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Abstract  In this work first we show that the three main formulations of physics, namely, Newton’s second law of 
motion, Maxwell field equations of electromagnetism and Einstein field equations of gravitation can be formulated 
in similar covariant forms so that the formulations differ only by the nature of the geometrical objects that represent 
the corresponding physical entities. We show that Newton’s law can be represented by a scalar, the electromagnetic 
field by a symmetric affine connection or a dual vector, and the gravitational field by a symmetric metric tensor. 
Then with the covariant formulation for the gravitational field we can derive differential equations that can be used 
to construct the spacetime structures for short-lived and stable quantum particles. We show that geometric objects, 
such as the Ricci scalare curvature and Gaussian curvature, exhibit probabilistic characteristics. In particular, we also 
show that Schrödinger wavefunctions can be used to construct spacetime structures for the quantum states of a 
quantum system, such as the hydrogen atom. Even though our discussions in this work are focused on the 
microscopic objects, the results obtained can be applied equally to the macroscopic phenomena. 
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1. Introduction 

In classical physics, particle is a general term that refers 
to a localized object that can be used to model physical 
theories. The motion of a particle can be described in a 
deterministic and predicable pattern within the framework 
of Newtonian mechanics. In quantum physics, the concept 
of the classical particle is still retained even though  
in the realm of quantum mechanics a quantum particle 
exhibits the phenomenon of matter wave, which, if not 
being simply probabilistically interpreted, is a physical 
occurrence due to an extended medium rather than a 
single physical object occupying a single position at a 
particular time in space. This epistemological problem 
raises the question of whether the concept of particle as a 
localized object is adequate for modeling physical theories 
or in fact physical theories should be based on the model 
of a particle as an extended object. In this work we  
show that quantum particles that are formed from the 
microscopic spacetime structures can be regarded as 
elementary particles in three-dimensional Euclidean space 
and can be assumed to possess the geometric and 
topological structure of a differentiable manifold, and a 
physical theory can be formulated as the dynamics of its 
spacetime structures. An intrinsic geometric dynamics of a 
differentiable manifold is a geometric process of evolution 
that can be described by physical theories such as general 
relativity [1] or geometrical theories such as the Ricci 
flow [2,3]. Even though we will not represent them in this 
work, for a more complete description an elementary 
particle should be represented as a CW complex [4,5,6]. In 

this work we will deal with the following topics. In 
Section 2 we show that classical physics that includes 
Newtonian mechanics, Maxwell field equations of 
electromagnetism and Einstein field equations of general 
relativity can be formulated in a general covariant form. In 
Section 3 we show that geometric objects such as the 
Ricci scalar curvature also have a probabilistic character. 
In Section 4 we show that Schrödinger wavefunctions can 
be used as mathematical objects to construct intrinsic 
geometric spacetime structures of quantum particles. 

2. A Covariant Formulation of Classical 
Physics 

In this section we show that the three main formulations 
of physics, namely, Newton’s second law of motion, the 
field equations of the electromagnetic field and the field 
equations of the gravitational field can be formulated in 
similar covariant forms so that the formulations differ only 
by the nature of the geometrical objects that represent the 
corresponding physical entities. Fundamentally, Newton’s 
law can be represented by a scalar, the electromagnetic 
field by a dual vector or by a symmetric affine connection, 
and the gravitational field by a symmetric metric tensor. In 
classical physics, for conservative forces, Newton’s 
second law can be written in terms of a potential energy 𝑉𝑉 
as [7] 
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Maxwell field equations of the electromagnetic field 
can be written as [8,9] 
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And Einstein field equations of the gravitational field 
can be written in the following tensorial form [1] 

 1
2

.R g R Tαβ αβ αβκ− =  (8) 

The three main systems of dynamical equations of 
physics have different mathematical formulations because 
on one hand, Newton’s second law and Maxwell field 
equations were basically derived from physical laws that 
had been established from experiments therefore they 
contain experimentally defined physical entities. On the 
other hand, Einstein field equations were proposed purely 
from scientific and mathematical reasoning. However, in 
the following we will show that all three dynamical systems 
can be formulated in the same general covariant form and 
they can be represented by the following general equation 

  M kJβ∇ =  (9) 

where 𝑀𝑀  is a mathematical object that represents the 
corresponding physical system and ∇𝛽𝛽 is a covariant 
derivative. For Newton’s second law 𝑀𝑀 = 𝐸𝐸  and 𝐽𝐽 = 0 . 
For Maxwell field equations of electromagnetism 
𝑀𝑀 = 𝐹𝐹𝛼𝛼𝛼𝛼  and 𝐽𝐽 can be identified with the electric and 
magnetic currents. And for the field equations of general 
relativity 𝑀𝑀 = 𝑅𝑅𝛼𝛼𝛼𝛼  and 𝐽𝐽  can be defined in terms of a 
metric and Ricci scalar curvature. 

In fact, Maxwell field equations of the electromagnetic 
field have already been formulated in the following 
covariant form 

 F j
x

αβ
β

α µ∂
=

∂
 (10) 

where the electromagnetic tensor 𝐹𝐹𝛼𝛼𝛼𝛼  is expressed in 
terms of the four-vector potential 𝐴𝐴𝜇𝜇 ≡ (𝑉𝑉,𝐀𝐀) as 𝐹𝐹𝜇𝜇𝜇𝜇 ≡
𝜕𝜕𝜇𝜇𝐴𝐴𝜈𝜈 − 𝜕𝜕𝜈𝜈𝐴𝐴𝜇𝜇 . The four-current 𝑗𝑗𝜇𝜇  is defined as  
𝑗𝑗𝜇𝜇 ≡ (𝜌𝜌𝑒𝑒 , 𝐣𝐣𝑒𝑒) . Since the electromagnetic tensor 𝐹𝐹𝛼𝛼𝛼𝛼  is 
anti-symmetric, it can be expressed in terms of a dual 
vector. In terms of the electromagnetic tensor 𝐹𝐹𝛼𝛼𝛼𝛼 , the 
electromagnetic energy-momentum tensor 𝑇𝑇𝛼𝛼𝛼𝛼  for the free 
electromagnetic field with the defined Lagrangian of the 

form 1
4

L F Fαβ
αβ= −  can be established as 
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where 𝜂𝜂𝛼𝛼𝛼𝛼  is the Minkowski metric tensor [8,9]. We now 
show how a covariant form as given in Equation (10) for 
the electromagnetic field can be formulated for Newton’s 
law of mechanical dynamics and the field equations of the 
gravitational field. 

