, the composition of boosts By By factorizes two different ways as

ByBy = Ru(1+ Ry (hesit + hoe¥)~0) = RuBw, (101)
= (14 (hestt + hee¥) Ry ' v0) Rn = Bw,Rn (102)

A 1 R 1 . 1 N
By, = |Bw,| 'Bw,= exp(iwwlwlf)/o) = COSh<§<Pwl) + 51nh<§<pw1 )Wl’YQ (103)

. . 1. 1 A )
Bw, = |Bw,| 'Bw,=€xp 5PwaW2Y0 | = cosh 5%wa + sinh 5%ws |W20, (104)

where the inverse of spatial rotor Ry, is

A~

Ry heethes(—09) Ry  Ra

-1
= = = = 1
Ry = o TAE RuP ~ TRa] (105)
and the modulus of By = aexp(%gowﬁﬂ)/o), as a hyperbolic complex number with (W~g)%=1, is
|Bwl=V/|ByBwl = /|B&Bw| = V/|Bul* = la|. (106)
We now have the unimodular factorings
ByBu= ByBy= By,Rn= RnBuy,. (107)
The boosts Bw, and By, can also be written as
Ry (hestt + hocv . 1 5
By, = 1+%~m1+a1w1'yol+tanh<§¢wl)w17@ (108)
Ru(hestt + heV A 1 5
Bw, = 1+ (CT};—TSCV)’)’O =1+asWay=1+ tanh<§<pW2>wQ'yO, (109)
and we see that ||a3w1|| = ||aaWs|| = . Therefore,
Ow = Pw, = Pw,=2atanh(a) 2atanh<W> (110)

Bw = tanh(pw) = Bw, = Bw,- (111)

In the composition By B, = EWQRn, the purely spatial rotation Ry is applied first to a purely spatial
point (or other geometric entity) with zero velocity, and tlﬁn\the space-time boost By, is applied second
(subscript 2). Therefore, the velocity addition direction u@® v is

/\
W =Wy =100V =LRn(hestt + hse¥), (112)

and the unimodular boost 3W = EW = Bu@v can be expressed as
By = Bugv= ByBuRoa, (113)
with boost space-time velocity
W=0+W=0+UudV=cy+ SwcCW. (114)
A triad of boosts BWTBVBU that returns to zero boost velocity is a Thomas-Wigner rotation
But(BuBa) = Brow(ByBa) = Ren B3 BY (ByBa) = Bolten = Ren, (115)

However, a quad of boosts BUTBVTBVBU =1= BORO that returns to zero boost velocity also returns to
zero rotation. o
In the composition By By = RcaByw,, the space-time boost By, is applied first (subscript 1), and then

the spatial rotation Rea is applied second, where Req rotates the boost velocity direction wi as

/\/\

A~ A~ ~

ReaWiReg = ReaRea(hes + hoo¥) Resy = Rea(hostt + hoo¥) = Wo =W (116)
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Applymg the rotation R.s second has the effect of making a trajectory correction by the rotation
ReaWw1Roy = Wy of the boost velocity direction W into Wy =W, as well as spatially rotating any spatial
entity. Spatial rotation of a boosted point or entity also rotates its velocity direction.

To apply only an arbitrary spatial rotation Ry, to an entity with space-time velocity uw=o0+u, without
changing the velocity u or changing from the frame of u, we use the boosted rotor

Rn®u= BuRuBy, (117)

where R, ® u relative to u is the spatial rotation (Rn ® u) © u = Ry, in the frame of u. Applying Ry,
directly to an entity with velocity u will also rotate the velocity into u’ = RyuRy, which rotates the
entity as stationary in the frame of u’= o0+ u’. Similarly, to apply an arbitrary boost By to an entity
in the frame of u, without changing from the frame of w, we use the boosted boost

By ®u=ByBy By, (118)

where By, @ u relative to u is the boost (By @ u) ©u = By in the frame of u. For a stationary entity in
the frame of u, then B, ® u is effectively equal to applying ByBy (#ByvBuy) to the entity when stationary
in the frame of o. Note that, B,By boosts into the frame of w, while B, B, boosts into the frame of v.

As we will show, the boost effects of By By, including length contraction L=+/1— 82, Lo and Thomas-

Wigner rotation Req, are easy to demonstrate when boosting the DCSTA 2-vector quadric surface entities
(see Figure 4).

3 Notation of Conformal STA (CSTA)

The basis of CSTA G 4 C, isomorphic to (&) CSTA1 G 4 C! (index y=1), i

{70, 71,72, ¥3, €4, €} = {e1, 2, €5, €4, €5, €6}, (119)
and for the second copy CSTA2 Gy 4 C? (index v=2),
{70, 71,72, 73, €4, €} = {er, es, €9, €10, €11, €12} (120)
The six-dimensional CSTA unit pseudoscalar is
Ic =vov172738 1€ (121)

The G;,4 Conformal Space Algebra (CSA), subalgebra of Ga 4 CSTA, omits the time-like basis vector o
and the time coordinate w=ct =0, and then has only spatial entities and operations that are similar to
those of G4,1 CGA. CSTA defines three geometric inner product null space (GIPNS) [16] 1-blade entities,
as follows.

