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Abstract: 

I applied the method of the second variations of the Calculus of 
Variations to the Einstein-Hilbert action. Since the Einstein-Hilbert’s 
Lagrangian for a gravitational field is proportional to the Ricci curvature scalar, 
construction of the Euler-Lagrange equations requires dealing with the tensor 
quantities from which the Ricci curvature scalar is composed rather than the 
Ricci curvature scalar itself.  As the result of applying this method two Euler-
Lagrange equations emerged; both equations yielded the same Einstein’s field 
equations in absence of energy-momentum fields.  
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Introduction: 
It is of interest to derive equations of motion of various fields (gravitational, 
electromagnetic, etc) from action because it has several advantages. First of all, 
it allows for easy unification of different fields theories e.g. gravitational fields 
with other classical field theories such as electromagnetic fields theory, which 
are also formulated in terms of an action. In the process the derivation of 
equation of motion of the gravitational fields from an action identifies a natural 
candidate for the source term coupling the metric tensor to energy fields. 
Moreover, the action allows for the easy identification of conserved quantities 
through Noether's theorem by studying symmetries of the action. 
In the general theory of relativity, the action is usually assumed to be a 
functional of the metric tensor (and energy-momentum tensor fields). In this 
work we consider only the Euler-Lagrange equations in absence of energy-
momentum fields. 
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The Einstein-Hilbert action 
The Einstein-Hilbert action for the gravitational field may be written as  

41( ) ( )
2  E HI R g d x


    (1.1) 

Where , R , g , and 4g d x  are Einstein constant ( 48 G c  ), Ricci curvature 
scalar, determinant of the metric tensor and the invariant hyper-volume element 
of a 4-dimenasional spacetime, respectively. 
The Ricci curvature scalar R  is a function of the metric tensor, its first and 
second derivatives with respect to the spacetime 
coordinates 0 1 2 3 4 1 2 3 4( , , , , ) ( , , , , ) ix x x x x x ct x x x x ; i.e. ( , ,( , , ) ab ab c ab cdR R g g g ).  
The action principle then tells us that the variation of the action in equation 
(1.1) with respect to the arguments of the integrand is zero, yielding 

 4 41 10 [ ( ) ( )] ( ) ( )
2 2      ab

E H abI R g d x g R g d x  
 

 (1.2) 

we have made use of the following relation  
 ab

abR g R  
where abg is the contravariant metric tensor and abR  is the Ricci curvature tensor. 
We may write the integral in equation (1.2) as a sum of two integrals, namely, 

 4 41 10 [ ( ) ( ) ( ) ] [ ( ) ( ) ( ) ]
2 2

    ab ab
ab abR g g d x g g R d x 

 
 (1.3) 

 
Second Variations of the Calculus of Variations of scalar functions 
It is well known that the Euler-Lagrange equation resulting from applying the 
second variations of the Calculus of Variations of a Lagrangian functional 

( , ( ), ( ), ( )) L x y x y x y x  of a single independent variable ( )y x , its first and second 
derivatives of the following action  

 [ ( )] ( , ( ), ( ), ( ))   I y x L x y x y x y x dx      (1.4) 

When varied with respect to the arguments of integrand and the variation are set 
to zero, i.e. 

 0 [ ( )] ( , ( ), ( ), ( ))    I y x L x y x y x y x dx    (1.5) 

is given by 
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2 0
  

  
   

L d L d L
y dx y dx y

    (1.6) 

provided that the variations y and y vanish at the end points of the integration. 
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Second Variations of the Calculus of Variations of tensor functions 
We assume that equation (1.6) to be valid for tensor functions whose arguments 
are the metric tensor, its first derivative and its second derivative with respect 
to the spacetime coordinates, provided that the variations abg and ,ab cg  vanish 
at the end points of the integration.  
As an example, for a tensor function , ,( , , ) ab ab c ab cdK K g g g , the Euler-Lagrange 
equations may written as 
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, ,

0
   

  
     

ab ab ab
s s r

mp mp s mp sr

K K K
g x g x x g

    (1.7) 

provided that the variations mpg and ,mp sg vanish at the end points of the 
integration. 
 