In order to formulate Newton’s second law of dynamics 
covariantly, we write Newton’s second law given in 
Equations (1) and (2) in terms of the potential energy 𝑉𝑉 
with the coordinate notation 𝑥𝑥𝜇𝜇 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) as follows 
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From the definition of work done in classical mechanics, 
which is defined as the line integral of a force 𝐅𝐅 along a 
path 𝐶𝐶 , 𝑊𝑊 = ∫ 𝐅𝐅.𝑑𝑑𝐫𝐫𝐶𝐶 , the conserved energy 𝐸𝐸  for a 
particle of inertial mass 𝑚𝑚 is established as 
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From Equation (13), we obtain the following relation 
by differentiation 
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If the dynamics of the particle satisfies Newton’s 
second law given in Equation (12) then we obtain 

 0.E
xµ
∂
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 (15) 

It is seen that Equation (15) has the covariant form 
similar to Maxwell equations of the electromagnetic field 
given in Equation (10). However, the covariant equation 
for Newton’s dynamics is related to a scalar rather than a 
tensor as in the field equations for electromagnetism. 
Furthermore, it is interesting to observe the following. 
While the total energy 𝐸𝐸 = 𝑇𝑇 + 𝑉𝑉 of a physical system is 
the sum of the kinetic energy and the potential energy, the 
Lagrangian 𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉 of a physical system is essentially 
the difference between the kinetic energy and the potential 
energy. Similar to Equation (14), we can write 
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Equation (16) can be used to describe, for example, the 
expansion of a physical system in which the term 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝜇𝜇⁄  
can be considered as a repulsive force. As in the case of 
total energy 𝐸𝐸, if the Lagrangian 𝐿𝐿 of a physical system is 
conserved, i.e., 

 0L
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then we obtain 
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We now show that the field equations of the 
gravitational field can be proposed and formulated in a 
covariant form similar to the covariant form of the 
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electromagnetic field given in Equation (10). It is shown 
in differential geometry that the Ricci tensor 𝑅𝑅𝛼𝛼𝛼𝛼  satisfies 
the Bianchi identities [10] 

 1  
2

R g Rαβ αβ
β β∇ = ∇  (19) 

where 𝑅𝑅 = 𝑔𝑔𝛼𝛼𝛼𝛼 𝑅𝑅𝛼𝛼𝛼𝛼  is the Ricci scalar curvature. Even 
though Equation (19) is purely geometrical, it has a 
covariant form similar to Equation (10) for the 
electromagnetic tensor 𝜕𝜕𝛼𝛼𝐹𝐹𝛼𝛼𝛼𝛼 = 𝜇𝜇𝑗𝑗𝛽𝛽  defined in Euclidean 

space. If the quantity 1
2

g Rαβ
β∇  can be identified as a 

physical entity, such as a four-current of gravitational 
matter, then Equation (19) has the status of a dynamical 
law of a physical theory. In this case a four-current 
𝑗𝑗𝛼𝛼 = (𝜌𝜌, 𝐣𝐣𝑖𝑖) can be defined purely geometrical as 

 1 .
2

j g Rα αβ
β= ∇  (20) 

In later sections we will show that the purely geometrical 
four-current 𝑗𝑗𝛼𝛼  defined by Equation (20) can be 
established as physical entities, however, in the following 
we want to show that for the case of a purely gravitational 

field in which 1 0,
2

g Rαβ
β∇ =  the proposed field equations 

given in Equation (19) also arrive at the same results as 
those from Einstein’s formulation of the gravitational field. 
For a purely gravitational field, Equation (19) reduces to 
the equation 

 0.Rαββ∇ =  (21) 

The field equations for the gravitational field given in 
Equation (21) play the role of Maxwell field equations for 
the free electromagnetic field. Even though rigorous 
solutions to the dynamical field equations given in Equation 
(21) would require laborious mathematical investigations, 
we can obtain solutions found from the original Einstein 
field equations, such as Schwarzschild solution, by 
observing that since ∇𝜇𝜇𝑔𝑔𝛼𝛼𝛼𝛼 ≡ 0 Equation (21) implies 

 ΛR gαβ αβ=  (22) 

where Λ is an undetermined constant. Equation (22) can 
also be written in a covariant form as 

 Λ .R gαβ αβ=  (23) 

Using the identities 𝑔𝑔𝛼𝛼𝛼𝛼 𝑔𝑔𝛼𝛼𝛼𝛼 = 4 and 𝑔𝑔𝛼𝛼𝛼𝛼 𝑅𝑅𝛼𝛼𝛼𝛼 = 𝑅𝑅, we 
obtain Λ = 𝑅𝑅 4⁄ . If we consider a centrally symmetric 
gravitational field with the metric 

 ( )2 2 2 2 2 2 2 2sinds e c dt e dr r d dψ χ θ θ φ= − − +  (24) 

then the Schwarzschild solution can be found as [11] 
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It is observed that, as in the case of the free 
electromagnetic field, the energy-momentum tensor 𝑇𝑇𝛼𝛼𝛼𝛼  
for the gravitational field can be established if we define  

it through the relation 1 1 ,
2

T R g Rαβ αβ αβκ
 = − 
 

 which  

is Einstein field equations given in Equation (8). 
Furthermore, from Equation (23) we also obtain the 
relation 𝑇𝑇𝛼𝛼𝛼𝛼 = (Λ 𝜅𝜅⁄ )𝑔𝑔𝛼𝛼𝛼𝛼 . It is interesting to mention here 
that, as shown in Appendix 1, the intrinsic geometric Ricci 
flow that was introduced by Hamilton can also be derived 
from Equation (21) and given as follows 

 .2
g

R
t
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αβ
∂

= −
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Mathematically, the Ricci flow is a geometric process 
that can be employed to smooth out irregularities of a 
Riemannian manifold [2,3]. 

3. Probabilistic Characteristics of 
Geometric Objects 

In this section, we discuss the possibility of identifying 
geometric objects with physical entities and we show that 
the identifications provide a route to formulate dynamical 
equations that describe probabilistic processes in physical 
theories. In particular, by assuming the purely geometrical 
Bianchi identities as covariant field equations of the 
gravitational field we are able to derive a geometric 
diffusion equation and a Schrödinger-like wave equation 
that can be used to describe random movement of particles 
as spacetime structures. First we want to show that the 
probabilistic characteristics of geometric objects also 
manifest even in semi-classical theory such as Bohr’s 
theory of the hydrogen atom [12]. As shown in Appendix 
2, the momentum 𝑝𝑝 of the particle and the curvature 𝜅𝜅 of 
its trajectory in a plane are related by the relation 𝑝𝑝 = ℏ𝜅𝜅. 
According to the canonical formulation of classical 
physics, the particle dynamics is governed by the action 
principle 𝛿𝛿𝛿𝛿 = 𝛿𝛿 ∫ 𝑝𝑝𝑝𝑝𝑝𝑝 = 0 . Using the relation 𝑝𝑝 = ℏ𝜅𝜅 
and the expression of the curvature of a trajectory 𝑓𝑓(𝑥𝑥) in 
a plane, 𝜅𝜅 = 𝑓𝑓′′ (1 + 𝑓𝑓′2)3 2⁄⁄ , the action integral 𝑆𝑆 takes 
the form  

 
''