The CSTA GIPNS 1-blade null hypercone entity K¢ (growing sphere in time from a point), equal to
the null point embedding Pp, is

Kc=Pe=C(pam) = pm +%p%em+ €, PE=0, (122)
centered at vertex paq with null infinity point (representing the point at infinity)
exy=er+e_, eiCW:O, (123)
and null origin point (representing the point at the origin)
ey =(e——eq)/2, ez, =0, €0y €coy = —1, eje_=eyyNesoy. (124)
A normalized point entity P has unit scale on the homogeneous term e, as
Pe=Pc/(—Pc-ew). (125)

The vector pa and its embedding Pe = C(pam) represent a specific position point (pw, Dz, Dy, Pz)-
The symbolic vector tyq and its embedding Te = C(tam) represent the symbolic variable “test” point
(w:Ctﬂxﬂy7z)' ~

The projection (inverse of embedding) of a point Pe=C(pa) to its embedded STA vector is

PM = C_l(Pc) = (pc-IM)IX/IIZ (Pc/\e+/\e_)(e+/\e_), (126)
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which is geometrically projection onto I or rejection from eje_=e  Ne_=eyA€yy.
The inner product of two normalized points Pe=C(pa) and Q =C(qaq) is
S 1, 1., 1 )
Fe-Qe=pum-am = 5PM — 590 = —5(Prm—am)”, (127)
which is —1/2 the space-time interval (pas — qa)? between pag and gug.

The reciprocals of {~o, 71, Y2, 3, €+, €_} are {~vo, —¥1, —¥2, —¥3, €+, —€_}, and the reciprocals of
{€0y, €00~} are {—€soy, —€oy}. Using these reciprocals, we define the CSTA extraction operators

; 2
T(? €le= {Téua TéaTg; Tcy; TCZa TC1; TéM} = {70ﬂ 70/Cﬂ —YL, =72, =73, —€con; 72607}3 (128)

which are for the extractions of the corresponding coefficients s € {w=ct,t,z,y,z,1,t3(} from any point

Te=C (tam) as the inner product s = Te - T¢. Linear combinations of the extraction operators 1§ € T¢
(extracting values s) can form the CSTA GIPNS 1-blade entities for hypercones K¢, hyperplanes E¢, and
hyperpseudospheres ¢ in terms of their algebraic polynomial implicit surface functions F(w,x,y,z) =0
in space-time. The inner product of the symbolic test point Te=C (tm) with point P is

N A 1 1 1
Tc-Pe = tM'pM*§t3vz*§P3w:*§(tM*pM)2 (129)
1
= _5((10 - pw)2 - (ZE - pw)2 - (y - py)2 - (Z - pz)Q)a (130)

which represents the implicit surface function F(w, x,y, z) = Tp- Peof a hypercone F' =0 with vertex
Pm- A point T¢ is on the hypercone surface presented by Pe iff (if and only if) T - Pe=0. As an IPNS
entity, the conformal point embedding P.=C (pm) represents the hypercone implicit surface function
(130) for a hypercone with vertex pa, not just the embedded point prq. However Te A Pe =0 iff Te~ P,
and we call P a geometric outer product null space (GOPNS) point entity. The relation ~ denotes the
equality, up to a non-zero scalar multiple, of homogeneous entities representing the same geometry.
The IPNS hypercone entity Pc= K¢ can be written in terms of the CSTA extraction operators T¢ as

—2Ke = TEM —2p, T +2p,TE + 2p,TY + 2p.T5 + (2 — p2 — 3 — p2)TE (131)
= _290'y —2pm— pg\/leoc’r (132)

It can then be verified that Tp - K¢ = F(w, x, y, z) of (130). Linear combinations of the extraction
operators T¢ construct IPNS entities that directly correspond to certain polynomial functions F(w,z,y,
z) that can be formed as linear combinations of the available terms s. While the T¢ represent symbolic
variables and constants of a polynomial function F(w, z, y, z), their linear combinations form specific
elements of CSTA, which we call geometric inner product null space (GIPNS) entities.

If points paq are restricted to spatial points pas = ps with no time (w = ¢t = 0), the conformal
embedding is the CSA null 1-blade spatial point entity Pcs =C(ps) of the CSA CS subalgebra of CSTA
C. Both the IPNS and OPNS of the CSA spatial point P¢s represent only the point ps when tested
against the CSA test point Tes =C(ts) (i.e., TesPes=0iff Tes~Pes).

The CSTA GIPNS 1-blade space-time hyperplane (3D subspace of 4D ST) entity E¢ is

Ec = np+ (Pm-na)eoor, (133)

which represents the 3D subspace orthogonal to n g and passing through space-time position pas. A
normalized hyperplane E¢ has na =7 by (34). When n  is a null vector (n%,=0), then Ec=L¢ is
the CSA GIPNS 1-blade null line (light-line) entity L¢ through the point paq in the null direction 7 4
that includes point e, on the null line.

The inner product of the symbolic test point Tp =C (tam) with Eg is

Te-Ec = ty nm—pm nm=(trm—Prm) nm (134)
= (W= puw)nw — (¥ = pz)nz — (Y — py)ny — (2 — p2)ns, (135)

which represents the implicit surface function F(w, z, y, z) = T¢ - Ee of a hyperplane F' = 0 orthogonal
to nyg and passing through pay (by translation). The hyperplane entity E¢ can be written in terms of
the CSTA extraction operators T§ as

Ec=n,T¢ —n,T¢ —n,T¢ —n.T¢ — (pr-nm)TE. (136)
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For position paq=ps and normal 1, =ng restricted to spatial vectors, the entity E¢ is the CSA GIPNS
1-blade spatial plane entity Ilcs = E¢ (i.e., holding w = ¢t = 0 removes the ~y dimension), where the
CSA point TCS =C(C(ts) is on the plane Il¢s iff Tes- IIes =0. In CSTA, TI¢s is a purely spatial plane
entity at zero velocity (no time ¢ dependency), which can be boosted ByII¢sBy into a velocity v.