Euler-Lagrange equations of the Einstein’s field equations from the first 
Einstein-Hilbert integral 
The Euler-Lagrange equation corresponding to the first integral in equation 
(1.3) may be written as 

2

, ,

( ) ( ) ( )1( ) [ ] 0
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      
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g g g g g g
R

g x g x x g
  (1.8) 

Since g  and abg don’t depend on the first and the second derivatives of the 
metric tensor with respect the spacetime coordinates, their partial derivatives 
with respect to them give zero. So equation (1.8) becomes 
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
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R
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  (1.9) 

This is the Euler-Lagrange equation that produces Einstein’s field equations. 
It should be noted that in equation (1.9) the Ricci tensor shouldn’t be dropped 
out by diving both sides by it, for it would lead to an absurd result. 
 
Derivation of Einstein's field equations from the Euler-Lagrange equation 
of the first Einstein-Hilbert integral 
To proof that equation (1.9) produces Einstein’s field equations, we perform the  
partial differentiation and use the following useful equations 

(1 2)
 

 


mp

mp

g
g g

g
 

and, 



(4) 

 


 



ab
am bp

mp

g g g
g

 

Then, equation (1.9) yields, 
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Now, dividing both sides of the equation (1.10) by g  or either say g  is not 
zero, we arrive at the Einstein’s field equations in absence of energy-momentum 
fields. 
 
Euler-Lagrange equations of the Einstein’s field equations from the second 
Einstein-Hilbert integral 
The Euler-Lagrange equation corresponding to the second integral in equation 
(1.3) may be written as 
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Differentiation of the Ricci curvature tensor with respect to its arguments 
To calculate the differentiation of the Ricci curvature tensor with respect to the 
metric tensor, its first derivative and second derivative we write first Riemann 
curvature tensor and Ricci tensor as explicit functions of the metric tensor, its 
first derivative and second derivative. So, the Riemann curvature tensor is 
defined as, 

, ,      d d d d e d e
abc ac b ab c be ac ce abR  

using the Christoffel’s symbols of the first and the second kinds defined 
respectively as, 

, , ,
1 ( )
2

   ijk ik j jk i ij kg g g  
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and  

, , ,
1 ( )
2

     l kl kl
ij ijk ik j jk i ij kg g g g g  

The Riemann curvature tensor may be put in the following form, 
 , ,( ) ( )       d df de fh

abc acf b abf c acf beh abf cehR g g g   (1.12) 
 We may now obtain the Ricci curvature tensor simply by contracting two 
indices of the Riemann curvature tensor (putting d c ) in equation (1.12) and 
summing, we get 

 , ,( ) ( )        c cf ce fh
ab abc acf b abf c acf beh abf cehR R g g g  (1.13) 

Differentiating abR   in equation (1.13) with respect to mpg , ,mp sg and ,mp srg , 
respectively, we get 
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(1.14) 
Performing the partial differentiations on the second and the third part of 
equation (1.14), we get 
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 (1.15) 
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Performing the calculation of the second and the third term in equation (1.15) 

and multiplying each term in the same equation by 1( ) ( )
2

 abg g
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, then equation 

(1.11), yields  
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In a local inertial frame of reference (LIF) at a point, the following expression is 
true: 

ij ijg   and , 0ij kg  
Where ij is the metric tensor of the flat spacetime. 
The above condition of a LIF implies that all Christoffel’s symbols are zero, 
and 1  g , (we are using spacetime with signature ( 1, 1, 1, 1)    ), then 
equation (1.16) becomes 

1( ) ( { 3 (1 2) } 0
2

      amp amp mp ae rmp sq mp
a a ea r qsg R R g R R R g


 (1.17) 

Dividing both sides by 1( ) ( )
2

g


, and collecting similar terms together, we get 

{ (1 2) } 0amp mp ae
a eaR g R      (1.18) 

Which are again the Einstein’s field equations in absence of energy-momentum 
fields. 
 
Conclusion 
Euler-Lagrange equations for the gravitational field could only be constructed 
from tensor quantities and not by direct differentiation of the scalar quantities 
on which the Lagrangian is based as in case of scalar field theories.   
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