'2 .
1

fS ds dx
f

κ= =
+∫ ∫

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It is shown in the calculus of variations that to 
extremise the integral 𝑆𝑆 = ∫ 𝐿𝐿(𝑓𝑓, 𝑓𝑓′ , 𝑓𝑓′′ , 𝑥𝑥)𝑑𝑑𝑑𝑑 , the 
function 𝑓𝑓(𝑥𝑥) must satisfy the differential equation [13] 
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' 2 '' 0.L d L d L
f dx f dx f
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− + =
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However, with the functional of the form given in 
Equation (27), 𝐿𝐿 = ℏ 𝑓𝑓′′ (1 + 𝑓𝑓′2)⁄ , it is straightforward 
to verify that the differential equation (28) is satisfied by 
any function 𝑓𝑓(𝑥𝑥) . This result may be considered as a 
foundation for the Feynman’s path integral formulation of 
quantum mechanics, which uses all classical trajectories of 
a particle in order to calculate the transition amplitude of a  
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quantum mechanical system [14,15]. Since any path can 
be taken by a particle moving in a plane, if the orbits of 
the particle are closed, it is possible to represent each class 
of paths of the fundamental homotopy group of the 
particle by a circular path, since topologically, any path in 
the same equivalence class can be deformed continuously 
into a circular path. This validates Bohr’s assumption of 
circular motion for the electron in a hydrogen-like atom. 
This assumption then leads immediately to the Bohr 
quantum condition 

 .dspds ds d nh
r

κ θ= = = =  ∮ ∮ ∮ ∮  (29) 

The Bohr quantum condition possesses a topological 
character in the sense that the principal quantum number 𝑛𝑛 
is identified with the winding number, which is used to 
represent the fundamental homotopy group of paths of the 
electron in the hydrogen atom. 

Now we show that the geometric objects that are 
identified as physical entities from the covariant form of 
the field equations of the gravitational field given in 
Equation (19) also exhibit probabilistic characteristics. 
From the four-current of matter given in Equation (20), by 
letting 𝛼𝛼 = 0, we obtain the matter density component of 
the four-current  as 

 0 0 01 1 .
2 2

j g R g Rβ β
β βρ = = ∇ = ∂  (30) 

It is seen from Equation (30) that in order to be able to 
define matter in terms of geometric objects, the Ricci 
scalar must depend explicitly on the coordinates 𝑥𝑥𝜇𝜇 . In 
particular, if the metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼  is diagonal and the 
Ricci tensor depends explicitly on the temporal coordinate 
𝑥𝑥0 = 𝑐𝑐𝑐𝑐 then we have the geometrical density 

 001 .
2 tg R

c
ρ = ∂  (31) 

In order to give the mathematical entity 𝜌𝜌 a physical 
content, we introduce a dimensional constant 𝑘𝑘1  and 
Equation (31) is rewritten as 

 001 .
2 t
k g R
c

ρ = ∂  (32) 

We will assume that the field equations of general 
relativity given in Equation (19) can be applied to the 
microscopic spacetime structures of quantum particles and, 
furthermore, in order to specify a particular form for the 
quantity 𝑔𝑔00 , we will adopt Weyl postulate, even though 
the postulate has mainly been used for considerations of 
macroscopic phenomena. Weyl postulate requires that the 
geodesics of the perfect fluid particles are orthogonal to a 
family of spacelike hypersurfaces. As a consequence, a 
commoving frame can be introduced such that the line 
element can be written in the form [10] 

 ( )2 2 2 2
00 .ds g c dt a t g dx dxα β

αβ= −  (33) 

It is noted that Weyl hypothesis allows us to think of 
the geometry in which spatial structures evolve over time. 
With this view, quantum particles that are formed from  
the microscopic spacetime structures can be regarded as 
three-dimensional differentiable manifolds which can be 

identified with normal elementary particles in three-
dimensional Euclidean space. As a consequence, we will 
assume that the matter density 𝜌𝜌  in Equation (32) also 
satisfies the Poisson equation for a potential 𝑉𝑉 in classical 
physics 

 2
24V kπ ρ∇ =  (34) 

where 𝑘𝑘2  is a dimensional constant. Normally, Poisson 
equation is used to describe the potential field of a 
conservative force, which is time-independent. However, 
Poisson equation can also be used for time-dependent 
potentials if the Coulomb gauge is applied. In fact, Poisson 
equation can also be formulated for non-conservative 
forces in which the potentials are time-dependent [16]. 
And, even though it conserves the energy-momentum 
tensor, general relativity is non-conservative. Therefore, 
we can assume that the potential in Poisson equation given 
in Equation (34) is time-dependent. As in the case of 
Einstein theory of general relativity in which the field 
equations are proposed by observing the similarity 

between the Bianchi identities 1 0
2

R g Rαβ αβ
β
 ∇ − ≡ 
 

 

and the conservation of the energy-momentum tensor 
∇𝛽𝛽𝑇𝑇𝛼𝛼𝛼𝛼 ≡ 0 , in the following we will assume that the 
scalar potential 𝑉𝑉 and the Ricci scalar to be related by the 
relation 

 3V k R=  (35) 

where 𝑘𝑘3 is an undetermined dimensional constant. With 
the above assumptions, from Equations (32), (34) and (35) 
we obtain 

 ( )2 002 1
3

4
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π
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Equation (36) is rewritten as 
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In order to investigate further we need to specify the 
time component 𝑔𝑔00  of the metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼 . It is seen 
from Equations (2) and (4) given in Appendix 3 that a real 
spacetime structure that is described by the Ricci tensor 
can admit a real metric tensor or an imaginary metric 
tensor. If the metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼  is real then we obtain a 
diffusion equation  

 2
t R k R∂ = ∇  (38) 

where the constant 𝑘𝑘 = 𝑐𝑐𝑘𝑘3 (2𝜋𝜋𝑘𝑘1𝑘𝑘2𝑔𝑔00 ).⁄  While 
investigating the theory of the Brownian movement of 
particles suspended in a liquid, Einstein derived the 
following one-dimensional differential equation for 
diffusion [17] 

 ( )2

2
,( , ) f x tf x t D

t x
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=
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 (39) 

where 𝑓𝑓(𝑥𝑥, 𝑡𝑡) can be identified with the concentration per 
unit length of the number of particles or of the substance 
under study, and 𝐷𝐷  is the coefficient of diffusion. The 
solution to Equation (39) is 
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where 𝑀𝑀 = ∫ 𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑∞
−∞  is the total number of particles 

or the total mass of the substance. For the case of a three-
dimensional diffusion equation given in Equation (38), 
solutions can be found to take the form [18] 
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Equation (41) determines the probabilistic distribution 
of an amount of geometrical substance 𝑀𝑀 which is defined 
via the Ricci scalar 𝑅𝑅 and manifests as observable matter. 
On the other hand, if the metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼  is imaginary, 
then since the Ricci tensor 𝑅𝑅𝛼𝛼𝛼𝛼  is real and the Ricci scalar 
𝑅𝑅 is a contraction of the metric tensor and the Ricci tensor 
given by the relation 𝑅𝑅 = 𝑔𝑔𝛼𝛼𝛼𝛼 𝑅𝑅𝛼𝛼𝛼𝛼 , the Ricci scalar 𝑅𝑅  is 
imaginary. If we let 𝑅𝑅 = 𝑖𝑖Ψ then Equation (38) can be 
written as 