The CSTA GIPNS 1-blade hyperpseudosphere entity X centered at point P = C(pam) with initial
radius 7o, or through point Q¢ =C(g), is

2c=15c+(1/2)7“8eoc~y=15c-|—(15(:'Qc)eoc7, (137)

where the initial radius r¢ can be real or imaginary. For spatial points Po=C (ps) and Q.=C (as), ro is
the initial radius of a spatial sphere that grows with time in space-time, and then ¥p is a (hyper)hyper-
boloid of one sheet in space-time. More generally 1§ = —(pa — qaq)? (cf.(127)), and for a space-like
interval (paq— gam)? <0 then rg is real and X¢ is a (hyper)hyperboloid of one sheet, for a time-like interval
(pm — qa)? >0 then ro is imaginary and ¥¢ is a (hyper)hyperboloid of two sheets and when Pp= QC
then o= 0 and 3¢ = P is a null hypercone. The inner product of the symbolic test point Te=C (tm)
with Ec is

R & R ) (138)
= 154 (w—puw)?— (@ —pa)? — (y — py)* — (2 — p2)?, (139)

which represents the implicit surface function F(w, x, y, z) of a pseudosphere (space-time circular
hyperboloid) in the pseudospatial time w dimension with any two space dimensions, and a hyperpseu-
dosphere F'=0 in all four STA dimensions. For Pc = ch C(ps) restricted to a spatial center pomt ps
with w = ¢t = 0, the hyperpseudosphere 3¢ is the CSA GIPNS 1-blade spatial sphere entity Scs =3¢
with radius r =rg, where the CSA null 1-blade spatial point Tes=C (ts) is on the spatial sphere S¢g iff
Te¢s-Sces=0. The hyperpseudosphere entity 3¢ can be written in terms of the CSTA extraction operators
T¢ as

—23e = 13TE + TE — 2y T + 2p,TE + 2 T + 2p.T¢ + PRATE. (140)

The quasi-sphere implicit surface is defined by at34 + bng - tar + ¢ = 0, which can be represented as
the linear combination aX¢ + bE¢ + c¢T¢. The quasi-sphere is a hyperpseudosphere for a # 0, and is a
hyperplane for a =0 and b+ 0. The quasi-sphere generalizes the hyperpseudosphere and hyperplane. The
hyperpseudosphere entity 3¢ /|ro| through point gaq with center paq = gaq+ |ro|7 becomes, in the limit
|ro| — 00, the normalized hyperplane E¢ with normal 7 through g,

~ ~ 1 ~
- +lron+5 + [ro|n2 T0|7)?)ecc + €
Be — lim 20— pm M [roln + 5 ((gum + Iron)? = ([roln)*)escy + €0y (141)
Irol =00 |T0|  fro| o0 ol
= 7t (aM N)ess. (142)

Thus, the hyperpseudosphere entity generalizes to the hyperplane entity, like the quasi-sphere.
The extraction operators (128) can also form the following CSTA differential operators

D, = TCI(TM)_l__eoc’ﬂ'O:'YO/\eoov (143)
Dy = T¢(TH) ™t =—cecorY0=CY0 A €cory (144)
Dy = THTE)™ = —ecorm =" Aexy (145)
Dy = TT¢) ™" = —escyv2="2 ooy (146)
D, = THTE) " = —ecor¥3="73/\€oor. (147)

The CSTA differential elements are free vectors [3|, which represent directions without locations, and
are invariant by the translation operator (158). The n-directional (|n|s=Vmn-n'=1) derivative of any
CSTA GIPNS 1-blade entity A is, by the commutator product x (176) with a differential operator,

OnA = (nyDy+n2Dy+nyDy+n.D.) x A, (148)

The outer product of two to six of the above three CSTA GIPNS 1-blade entities (null-hypercones Ke,
hyperplanes E¢, hyperpseudospheres X¢) forms, by intersection, more CSTA GIPNS entities of higher
grades.

The CSTA GIPNS 2-blade space-time plane entity

Il = Dy — (prm- Div)ecor, (149)
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in direction of 2-blade D a4 through point pa4, is the intersection (wedge) of two space-time hyperplanes

(133). A normalized plane Il has a unit 2-blade direction D =D by (35). Note that, the CSA GIPNS

2-blade spatial line entity Les = d* — (p- (Ai*s)eooy, viewed as a CSTA entity that is tested against

the CSTA point Te =C(trq) instead of the CSA point Tes=C(ts), gains the span of the pseudospatial

direction - and is the CSTA plane I1¢ with 2-blade direction D =d A 7y through point py = ps.
The CSTA GIPNS 3-blade space-time line entity

LC:dj\/l"f'(pM'dj\/l)/\eocva (150)

in the direction daq through point par = pwyo + Ps, is the intersection (wedge) of three space-time
hyperplanes (133). A normalized line L¢ has a unit direction d = d . by (34). If the line direction vector
dpq is a null vector, then the line entity L¢ is a null 3-blade representing a null line (light-line). The
point at infinity e is a point of any line L¢. The line L¢ can represent the worldline of an observable
with STA velocity v =d = cyy+ Sev with initial spatial position pas=po. The initial position pg can
also be found as the CSTA GOPNS 2-blade flat point? [3] position

