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Abstract: In this work we show that by restricting the coordinate transformations to the group
of time-independent coordinate transformations it is possible to derive the Ricci flow from
the contracted Bianchi identities.

In differential geometry, the Ricci flow is a geometric process that can be employed to
smooth out irregularities of a Riemannian manifold. The Ricci flow is introduced by the
equation [1]
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In general, the partial time derivative of a tensor is not a tensor therefore the Ricci flow given
in Equation (1) is not a tensorial equation. However, as will be shown later, the Ricci flow is
a tensorial equation within the group of coordinate transformations that are time-independent.
From the Ricci flow, various geometric quantities will evolve when the metric g,z evolves

with time. The following results have been obtained [1,2]
Inverse metric g%#:

E)g“ﬁ

at=2Raﬁ (2)

Affine connection I75:

0l

ot ~9°" (VaRgy + VgRay — VyRap) (3)
Riemann curvature tensorR .,
R

gtw = ARqpyo + 2(Bagyo — Bapoy = Baopy + Baypo)

- ng(RpBychra + RapyaR‘cB + Ra,BpaR‘L'y + Raﬁyrchr) (4)
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Ricci curvature tensor R,g:
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Ricci scalar curvature R:
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In differential geometry, the contracted Bianchi identities can be written in the following
from
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VgR* = Eg“ﬁ’vﬁR (7

It is interesting to note that Equation (7) has a covariant form of the field equations of the
electromagnetic field written in a covariant form as
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where the electromagnetic tensor F*8 is expressed in terms of the four-vector potential
At = (V,A) as F*V = g*AY — dVAH. The four-current j# is defined as j* = (p,,j.). From
this similarity between Equation (7) and Equation (8) it is possible that a four-current of some
form of matter j* = (p, j;) can be defined purely geometrical as [3]
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In this work, however, we will consider only for the case in which %g“BVBR = 0. In this

case, Equation (7) reduces to the equation

VgR% =0 (10)

We have two different situations that we will consider in detail in the following. First, since
V#g“ﬁ = 0 for a given metric tensor g*#, Equation (9) implies

R%B = pNg*FB (11)
where A is an undetermined constant. Equation (10) can also be written in a covariant form as
Rap = ANgagp (12)

Using the identities g,3g%" = 4 and g,sR* = R, we obtain A = R/4. As an example, if
we consider a centrally symmetric gravitational field with the metric

ds? = e¥c?dt? — eXdr? — r?(d6? + sin®0d¢?) (13)

then the Schwarzschild solution can be found as [4]
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It is seen from the resulted line element given in Equation (14) that the contracted Bianchi
identities given in Equation (7) could be identified as field equations for the gravitational
field.

Now we consider the second situation and show how the Ricci flow can be derived from the
field equation given in Equation (10). In differential geometry, the covariant derivative of a

contravariant tensor of second rank A%# is given by

V,A% = 0,A% +T& A% + TE A% (15)
The partial time derivative of Equation (15) is

0,(v,A%F) = 9,(8,4%F) + (8,T%,)A%F +T%,(0,4°P) + (8,T%,)A% +TZ(9,A%°) (16)
Under the coordinate transformation x'® = f%(x#), the tensor A*# is transformed by the law

dx'* ax'P

AP =
0xP 0x°
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If the coordinate transformation is time-independent then the partial time derivative of the
tensor A% is also a tensor which is transformed according to the rule
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= 1
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In this case, we have
v,(8,A%F) = 0, (0,A%F) + T (8,A°F) + T%,(8,A%°) (19)

It is observed from Equations (16) and (19) that if we impose the following condition on
Equation (16)

(6,T%)A% + (8, )A% =0 (20)
then we obtain the identity
v, (8,4%F) = 9,(v,A%F) (21)

In the case of a metric tensor g*# then we have V,(8,9%) = 9,(v,g*f) = 0, and in this
case from the field equations VﬁR“B = 0 we arrive at

0,9 = —kR*F (22)

where -k is a scaling factor. Equation (22) can also be written in a covariant form of the
Ricci flow as

= kRaﬁ (23)



As an example, consider a simple line element of the form [3]
ds? = D(cdt)? — A(x,y,z,t)[(dx)? + (dy)? + (dx)?] (24)

where D is constant. If the coordinate transformations are time-independent then for a
covariant metric tensor g,z We have the following results

Vygaﬁ = ay.ga[:’ - ng.gaﬁ - Fﬁaygaa (25)
at(vygaﬁ) = at(aygaﬁ) - (atro(tf]/)gaﬁ - ng(atgaﬂ) - (atrﬁay)gaa - Fﬁay(atgaa) (26)
Vy(at.gab’) = ay(atgaﬂ) - ng(atgaﬁ) - Fﬁay(atgaa) (27)

Therefore, the relation v, (8,9,5) = 9:(V, gap) is obtained if we impose the conditions

(atrgy)ga[f + (atrﬁay)gaa =0 (28)

With the line element given in Equation (24), using the non-zero components of the affine
connection given in the appendix, the imposed conditions given in Equation (28) lead to the
following conditions for the quantity A
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It is seen from the above conditions that the quantity A must be time-independent and the
Ricci flow given in Equation (23) leads to the purely geometrical field R,z = 0 which admit

only time-independent solutions. Since the equation R,z = 0 implies the equation R = 0,
from Equation (4) in the appendix we obtain the following equation for the quantity A

3
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Appendix

In differential geometry, the affine connection F;’ﬁ is defined as
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With the line element given in Equation (24), we obtain the following non-zero components
of the affine connection [5]
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From the components of the affine connection given in Equation (2), we obtain
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Using the relation R = g°°Ry, + g''R11 + g%%R,, + g33R33 We obtain
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