 2Ψ Ψ.t ik∂ = ∇  (42) 

Equation (42) is similar to the free particle Schrödinger 
wave equation in quantum mechanics 
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The similarity between Equations (40) and (41) 
suggests that the Schrödinger wavefunction 𝜓𝜓(𝐫𝐫, 𝐭𝐭)  may 
intrinsically be related to the geometrical structure of 
spacetime that can be materialised to become observable 
as quantum particles. However, it is seen that unless 
∂𝑡𝑡R = 0, Equation (42) can only be realised within the 
existing framework of mathematics if there exist real 
functions whose rates of change are imaginary functions. 
In fact, such functions can be used to describe real 
physical processes without their property of producing 
imaginary rates being realised. For example, if the rates of 
change of a real function 𝑓𝑓(𝑥𝑥) are given as 𝑑𝑑𝑑𝑑(𝑥𝑥) 𝑑𝑑𝑑𝑑⁄ =
𝑖𝑖𝑘𝑘1𝑓𝑓(𝑥𝑥)  and 𝑑𝑑(𝑑𝑑𝑑𝑑(𝑥𝑥) 𝑑𝑑𝑑𝑑⁄ ) 𝑑𝑑𝑑𝑑⁄ = 𝑖𝑖𝑘𝑘2 𝑑𝑑𝑑𝑑(𝑥𝑥) 𝑑𝑑𝑑𝑑⁄ , where 
𝑘𝑘1 and 𝑘𝑘2 are real, then 𝑑𝑑2𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑2⁄ + 𝑘𝑘1𝑘𝑘2𝑓𝑓(𝑥𝑥) = 0 is a 
real equation, which can be used to describe a wave 
motion. If we generalise Equation (38) by assuming that 
the Ricci scalar R can take complex-valued values then a 
complex solution to Equation (38) can be obtained as  

 ( )
( )

2 2 2

4
3R , , , .

4

x y zi
ktMx y z t e

iktπ

 + + 
 
 =  (44) 

Equation (44) can also be rewritten in the form 
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kt kt

π

 − +
=   

 

    + + + + × +           

(45) 

4. Spacetime Structures of Elementary 
Particles 

In this section we investigate spacetime structures of 
quantum particles by deriving equations that can be used 
to construct line elements for given Ricci scalar curvatures. 
The diffusion equation given in Equation (38) describes 
the density fluctuations of a geometrical substance that is 
undergoing diffusion. We assume that the geometrical 
substance materialises to appear as quantum particles from 
spacetime structures. For the Ricci scalar given in 
Equation (41), due to the spatial symmetry of the Ricci 
scalar, we seek a line element of the form 

 ( ) ( ) ( ) ( ) ( )2 2 2 22 , , ,ds D cdt A x y z t dx dy dx = − + +  
(46) 

where 𝐷𝐷  is constant. As shown in Appendix 3, the 
quantity 𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  satisfies the following differential 
equation 
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∂

=

 (47) 

Asymptotically, Equation (47) describes a wave motion 
for 𝑡𝑡 → ∞ given the gauge condition that involves the first 
derivatives. Those quantum particles that can be described 
by Equation (47) are short-lived subatomic particles. They 
appear for a short time and then disappear into the purely 
gravitational field with a wave motion when R → 0 . 
However, whether Equation (47) can be solved to obtain 
exact solutions requires further investigation. If the metric 
tensor of the line element given in Equation (46) is 
complex, then instead of Equation (47), we obtain the 
following equation for the complex function 𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 
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∂
− + ∇ + ∇

∂

=

 (48) 

Now, it is noted that if the Ricci scalar curvature is 
time-independent then Equation (38) reduces to Laplace 
equation 

 2R 0.∇ =  (49) 

From the relation ( ) 1 1, ,
2 2ij g R g Rα αβ αβ

β βρ= = ∇ = ∂j  

for the case of a symmetric metric tensor, we have 𝜌𝜌 = 0, 
therefore the spatial structure of a quantum particle is 
visualised only in terms of the three-current 𝐣𝐣𝑖𝑖 . Apart from 
the interesting question that arises from this result about 
what form of matter the three-current 𝐣𝐣𝑖𝑖  to represent, such 
physical structure is possible only when the metric tensor 
itself depends explicitly on time but the contraction 
𝑅𝑅 = 𝑔𝑔𝛼𝛼𝛼𝛼 𝑅𝑅𝛼𝛼𝛼𝛼  reduces the Ricci scalar to time-independent. 
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For example, from the defined relation of the Ricci scalar 
curvature as 𝑅𝑅 = 𝑔𝑔00𝑅𝑅00 + 𝑔𝑔11𝑅𝑅11 + 𝑔𝑔22𝑅𝑅22 + 𝑔𝑔33𝑅𝑅33, if 
𝑔𝑔00𝑅𝑅00  is time-independent and 𝑔𝑔11 , 𝑔𝑔11  and 𝑔𝑔11  are 
time-dependent, a time-independent Ricci scalar can be 
obtained if 𝑔𝑔11𝑅𝑅11 + 𝑔𝑔22𝑅𝑅22 + 𝑔𝑔33𝑅𝑅33 ≡ 0.  

If the spatial structure of a quantum particle is 
considered to be spherically symmetric then its 
materialised spatial structure can be described using 
spherical coordinates (𝑟𝑟,𝜃𝜃,𝜙𝜙). In this case Equation (49) 
takes the form 
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2 2

2

2 2 2

1 R 1 Rsin
sin

1 R 0.
sin

r
r rr r

r

θ
θ θθ

θ φ

∂ ∂ ∂ ∂   +   ∂ ∂ ∂ ∂   
 ∂

+ =  ∂ 

 (50) 

The general solution for the Ricci scalar curvature R 
can be found as 

 ( ) ( )( ) ( )1

0
R , , Y ,

l
ll

lm lm lm
l m l

r A r B rθ φ θ φ
∞

− +

= =−
= +∑ ∑  (51) 

where Y𝑙𝑙𝑙𝑙 (𝜃𝜃,𝜙𝜙)  is the spherical harmonics and the 
coefficients 𝐴𝐴𝑙𝑙𝑙𝑙  and 𝐵𝐵𝑙𝑙𝑙𝑙  can be determined from the 
boundary conditions [19]. 