C(po) A€oy~ (0 Le)Ig ! (151)

at t=0, where E¢ =y is the t =0 hyperplane (133) and v A L¢c =P¢ is a CSTA GIPNS 4-blade flat point
entity IPc, which is the intersection of four hyperplanes (133). By CSTA dualization (153), (vo A Lo)Ig?
is a CSTA GOPNS 2-blade flat point entity IPs = P¢ A €so. The point Poc=C(pa) of a CSTA GOPNS
2-blade flat point IP§ is projected as

_ (eoy Neooy) - (€oy NIPE)

Pm= (6o, Nowy) 5 (152)

The boost B, and the other CSTA versors, can operate on the line L¢ to implement space-time transfor-
mations of a worldline representation. Intersecting L¢ with the time ¢ hyperplane E¢ = o+ ctew~ finds
the spatial position at coordinate time ¢ in the current frame as the resulting CSTA GIPNS 4-blade flat
point Pe = Le A E¢. A passive boost changes the coordinate time ¢ to be the proper time 7 in the new
frame.

CSTA dualization of a CSTA GIPNS k-blade entity X¢ gives its dual CSTA geometric outer product
null space (GOPNS) [16] (6 — k)-blade entity

X¢=XclIgh (153)
A CSTA point P is on CSTA GIPNS entity X iff

P Xc=0. (154)
A CSTA point Pe is on the corresponding dual CSTA GOPNS entity X¢ iff

PeANXE=0. (155)

The outer product of up to six well-chosen CSTA points P, produces various CSTA GOPNS (1...6)-blade

space-time surface entities X¢ = A P, for surfaces that the points span as surface points. The CSTA

GOPNS null 1-blade point (embedding) P equals the CSTA GIPNS null 1-blade hypercone Pe= K.
CSTA inherits the STA 2-versor spatial rotor

Re=R=exp(fns/2)=cos(0/2)+sin(6/2)n%s, (156)
and STA 2-versor space-time hyperbolic rotor (boost)
Be = B =exp(pvo/2) =cosh(y/2) +sinh(y/2)Vo. (157)

Compositions of rotor and boost, such as the boosted rotor and boosted boost are also inherited.
CSTA introduces the CSTA 2-versor space-time translator

Tc:exp(eooydM/Q):1+eoo7dM/2, (158)

which translates by da4. As versor compositions, CSTA also introduces the following three translated 2-
versors. The translator T¢ with (esdaq)? =0 is a geometric number form of unimodular [T¢| =1 parabolic
complex number (dual number) a + be with €2 =0.

The CSTA 2-versor spatial translated-rotor is

Le=TeRcTy ' =exp(—0~0-Le/2) =cos(6/2) +sin(0/2)Les, (159)

2. Flat point Pc A eso in [3] is called homogeneous point P a A €cory + €0y A €co~ in [16].
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which rotates by angle 6 anticlockwise (by right-hand rule) around the spatial CSA line Les = nf —
(ds-n%)es~ through point ds in the rotor axis direction fs.
The CSTA 2-versor translated-boost is

Bé=exp(p(¥v0— (dr- (¥70))€0oy) /2) = exp(gol:IC/Q) = cosh(g/2) +sinh(p /2)T¢, (160)

centered on point daq and with plane direction Dy = (Vo) Im.
The CSTA 2-versor translated-isotropic dilator is

Dc= exp(ln(d)ﬁc A em7/2) = cosh(In(d) /2) + sinh(In(d) / 2)1—:)6 A€oy (161)

for isotropic dilation by factor d > 0 relative to normalized center point Pc, i.e. PC -€s0y=—1. By versor
outermorphism [16], all CSTA versors correctly transform all CSTA GIPNS and dual CSTA GOPNS

entities.

4 Construction of Double CSTA (DCSTA)

In double conformal space-time algebra (DCSTA) D, CSTA1 C! and CSTA2 C? are orthogonal subalge-
bras and their geometric or outer product is a doubling extension. Any CSTA1 entity or versor Ac: and its
double Acz2 in CSTA2 (with the same scalar coefficients on corresponding basis blades) can be multiplied
to form the corresponding DCSTA entity or versor Ap= Ac1Ac2= Aci A Ac2. By versor outermorphism,
the DCSTA versors operate correctly on all DCSTA entities.

The DCSTA null 2-blade point

TD:D(tM):TclATc2:C1(tM1)/\CQ(th) (162)

is an extended, doubled form of the CSTA point embedding T¢ = C(tAq) (122). Note that, as in CSTA,
the DCSTA point is a geometric OPNS (GOPNS) null point, but a GIPNS null hypercone.

The construction method is further extensible to an Extended CGA (k-CGA) K, which is using not
just a double k=2, but some k corresponding orthogonal CGAi G, 11 44+1 C' of a vector space RP>4 V?,
1<1i <k, where the k-CGA entities or versors are Ax = Ac1Ac2...Ack = Aci A Ac2 A ... A Acr, and points
are Tie =K(ty) =TerTee.. Tor = Cl(tvl)c2(tv2)...Ck(tvk).

Similar to the DCSTA null 2-blade point entity, other “standard” doubled 2-blade entities are formed
as the product of corresponding CSTA1 and CSTA2 GIPNS 1-blade entities, which include the DCSTA
GIPNS 2-blade hyperplane Ep = E¢1E¢2, the DCSTA GIPNS 2-blade hyperpseudosphere 3Xp= 3132,
and the DCSTA GIPNS null 2-blade hypercone Kp = K¢1Ke2=Tr1Te2. The CSTA GIPNS intersection
entities of grades 2, 3, 4, and 5 can also be doubled into their corresponding “standard” DCSTA GIPNS
entities of even grades 4, 6, 8, or 10, respectively. The same holds that, the CSTA GOPNS entities can
be doubled into DCSTA GOPNS entities, or obtained from DCSTA GIPNS entities by using the DCSTA
dualization operation (167).

The doublings of the CSTA versors include the DCSTA 4-versor translator Tp=T¢1T¢2, the DCSTA
4-versor rotor Rp= Re1Rer and its translated form RS = R31R82 = Lc1Le2, and the DCSTA 4-versor boost
Bp= Be1Be: and its translated form B = B& B%:. The DCSTA GIPNS 2-blade hyperplane Ep= E¢1Ec»
is also the DCSTA 2-versor reflector in the hyperplane. The DCSTA GIPNS 2-blade hyperpseudosphere
3p = Xe1Xez is also the DCSTA 2-versor inversor in the hyperpseudosphere. When time is fixed as
t =0, DCSTA D effectively becomes the DCSA DS subalgebra, where the DCSA null point Tps =Tp
represents only the point by both IPNS and OPNS (i.e., PpsTps=0 iff Pps=Tps), the DCSA 2-blade
sphere Sps=Xp is the DCSA 2-versor inversor in the sphere, and the DCSA 2-blade plane Ilps= Ep
is the DCSA 2-versor reflector in the plane.

From a DCSTA point Tp, certain scalar polynomial terms, or values s, in variables z, y, z, and
w = ct can be extracted from the basis 2-blade coefficients in Tp by inner products s = Tp - Ts with
certain corresponding value s extraction operators Ty (see Table 1), which are each a certain bivector
that is an averaged sum of up to k =2 reciprocal (pseudoinverse) basis 2-blades that extract the same
coefficient value s. A DCSTA 2-blade extraction operator Tp,, 1 < i < k, for value s is the product
Th,=Te3Tot =Tps NT5t of CSTA2 and CSTAL extraction operators T3 and Tt (128), respectively, such
that s=s2s1. Note that, the reciprocal 2-blade T, is formed by using the reverse order of multiplication
of CGAi elements, as compared to the order that forms a point Tp. In Extended CGA (k-CGA) K, up
to k reciprocal basis k-blades T¢, = TCS;’:...T(?% o1, 1<i <k, extract the same coefficient value s = sj...s251
from a k-CGA point Tk.
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For example, in DCSTA D, which is a 2-CGA, we can form a DCSTA 2-blade extraction operator
T4, for value = in two ways, as 15, = TgT¢ and T, = T¢T¢1. Then, the DCSTA bivector (2-vector)
extraction operator T = T}, for value z is T}, = %(T%l +T5,) = % (€002 A €2 + €5 A €501), Which is the

average of the reciprocal 2-blades 75, and T75,. The value z is then extracted from a DCSTA point Tp
asx=Tp-T,=T, -Tp.

Tz:%(emg/\eQJres/\eool) T :%(eoog/\e3+e9/\eool) Tz:%(eOOQ/\e4+e10/\eool)
T.2=es e Ty2=egAes T,o=ejpNey

Ty :% (egNea+egAes) Ty, = % (etoNes+eghes) |Tyy :% (esNes+egNey)
th%:eog/\ngreg/\eol Tyt%:eog/\ngreg/\eol th%:eog/\e4+e10/\e01
Ti=—€esx=—€x1/Nex2 Tz, =e€o2/\ €1t e Neo1 | Ty, = —4e,=—4es1 A€o
Tw:%(el/\eoongeool/\eﬁ Tpe=e7;Ne; Tz, =€1/N\eo2+ €01 Ne7
wazé(el/\ngreg/\eﬂ Twy:%(el/\e9+e3/\e7) Twz:%(el/\elo+e4/\e7)
Tt:%Tw TtQZ%TwQ Ttti,l:%thﬁw

Tio=1Tua Tyy = Tuy Tpo== T

Table 1. DCSTA bivector extraction elements Ts.

Table 1 gives all 27 of the DCSTA bivector extraction operators (or elements) T, for the extractions
of scalar values s (indicated by the indices z, ..., tz) from any DCSTA point Tp = D(t ) by the inner
products

s=T, Tp. (163)

Note that, in Table 1, the scalar time ¢ =w /¢ is not the vector ¢ (in bold italic), where t =t is the
STA symbolic “test” position vector (5).

A linear combination of the DCSTA extraction operators Ty forms a DCSTA GIPNS bivector geo-
metric entity € that represents a polynomial function F'(w,z,y, z), which in turn represents a Darboux
cyclide implicit surface F(w,z,y,z) =0 in space-time, where

Q=) o, (164)

and

F(w,x,y,z):Tp-Q:Z Qss, (165)

with real scalar coefficients .

For w=ct=0, then t\y=ts and Tp=Tp="D(ts) is a DCSA spatial point, and the first five rows
in Table 1 are the DCSA Gy(1),2(341) extraction operators T for spatial Darboux cyclide surfaces in the
anti-Euclidean space R%3. DCSA G, g is similar to the Double Conformal / Darboux Cyclide Geometric
Algebra (DCGA) Gs o with opposite signature.