If the spatial structure of an elementary particle is 
considered to be cylindrically symmetric, such as a thin 
disc that forms the rotor of a gyroscope, then its 
materialised spatial structure can be described using 
cylindrical coordinates (𝜌𝜌,𝜙𝜙, 𝑧𝑧) . The Laplace equation 
given in Equation (49) now takes the form 

 
2 2 2

2 2 2 2
R 1 R 1 R R 0.

zρ ρρ ρ φ
∂ ∂ ∂ ∂

+ + + =
∂∂ ∂ ∂

 (52) 

The general form of the solution for the boundary 
problem where the cylinder has a radius 𝑎𝑎 and a height 𝐿𝐿 
is found as 
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 (53) 

where 𝐽𝐽𝑚𝑚 (𝑥𝑥)  is Bessel function, 𝑘𝑘𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑚𝑚 /𝑎𝑎  with 𝑥𝑥𝑚𝑚𝑚𝑚  
are the roots of 𝐽𝐽𝑚𝑚 (𝑥𝑥𝑚𝑚𝑚𝑚 ) = 0, and the coefficients 𝐴𝐴𝑚𝑚𝑚𝑚  
and 𝐵𝐵𝑚𝑚𝑚𝑚  can be determined from the boundary conditions 
[19]. 

Although it is almost impossible to construct line 
elements for the whole value of the Ricci scalar curvatures 
given in Equations (51) and (53), it is possible to construct 
a line element for each quantum state for discrete  
values of 𝑙𝑙 and 𝑚𝑚. For example, the quantum state with 
𝑙𝑙 = 0  and 𝑚𝑚 = 0  for the spherically symmetric Ricci 
scalar curvature given in Equation (51) is 

 ( ) 00
00

1R .
4

B
r A

rπ
 = + 
 

 (54) 

If we assume a spherically symmetric line element of 
the following form 

( ) ( )( ) ( ) ( )2 2 2 22 2 2 2sinds D cdt A r dr r d r dθ φ φ= − − − (55) 

where 𝐷𝐷 , 𝐴𝐴00  and 𝐵𝐵00  are undetermined constants, then 
using the result obtained in Appendix 3, we arrive at the 
differential equation 

 00
002 2

2 1 11 .
42

Br dA A
dr A rA r π

  + − = +      
 (56) 

Equation (56) is a first order non-linear differential 
equation and it can be shown that in general there exists a 
unique solution to the initial value problem that involves 
such equation.  

5. A Relationship between Schrödinger 
Wavefunctions  and Spacetime 
Structures 

In this section, we show that there is a relationship 
between Schrödinger wavefunctions and the spacetime 
structures of a quantum system in the sense that 
Schrödinger wavefunctions are considered purely as 
mathematical objects that can be used for the construction 
of spacetime structures of the quantum states of a quantum 
system. In order to construct the spacetime structures for 
quantum particles, we observed the similarity between the 
equation 𝜌𝜌 = (𝑘𝑘1 2𝑐𝑐⁄ )𝑔𝑔00 ∂𝑡𝑡𝑅𝑅 and the equation 4𝜋𝜋𝑘𝑘2𝜌𝜌 =
∇2𝑉𝑉. We assumed that the scalar potential 𝜑𝜑 and the Ricci 
scalar curvature 𝑅𝑅 to be related by the relation 𝑉𝑉 = 𝑘𝑘3𝑅𝑅, 
where 𝑘𝑘1, 𝑘𝑘2 and  𝑘𝑘3  are undetermined dimensional 
constants. In the following we will discuss a procedure to 
construct spacetime structures for the quantum states of a 
quantum system in which Schrödinger wavefunctions are 
employed as a pathway. We also assume that the relation 
𝑉𝑉 = 𝑘𝑘3𝑅𝑅  is hold for any potential defined in classical 
physics. Since Schrödinger’s original works were on the 
time-independent quantum states of the hydrogen atom, 
we first recapture the main ideas of Schrödinger’s method 
to obtain the time-independent wave equation for the 
hydrogen atom [20,21]. Schrödinger commenced with the 
Hamilton-Jacobi equation, written in terms of the 
Cartesian coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) as  

 
2 2 2 2

2 0.S S S kqm E
x x x r

 ∂ ∂ ∂     + + − + =        ∂ ∂ ∂       
 (57) 

However, in order to obtain a partial differential 
equation that would give rise to the required results, 
Schrödinger introduced a new function 𝜓𝜓 , which is  
real, single-valued and twice differentiable, through the 
relation  

 lnS ψ=   (58) 

where the action 𝑆𝑆 is defined by 

 S Ldt= ∫  (59) 

and 𝐿𝐿 is the Lagrangian defined by 

 L T ϕ= −  (60) 

with 𝑇𝑇 is the kinetic energy and 𝜑𝜑 is the potential energy. 
In terms of the new function 𝜓𝜓, Equation (57) takes the 
form 

 



 International Journal of Physics 111 

 
2 2 2 2

2
2

2 0.m kqE
x x x r
ψ ψ ψ ψ

 ∂ ∂ ∂     + + − + =        ∂ ∂ ∂       

(61) 

Then, by applying the principle of least action defined 
in classical dynamics, 𝛿𝛿 ∫𝐿𝐿𝐿𝐿𝐿𝐿 = 0, Schrödinger arrived at 
the required equation 
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ψ ψ
 

∇ + + =  
 

 (62) 

Now we show that Schrödinger wavefunction 𝜓𝜓 can be 
used to construct the spacetime structures of the quantum 
states of the hydrogen atom. By using the defined 
relations 𝐿𝐿 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ , 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝜕𝜕𝑡𝑡𝑆𝑆 + ∑ 𝜕𝜕𝜇𝜇𝑆𝑆(𝑑𝑑𝑥𝑥𝜇𝜇/𝑑𝑑𝑑𝑑)3

𝜇𝜇=1 , 
𝑇𝑇 = 𝑚𝑚∑ (𝑑𝑑𝑥𝑥𝜇𝜇/𝑑𝑑𝑑𝑑)23

𝜇𝜇=1  and 𝜑𝜑 = 𝑇𝑇 − 𝐿𝐿, we obtain 
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= =

= −∂ + ∂∑ ∑  (63) 

In terms of the Schrödinger wavefunction 𝜓𝜓, Equation 
(63) can be rewritten as 
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From the assumed relations 𝑉𝑉 = 𝑘𝑘3R  and 𝑉𝑉 = 𝜑𝜑 𝑚𝑚⁄ , 
we obtain the following relationship between the 
Schrödinger wavefunction 𝜓𝜓  and the Ricci scalar 
curvature R 
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 (65) 

Since we will use spherical coordinates for the 
Schrödinger wave equation given in Equation (62), the 
Ricci scalar curvature should also be written in terms of 
spherical coordinates (𝑟𝑟,𝜃𝜃,𝜙𝜙). The Ricci scalar curvature 
given in Equation (65) then takes the form 
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 (66) 

The eigenfunctions 𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛 (𝑟𝑟,𝜃𝜃,𝜙𝜙)  for the hydrogen 
atom, which are solutions to the Schrödinger wave 
equation given in Equation (62), can be found in the form 