Darboux cyclides are quartic (polynomial degree 4) surfaces that include quartic Dupin cyclides
(including tori), quartic Blum cyclides, cubic (polynomial degree 3) parabolic cyclides, and general
quadric (polynomial degree 2) surfaces. In Extended CGA (k-CGA), linear combinations of the k-vector
extraction operators T¥ form k-vector entities that represent a further generalization of the Darboux
cyclide polynomial function F' that includes general degree k implicit surfaces and certain other specific
implicit surfaces of degrees k <[ <2k of inversive geometry.

The DCSTA GIPNS bivector entities for quadrics and cyclides can be directly written as linear
combinations of the extraction operators Ts. For example, an ellipsoid (centered at the origin, aligned
along the SA axes 1, 2, 73) 1s

E:TI2/02+Ty2/b2+TZ2/C2le, (166)
and a general point Pp is on it iff Pp-E=0. The DCSTA dualization of the bivector E,

EP?=EI;' =E(Icile:) 1, (167)
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is a valid GOPNS 10-vector entity where Pp is on it iff Pp A E*P =0. If time is always fixed as t =0,
then the DCSTA GIPNS bivector entities €2 formed from the T correspond to entities of Gg o DCGA
[6], up to some sign differences in some scalar expressions, due to the different choice of signature.

(8) (h)

Figure 2. DCSA 2-vector quadrics Q and their inversions 2 =SQS"™ in sphere S=Sps.

Figure 2 shows various DCSA 2-vector quadrics (and tori) Q and their inversions in a DCSA 2-blade
sphere S = Sps (S = Xp holding ¢ = 0). Figure 2(a) shows the inversion of a quartic torus, which is a
quartic Dupin ring cyclide. Figure 2(b) shows the inversion of a quadric cylinder, which is a quartic
Dupin needle cyclide. Figure 2(c) shows the inversion of a quadric cone, which is a Dupin horned cyclide.
Figures 2(d,e,f,g,h) show the inversions of various other quadrics (ellipsoid, one sheet hyperboloid, two
sheets hyperboloid, paraboloid, and hyperbolic paraboloid, resp.), which are various quartic Darboux
cyclides. Figure 2(i) shows the inversion of a torus in a sphere that is centered on a surface point of the
torus, which is a cubic parabolic cyclide. The DCSTA point at infinity €., =es1€x02 is an outlier surface
point of the quadric ellipsoid entity Q = E of Figure 2(d), where Se,,S™! = Pps = D(ps) is the center
point of sphere S and an outlier surface point (not visible in the figure) of the Darboux cyclide @ =SES™.

Any DCSTA GIPNS bivector spatial quadric surface entity Q, formed as a linear combination of
the T from the first three rows in Table 1, has no time ¢ dependency and appears to have zero velocity
in space-time. The entity Q is also a purely spatial entity in the Gy 3 DCSA subalgebra. The spatial
quadric entity Q can be actively boosted into a spatial velocity v = fev using the DCSTA 4-versor
boost operator Bp = Be1Be2 (157). In physics, the speed 0 < v < ¢ of massive bodies can only approach
light speed ¢, and the natural speed S=wv/c is then limited to 0 < S < 1. If Q has been translated by d
from the origin (perhaps by using a DCSTA translator Tp = Te1Te2) and is centered at spatial position
po=d, then the translated boost operator Bf = B&:iBg (160) can be used on Q. The boosted quadric
entity Q = BAQBL™ has center position p; =po+ vt at time ¢, and has a geometrical length contraction

(directed scaling) of the surface in the direction v by factor d = /1 — 32, which is consistent with
special relativity length contraction. While Q (in bold) is a spatial entity with no time ¢ dependency,
the boosted entity Q (in bold italic) is a space-time entity with time dependent position according to
a constant velocity v of the boost, and also a contraction effect at all times. At ¢ =0, the contraction
effect, which is a geometrical dilation, is present, and projecting @ on the DCSA subalgebra, effectively
setting ¢ =0, produces a purely spatial entity Q'=P(Q) (168) at t =0, centered at po=d, that retains
the geometrical dilation or length contraction. The result Q' is a directed scaling operation, but (so far)
limited to a scaling factor 0 <d <1.

The boost natural speed 3 for a length contraction factor d is by (16) 8 =+v'1—d?. Admitting the
imaginary scalar v/—1, the boost of a quadric by an imaginary /3 dilates by d > 1, and then the result
can be projected to the spatial subalgebra Go § DCSA to discard time components and achieve directed
spatial scaling in the direction v of the boost velocity v.
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Ellipsoid:
E'=P(BREBS™)
d=5(v1+72+73)
B=vV1-d?

d=3

Boost direction:

\7:%(‘71 + Y2+ y3)

rm

\

Time:
w=ct=0

Darboux cyclide:
E’=SE’'S~

Figure 3. Spherical ellipsoid E(r = 5) dilated by factor d =3 in direction v as ellipsoid E’ and then reflected in
sphere S as Darboux cyclide E”’.

Figure 3 visualizes [17] a DCSTA GIPNS bivector spherical ellipsoid E dilated in situ by factor d=3

in the direction v as E’ using a translated-boost operator BS centered on the center position pg=d of
E and E’. The Gy s DCSA projection is

P(A) = (A-Ips)Ips, (168)
where the DCSA unit pseudoscalar is
I'DS = 1316566132611612. (169)

E’ is reflected in a DCSTA GIPNS 2-blade (hyperpseudo)sphere S =X(t=0,r9=15) = Xc13c2 as E”,
which is a Darboux cyclide. The sphere S, initially centered on the origin, was translated using a DCSTA
4-versor translator Tp by a displacement vector d + (5 + 15)R&RN, using R= eXP(%%%(’h _ ,71)*5)’
to bring the sphere into a tangential position to E’. All are at time ¢=0.

BJEBY ] By BLEByByY  ByBu=BwR
v = fycy2 BwEB3; w=udv
B, =8/10 (Lv) - B = /(1= BB+ B2

t=10

Thomas-Wigner rotation:
t=0. L By +(ByBoEBy BY) By = RiaERG
€=23.602° n=-1y3

X

B.EBy

e u= By
Ba=9/10
Ellipsoid E(a=4,b=c=2) Using ¢=1 =10

Figure 4. Boosts of ellipsoid E, showing length contractions and Thomas-Wigner rotation.
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Figure 4 shows the DCSA 2-vector ellipsoid entity E (166) with a =4 (z-diameter 2a =8) and b=c=2
(y-diameter 2b = 4), centered on the origin with zero initial velocity, which is then boosted by various
velocities u, v, and w=u® v. In the figure, natural speeds are used with ¢=1, and all of the boost B
and rotation R versors are assumed to be their unimodular DCSTA doubled forms (e.g., By, = BcluBc%)-
The boosted ellipsoid B,EBy =E @ u (extending the notation of (69)), by u= fycy1=(9/10)~; and with
center position ut =94, at t =10, has length contraction factor v, 1— /1 — B2~0.436 and the contracted
z-diameter is approximately v, 194 ~ 3.487. The boosted ellipsoid By EBY = E ® v, by v = Bycys =
(6 /10)~y, with center position vt =6, at ¢t =10, has length contraction factor vy ' = /1 — 42 =0.8 and
the contracted y-diameter is 7, 19h = 3.2. The boosted ellipsoid ByBuEBy By = BwRaERGBw (by
(107)), with a resulting velocity w = Bwcw & 0.9372¢(0.7682; + 0.640273) (by (111) and (112)) and
center position wt=7.241 + 65 at t =10, has a more complicated contraction due to the composition of
boosts; however, when boosted back to zero velocity as By, i(BwRaERABY)Bat = RenER, then it is
only the Thomas-Wigner rotation R.s (95) of the ellipsoid E. In this example, u and v are perpendicular
(ulv), so we can also obtain By by (90) as fw = Busv = V(1 — B2)B2+ 2. The boosted ellipsoid
BwEBg has the same velocity w as By ByEBy By, but is a much different result: it is boosted into the
frame of w =0+ w, not into the frame of u then into the frame of v; it does not include the Thomas-

Wigner rotation R.s; and, it has a simple contraction by the factor /1 — 82, ~0.3487 in only the direction
w.

(a)

Figure 5. Inversion 2 = SpETX% of pseudoquadric E1 in pseudosphere X p.

Figure 5 shows the inversion  =3XpETX% of a DCSTA 2-vector pseudoquadric ellipsoid
E+:Tmz/a2—|-Ty2/b2+Tw2/C2—T1 (170)

in a DCSTA 2-blade hyperpseudosphere ¥p, which is a pseudosphere (circular space-time hyperboloid)
in the three dimensional space-time of the two spatial dimensions x and y with the pseudospatial
dimension w, holding z=0. A DCSTA 2-vector space-time pseudoquadric (pseudospatial quadric) Q™ is
formed from a DCSA 2-vector spatial quadric Q by replacing one of the coordinates x, y, or z with the
pseudospatial coordinate w. The inversion of the corresponding spatial quadric ellipsoid © = XpEXP
viewed in the same three dimensions z, y, and w sees the spatial ellipsoid as a circle (or ellipse) in the
zy-plane and as a cylinder in xyw-spacetime (i.e., the same zy-plane circle for all time w = ct), and
therefore its inversion appears quite different than the inversion of the corresponding pseudoquadric.

The DCSTA differential elements are

Dy = 2T,T5 (171)
D, = 2T,T" (172)
D, = 2T,T,' (173)
D, = 2T.T5" (174)
D, = 2T,T3" (175)

and the commutator product x of multivectors A and B is

AxB = (AB—BA)/2=-B x A. (176)
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Using the commutator product, the DCSTA differential elements are differential operators on any
bivector surface entity €2 that is formed as a linear combination of the DCSTA extraction elements
Ts. The time t derivative of €2 is

o0

Q:atQ:W:Dth. (177)

For direction n with unit magnitude ||n|2=Vmn-n' =1, the n-directional derivative operator is

5‘n:%:Dn X =(NwDw +ngDy+nyDy+n.D,) X (178)
and the n-directional derivative of any bivector entity €2 is

0= Dy, x Q. (179)

The entity € represents an implicit surface function F(w, z,y, z), and its n-directional derivative 0,2
represents the derivative implicit surface function 0, F. Mixed partial derivatives are obtained by taking
successive derivatives in any order.

5 Conclusion

Ga,8 DCSTA extends G2 g Double Conformal Space Algebra (DCSA), which is different in space signature
from the DCGA Gg 5 of [8], into a high-dimensional 12D embedding of Space-Time Algebra G, 3 that has
general quadric surface entities with a complete set of space-time transformation operations as versors
and projections.