 ( ) ( ) ( ), , ,nlm nl lmr R r Yψ θ φ θ φ=  (67) 

where the spherical harmonics 𝑌𝑌𝑙𝑙𝑙𝑙 (𝜃𝜃,𝜙𝜙)  and the radial 
functions 𝑅𝑅𝑛𝑛𝑛𝑛 (𝑟𝑟) are given as 
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(69) 

where 𝜌𝜌 = 2𝑟𝑟 𝑛𝑛𝑎𝑎0⁄  and 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2 𝑚𝑚𝑞𝑞2⁄  [8]. From 
these solutions, the first few normalised wave functions 
for the hydrogen atom and their corresponding Ricci 
scalar curvatures are given below 
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 (75) 

It is seen from the above results that unless particular 
conditions are imposed, such as the constancy of the 
kinetic energy of the electron on each quantum state, as in 
Borh’s model, the mathematical construction of possible 
spacetime structures of the quantum states would require 
laborious mathematical investigations. However, we 
would like to give the following interesting discussion 
about the geometric structures of spacetime that are 
closely related to the undeterministic characteristics of the 
quantum states of a quantum system [15]. If we consider 
the quantum spacetime structures as embedded surfaces in 
the Euclidean space 𝐑𝐑3 then the Ricci scalar curvature R is 
related to the Gaussian curvature 𝐾𝐾 = 1 𝑘𝑘1𝑘𝑘2⁄  as  

 
1 2

2R
k k

=  (76) 

where 𝑘𝑘1  and 𝑘𝑘2  are the principal radii of the surface. 
Consider a surface defined by the relation 𝑥𝑥3 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) 
in Cartesian coordinates (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) . The Ricci scalar 
curvature given in Equation (76) can be found as 
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−
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where 𝑓𝑓𝜇𝜇 = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜇𝜇⁄  and 𝑓𝑓𝜇𝜇𝜇𝜇 = 𝜕𝜕2𝑓𝑓 𝜕𝜕𝜕𝜕𝜇𝜇𝜕𝜕𝜕𝜕𝜈𝜈⁄  [22]. Let 𝑃𝑃 
be a 3-dimensional physical quantity which plays the  
role of the momentum 𝑝𝑝  in the 2-dimensional action 
integral. The quantity 𝑃𝑃 can be identified with the surface 
density of a physical quantity, such as charge. Since  
the momentum 𝑝𝑝  is proportional to the curvature 𝜅𝜅 ,  
which determines the planar path of a particle, in the  
3-dimensional space the quantity 𝑃𝑃 should be proportional 
to the Ricci scalar curvature R , which is used to 
characterise a surface. If we consider a surface action 
integral of the form 𝑆𝑆 = ∫𝑃𝑃𝑃𝑃𝑃𝑃 = ∫(𝑞𝑞 𝜋𝜋⁄ ) R𝑑𝑑𝑑𝑑, where 𝑞𝑞 
is a universal constant, which plays the role of Planck’s 
constant, then we have 
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According to the calculus of variations, in order to extremise 
the action integral of the form 1 2( , , ) ,,S L f f f x dx dxµ

µ µν= ∫  
the functional 𝐿𝐿(𝑓𝑓, 𝑓𝑓𝜇𝜇 ,𝑓𝑓𝜇𝜇𝜇𝜇 , 𝑥𝑥𝜇𝜇 ) must satisfy the differential 
equations 
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However, it is straightforward to verify that with  
the functional of the form obtained from Equation  
(78), 𝐿𝐿 = (𝑞𝑞 2𝜋𝜋⁄ ) (𝑓𝑓11𝑓𝑓22 − (𝑓𝑓12)2) (1 + 𝑓𝑓1

2 + 𝑓𝑓2
2)3 2⁄ ,⁄  the 

differential equation given by Equation (79) is satisfied by 
any surface. Hence, we can generalise Feynman’s 
postulate to formulate a quantum theory in which the 
transition amplitude between states of a quantum 
mechanical system is a sum over random surfaces, 
provided the functional 𝑃𝑃 in the action integral 𝑆𝑆 = ∫𝑃𝑃𝑃𝑃𝑃𝑃 
is taken to be proportional to the Ricci scalar curvature R 
of a surface. Consider a closed surface and assume that we 
have many such different surfaces which are described by 
the higher dimensional homotopy groups. As for the case 
of positive curvatures, we choose from among the 
homotopy class a representative spherical surface, in 
which case we can write 

 Ω,
4
qPdA d
π

=∮ ∮  (80) 

where 𝑑𝑑Ω  is an element of solid angle. Since ∮𝑑𝑑Ω 
depends on the homotopy class of the sphere that it 
represents, we have ∮𝑑𝑑Ω = 4𝜋𝜋𝜋𝜋 , where 𝑛𝑛  is the 
topological winding number of the higher dimensional 
homotopy group. From this result we obtain a generalised 
Bohr quantum condition 

 .PdA nq=∮  (81) 

From the result obtained in Equation (81), as in the case 
of Bohr’s theory of quantum mechanics, we may consider 
a quantum process in which a physical entity transits from 
one surface to another with some radiation-like quantum 

created in the process. Since this kind of physical process 
can be considered as a transition from one homotopy class 
to another, the radiation-like quantum may be the result of 
a change of the topological structure of the physical 
system, and so it can be regarded as a topological effect. 
Furthermore, it is interesting to note that the action 
integral (𝑞𝑞 2𝜋𝜋⁄ )∮R𝑑𝑑𝑑𝑑  is identical to Gauss’s law in 
electrodynamics and the constant 𝑞𝑞 can be identified with 
the charge of a particle. In this case the charge 𝑞𝑞 
represents the topological structure of a physical system, 
and must exist in multiples of 𝑞𝑞. Hence, the charge of a 
physical system, such as an elementary particle, may 
depend on the topological structure of the system and is 
classified by the homotopy group of closed surfaces. This 
result may shed some light on why charge is quantised 
even in classical physics. We would also like to mention 
here that the physical entity of magnetic monopole that 
was introduced by Dirac can also be formulated in terms 
of topology and the homotopy group as discussed above 
for the electric charge if instead of one-dimensional we 
introduce a three-dimensional temporal manifold. In 
particular, we also show that the Dirac relationship 
ℏ𝑐𝑐 𝑞𝑞𝑒𝑒𝑞𝑞𝑚𝑚⁄ = 2  between the electric charge 𝑞𝑞𝑒𝑒  and the 
magnetic charge 𝑞𝑞𝑚𝑚  can be obtained from topological 
characteristics and invariants [5]. 