The DCSTA 2-vector general quadric surface entities provide an accurate representation of quadric
surfaces in space-time. As discussed, boosts of the DCSTA quadric surface entities are moving surfaces
that include the special relativity effects of length contraction and Thomas-Wigner rotation. In geometry
and physics, the DCSTA 2-vector surface entities, including general quadrics and their inversions in
hyperpseudospheres, may find uses in education and applications for modeling inversive geometry and
surfaces in the space-time of special relativity.

DCSTA is an algebra for computing with general quadric surfaces and their inversions in hyper-
pseudospheres in space-time. For applications, testing, or education, DCSTA G4 s can be computed
using various software packages. During the research and writing of this paper, the author used the free
symbolic computer algebra system Sympy [18] with the GAlgebra [1] module. All figures were rendered
using Mayavi [17] and annotated with mathematical text using TEXyacs [21]-

As discussed in the paper, but not elaborated in full detail, not only is it possible to construct
a doubling of CGAs as for DCSTA, but it is also possible (in theory) to extend to any number k& of
orthogonal CGAS Gy (p41),k(¢+1)- This CGA extension theory is to be called Extended CGA or k-CGA.
In k-CGA, there are k-vector entities (linear combinations of k-blade extraction operators) that represent
general degree k surfaces and also certain other surfaces of degrees [, k <! <2k, representing all possible
inversions (and compositions of inversions) of the general degree k surfaces in hyperpseudospheres.

Bibliography

[1] Alan Bromborsky. Geometric Algebra Module for Sympy. 2016.

[2] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge: Cambridge University Press, Paper-
back reprint of the 2003 original edition, 2007.

[3] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science (Revised Edition): An Object-Oriented
Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics. Elsevier Science, 2009.

[4] Robert B. Easter. Conic and Cyclidic Sections in the G8,2 Geometric Algebra, DCGA. viXra.org, 2015. Preprint:
vixra.org/abs,/1511.0182.

[5] Robert B. Easter. Differential Operators in the G8,2 Geometric Algebra, DCGA. viXra.org, 2015. Preprint:
vixra.org/abs,/1512.0303.

[6] Robert B. Easter. G8,2 Geometric Algebra, DCGA. viXra.org, 2015. Preprint: vixra.org/abs/1508.0086.

[7] Robert B. Easter. Double Conformal Space-Time Algebra. viXra.org, 2016. Preprint: vixra.org/abs/1602.0114.

[8] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Geometric Algebra for Quadrics and Darboux
Cyclides. In Proceedings of the 33rd Computer Graphics International Conference, Heraklion, Greece, CGI ’16,
pages 93-96. New York, 2016. ACM.

[9] Robert Benjamin Easter and Eckhard Hitzer. Double conformal geometric algebra. Advances in Applied Clifford
Algebras, pages 1-25, 2017.



24 SECTION

[10] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Space-Time Algebra. AIP Conference Proceedings,
1798(1):20066, 2017.

[11] Hamilton, Sir William Rowan. Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical
Method; of which the Principles Were Communicated in 18483 to the Royal Irish Academy; and which Has Since
Formed the Subject of Successive Courses of Lectures, Delivered in 1848 and Subsequent Years, in the Halls of
Trinity College, Dublin: with Numerous Illustrative Diagrams, and with Some Geometrical and Physical Applications.
Dublin: Hodges and Smith, Grafton-Street, Booksellers to the University. London: Whittaker & Co., Ave-Maria Lane.
Cambridge: Macmillan & Co., 1853.

[12] David Hestenes. Space-Time Algebra. Springer, Second edition, 2015.

[13] David Hestenes and Garret Sobczyk. Clifford Algebra to Geometric Calculus, A Unified Language for Mathematics
and Physics, volume 5 of Fundamental Theories of Physics. Dordrecht-Boston-Lancaster: D. Reidel Publishing Com-
pany, a Member of the Kluwer Academic Publishers Group, 1984.

[14] Roger A. Horn and Charles R. Johnson. Matriz Analysis. Cambridge University Press, 2nd edition, 2013.

[15] Pertti Lounesto. Clifford Algebras and Spinors. Cambridge: Cambridge University Press, 2nd edition, 2001.

[16] Christian Perwass. Geometric Algebra with Applications in Engineering, volume 4 of Geometry and Computing.
Springer, 2009. Habilitation thesis, Christian-Albrechts-Universitat zu Kiel.

[17] P. Ramachandran and G. Varoquaux. Mayavi: 3D Visualization of Scientific Data. Computing in Science € Engi-
neering, 13(2):40-51, 2011.

[18] SymPy Development Team. SymPy: Python library for symbolic mathematics. 2016.

[19] Roman U. Sexl and Helmuth K. Urbantke. Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry
in Field and Particle Physics. Springer Vienna, 2001.

[20] Garret Sobczyk. New Foundations in Mathematics: The Geometric Concept of Number. Birkhauser Boston, 2012.

[21] J. van der Hoeven, A. Grozin, M. Gubinelli, G. Lecerf, F. Poulain, and D. Raux. GNU TeXmacs: a scientific editing
platform. ACM SIGSAM Communications in Computer Algebra, 47(1/2):59-61, 2013.



	1 Introduction
	2 Notation of Space-Time Algebra (STA)
	3 Notation of Conformal STA (CSTA)
	4 Construction of Double CSTA (DCSTA)
	5 Conclusion
	Bibliography