6. Conclusion 

We have shown in this work that physical formulations 
in classical physics that include Newton’s second law of 
motion, the field equations of the electromagnetic field 
and the field equations of the gravitational field can be 
formulated in a general covariant form so that the 
formulations differ only by the nature of the geometrical 
objects that represent the corresponding physical entities. 
In particular, when the field equations of the gravitational 
field are formulated covariantly using Bianchi identities 
then instead of viewing quantum particles as mass points 
we show that it is possible to represent them as three-
dimensional differentiable manifolds which possess 
geometric and topological structures, and these structures 
can be determined by Schrödinger wavefunctions by 
identifying the classical potential with the Ricci scalar 
curvature, and therefore we can extend the description of 
the dynamics of quantum particles in the current 
formulation of physics as mass points to the dynamics of 
elementary particles as three-dimensional differentiable 
manifolds in an ambient space. Being viewed as three-
dimensional differentiable manifolds, quantum particles 
may possess internal geometric symmetries that give rise 
to intrinsic dynamics. If elementary particles are assumed 
to remain as stable geometric structures then their intrinsic 
dynamics should be described by continuous isometric 
transformations, which is an isometric embedding into the 
spatiotemporal manifold [23]. We can describe the 
evolution of quantum particles as a change of their 
geometric structures through evolutionary processes, such 
as the Ricci flow or the field equations of general 
relativity, rather than their motion in an ambient space as 
mass points. For a purely geometrical formulation of 
physical theories we may speculate that the continuous 
isometric embedding of three-dimensional Riemannian 
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manifolds should be viewed as a continuous process of 
materialising spacetime structures rather than the motion 
of a solid physical object through space with respect to 
time. It is also possible to suggest that the process of 
materialisation from spacetime structures under a 
continuous isometric embedding will decompose the 
geometric structure of spatiotemporal manifold in the 
forms of n-cells which in turns will give rise to physical 
effects which manifest as physical fields, such as the 
gravitational field or the electromagnetic field. Therefore, 
mathematically, we consider quantum particles as  
three-dimensional differentiable manifolds which may 
have intrinsic geometric and topological structures of CW 
complexes.  

As a further remark, we would like to mention here that 
even though our discussions have been focused on the 
quantum objects, the results are equally applied to 
macroscopic phenomena.  
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Appendix 1 

In differential geometry, the covariant derivative of a 
contravariant tensor of second rank 𝐴𝐴𝛼𝛼𝛼𝛼  is given by 

 .Γ ΓA A A Aαβ αβ α σβ α ασ
γ γ σγ σγ∇ = ∂ + +  (1) 

The partial time derivative of Equation (1) is 

 

( )
( ) ( ) ( )

( ) ( )
Γ Γ

Γ Γ .

t

t t t

t t

A

A A A

A A

αβ
γ

αβ α σβ α σβ
γ σγ σγ

α ασ α ασ
σγ σγ

∂ ∇

= ∂ ∂ + ∂ + ∂

+ ∂ + ∂

 (2) 

Under the coordinate transformation 𝑥𝑥 ′𝛼𝛼 = 𝑓𝑓𝛼𝛼(𝑥𝑥𝛽𝛽), the 
tensor 𝐴𝐴𝛼𝛼𝛼𝛼  is transformed as  

 
' '

' .x xA A
x x

α β
αβ ρσ

ρ σ
∂ ∂

=
∂ ∂

 (3) 

If the coordinate transformation is time-independent 
then the partial time derivative of the tensor 𝐴𝐴𝛼𝛼𝛼𝛼  is also a 
tensor which is transformed according to the rule  

 
' ' '

.A x x A
t tx x

αβ α β ρσ

ρ σ
∂ ∂ ∂ ∂

=
∂ ∂∂ ∂

 (4) 

In this case, we have 

 
( )
( ) ( ) ( )Γ Γ .

t

t t t

A

A A A

αβ
γ

αβ α σβ α ασ
γ σγ σγ

∇ ∂

= ∂ ∂ + ∂ + ∂
 (5) 

It is observed from Equations (2) and (5) that if we 
impose the following condition on Equation (2) 

 ( ) ( )Γ Γ 0t tA Aα σβ α ασ
σγ σγ∂ + ∂ =  (6) 

then we obtain the identity 

 ( ) ( ).t tA Aαβ αβ
γ γ∇ ∂ = ∂ ∇  (7) 

For a metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼  we have the identity 
∇𝛾𝛾�𝜕𝜕𝑡𝑡𝑔𝑔𝛼𝛼𝛼𝛼 � = 𝜕𝜕𝑡𝑡�∇𝛾𝛾𝑔𝑔𝛼𝛼𝛼𝛼 � ≡ 0 , and therefore from the 
field equations  ∇𝛽𝛽𝑅𝑅𝛼𝛼𝛼𝛼 = 0 we arrive at 

 
g

kR
t
αβ

αβ
∂

=
∂

 (8) 

where 𝑘𝑘 is a scaling factor. 

Appendix 2 

In differential geometry, the position vector 𝐫𝐫(𝑠𝑠), the 
unit tangent vector 𝐭𝐭(𝑠𝑠), the unit principal normal vector 
𝐩𝐩(𝑠𝑠) and the unit binormal vector 𝐛𝐛(𝑠𝑠), defined by the 
relation 𝐛𝐛(𝑠𝑠) = 𝐭𝐭(𝑠𝑠) × 𝐩𝐩(𝑠𝑠), satisfy the Frenet equations 
[22] 

 , ,d d d
ds ds ds

κ κ= = − + = −
t p bp t b p   (1) 

where 𝜅𝜅(𝑠𝑠)  and 𝜚𝜚(𝑠𝑠)  are the curvature and the torsion 
respectively, and 𝑑𝑑𝑑𝑑 = √𝑑𝑑𝐫𝐫.𝑑𝑑𝐫𝐫 is the linear element. If we 
consider the motion of a particle in a plane, as in the case 
of Bohr’s model of a hydrogen-like atom, the Frenet 
equations reduce to  

 , .d d
ds ds

κ κ= = −
t pp t  (2) 

By differentiation, we obtain the following system of 
differential equations 

 
( )2

2
2

ln
0

dd d
ds dsds

κ
κ− + =

t t t  (3) 

 
2

2
2

(ln ) 0.d d d
ds dsds
κ κ− + =

p p p  (4) 

If the curvature 𝜅𝜅(𝑠𝑠) is assumed to vary slowly along 
the curve 𝐫𝐫(𝑠𝑠), so that the condition 𝑑𝑑(ln𝜅𝜅) 𝑑𝑑𝑑𝑑⁄ = 0 can 
be imposed, then 𝐭𝐭(𝑠𝑠) and 𝐩𝐩(𝑠𝑠) may be regarded as being 
oscillating with a spatial period, or wavelength, λ, whose 
relationship to the curvature 𝜅𝜅 is found as 

 2 .πκ
λ

=  (5) 

In the case of the Bohr’s planar model of a hydrogen-like 
atom with circular orbits, the condition 𝑑𝑑(ln𝜅𝜅) 𝑑𝑑𝑑𝑑⁄ = 0 is 
always satisfied, since the curvature remains constant for 
each of the orbits. In order to incorporate this elementary 
differential geometry into quantum mechanics, we identify 
the wavelength defined in Equation (5) with the de 
Broglie’s wavelength of a particle. This seems to be a 
natural identification since the spatial period 𝜆𝜆  is the 
wavelength of the unit tangent vector 𝐭𝐭(𝑠𝑠) . With this 
assumption, the momentum 𝑝𝑝  of the particle and the 
curvature 𝜅𝜅 are related through the relation  
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 .p κ=   (6) 

Appendix 3 

In this appendix, we show in detail the derivation of  
the equations to determine the metric tensor of the line 
element given in Equations (46) and (55) in section 3.  
In differential geometry, the Riemann curvature tensor 
𝑅𝑅𝛼𝛼𝜇𝜇𝜇𝜇𝜇𝜇  is defined in terms of the affine connection Γ𝛼𝛼𝛼𝛼

𝛾𝛾  as  

 
Γ Γ

Γ Γ .Γ ΓR
x x

α α
µβ µνα λ α λ α

µβν µβ λν µν λβν β

∂ ∂
= − + −

∂ ∂
 (1) 

The contraction of the Riemann curvature tensor given 
in Equation (1) with respect to the indices 𝛼𝛼 and 𝛽𝛽 gives 
the Ricci tensor 

 
Γ Γ

Γ Γ Γ Γ .R
x x

σ σ
µν µσ λ σ λ σ

µν µν λσ µσ λνσ ν

∂ ∂
= − + −
∂ ∂

 (2) 

On the other hand, the contraction of the Riemann 
curvature tensor with respect to the indices 𝛼𝛼 and 𝜇𝜇 gives 
the segmental curvature tensor [24] 

 
Γ Γ

.Q
x x

λ λ
λβ λα

αβ α β

∂ ∂
= −
∂ ∂

 (3) 

It is seen from Equation (3) that if the affine connection 
Γ𝛼𝛼𝛼𝛼
𝛾𝛾  is symmetric with respect to the indices 𝛼𝛼 and 𝛽𝛽 then 

the segmental curvature tensor 𝑄𝑄𝛼𝛼𝛼𝛼  is anti-symmetric and 
in this case it might be used to formulate the 
electromagnetic field as given in Equation (10). In order to 
formulate the field equations for the gravitational field it is 
necessary to introduce a symmetric metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼  in 
terms of which the affine connection Γ𝛼𝛼𝛼𝛼

𝛾𝛾  is defined as 

 1Γ .
2

g gg
g

x x x
σµ µνλ λσ σν

µν µ ν σ

∂ ∂ ∂
= + − 

∂ ∂ ∂ 
 (4) 

However, with the introduction of the symmetric metric 
tensor, it can be shown that the segmental curvature tensor 
vanishes. This result shows that the electromagnetic field 
and the gravitational field may not be formulated on the 
same geometric structure of a Riemannian manifold. With 
the line element given in Equation (46) in section 3, we 
obtain the following non-zero components of the affine 
connection [25] 

 1 1 2 2
01 10 02 20

1 1Γ Γ , Γ Γ
2 2

A A
cA t cA t

∂ ∂
= = = =

∂ ∂
 

 3 3 0
03 30 11

1 1Γ Γ   , Γ
2 2

A A
cA t cD t

∂ ∂
= = =

∂ ∂
 

 1 2 3
11 11 11

1 1 1Γ , Γ , Γ
2 2 2

A A A
A x A y A z
∂ ∂ ∂

= = − = −
∂ ∂ ∂

 

 1 1 2 2
12 21 12 21

1 1Γ Γ , Γ Γ
2 2

A A
A y A x
∂ ∂

= = = =
∂ ∂

 

 1 1 3 3
13 31 13 31

1 1Γ Γ , Γ Γ
2 2

A A
A z A x
∂ ∂

= = = =
∂ ∂

 

 0 1 2
22 22 22

1 1 1Γ , Γ , Γ
2 2 2

A A A
cD t A x A y

∂ ∂ ∂
= = =

∂ ∂ ∂
 

 3 0 1
22 33 33

1 1 1Γ  , Γ , Γ
2 2 2

A A A
A z cD t A x
∂ ∂ ∂

= − = = −
∂ ∂ ∂

 

 2 3
33 33

1 1Γ , Γ ,
2 2

A A
A y A z
∂ ∂

= − =
∂ ∂

 

 2 2 3 3
23 32 23 32

1 1Γ Γ , �Γ Γ .
2 2

A A
A z A y
∂ ∂

= = = =
∂ ∂

 (5) 

From the components of the affine connection given in 
Equation (5), we obtain 

 

2 2 2

11 2 2 2 2

22

2 2

22 2

2 2 2

1 1 1
22

1 3
2 4

1 1 1
4

.
4

A A AR
A Ac D t x y

A A
A tz c AD

A A A
x y zA A A
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= − −

∂ ∂ ∂

∂ ∂ − +  ∂ ∂

 ∂ ∂ ∂   + + +    ∂ ∂ ∂    

 

 

2 2 2

22 2 2 2 2

22

2 2

22 2

2 2 2

1 1 1
22

1 3
2 4

1 1 1
4 4

A A AR
A Ac D t x y

A A
A tz c AD

A A A
x y zA A A
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= − −

∂ ∂ ∂

∂ ∂ − +  ∂ ∂

 ∂ ∂ ∂   + + +    ∂ ∂ ∂    

 

 

2 2 2

33 2 2 2 2

22

2 2

22 2

2 2 2

1 1 1
2 22

1 3
4

1 1 1
4 4

A A AR
A Ac D t x y

A A
A tz c AD

A A A
x y zA A A
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= − −

∂ ∂ ∂

∂ ∂ − +  ∂ ∂

 ∂ ∂ ∂   + + +    ∂ ∂ ∂    

 

 
22

00 2 2 2 2
3 3

2 4
.A AR

tc A t c A
∂ ∂ = − +  ∂ ∂

 (6) 

Using 𝑅𝑅 = 𝑔𝑔00𝑅𝑅00 + 𝑔𝑔11𝑅𝑅11 + 𝑔𝑔22𝑅𝑅22 + 𝑔𝑔33𝑅𝑅33 we 
obtain 

 ( )
2

22
2 2 2 3
3 2 3

2
.AR A A

c DA t A A
∂

= − + ∇ + ∇
∂

 (7) 

With the line element given in Equation (55), we  
obtain the following non-zero components of the affine 
connection are [26] 

 1 1 2 2
11 22 12 12

1 1Γ , Γ , Γ Γ
2

dA r
A dr A r

= = − = =  

 3 3 1 2
13 31 33

1Γ Γ , Γ sinr
r A

θ= = = −  

 2 3 3
33 23 32Γ cos sin , Γ Γ cot .θ θ θ= − = =  (8) 
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From the components of the affine connection given in 
Equation (8), we obtain 

 11 22 2
1 1, 1

2
dA r dAR R

rA dr A drA
= − = − −  

 2
33 002

1 1 sin , 0.
2

r dAR R
A drA

θ 
= − − = 
 

 (9) 

Using 𝑅𝑅 = 𝑔𝑔00𝑅𝑅00 + 𝑔𝑔11𝑅𝑅11 + 𝑔𝑔22𝑅𝑅22 + 𝑔𝑔33𝑅𝑅33 we 
obtain 

 2 2
2 1R 1 .

2
r dA

dr AA r
 = + − 
 

 (10) 
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