Author:

Ramesh Chandra Bagadi

Data Scientist

INSOFE (International School Of Engineering), Hyderabad, India. rameshcbagadi@uwalumni.com $+91\ 9440032711$

Technical Note

Abstract

In this research Technical Note the author has presented a novel method of finding a Generalized Similarity Measure between two Vectors of the same size.

Theory

We consider two vectors $\vec{A}_1 = \sum_{i=1}^n (x_{1i})\hat{e}_i$ and $\vec{A}_2 = \sum_{i=1}^n (x_{2i})\hat{e}_i$ and we consider a Similarity

Vector given by

$$S_V(\vec{A}_1, \vec{A}_2) = \sum_{i=1}^n \left\{ \left(\frac{x_{1i}^2}{x_{1i} x_{2i}} \right) F_1 + \left(\frac{x_{2i}^2}{x_{1i} x_{2i}} \right) F_2 \right\} \hat{e}_i$$

where $F_1 = 1$ and $F_2 = 0$ when $x_{1i} < x_{2i}$ and $F_1 = 0$ and $F_2 = 1$ when $x_{1i} > x_{2i}$. That is,

$$S_V(\vec{A}_1, \vec{A}_2) = \sum_{i=1}^n \left\{ \left(\frac{x_{1i}}{x_{2i}} \right) F_1 + \left(\frac{x_{2i}}{x_{1i}} \right) F_2 \right\} \hat{e}_i$$

where $F_1 = 1$ and $F_2 = 0$ when $x_{1i} < x_{2i}$ and $F_1 = 0$ and $F_2 = 1$ when $x_{1i} > x_{2i}$

We now Normalize the vector $S_{V}(\vec{A}_{1}, \vec{A}_{2})$ using L2 Norm. This gives us

$$\hat{S}_{V}(\vec{A}_{1}, \vec{A}_{2}) = \frac{\sum_{i=1}^{n} \left\{ \left(\frac{x_{1i}}{x_{2i}} \right) F_{1} + \left(\frac{x_{2i}}{x_{1i}} \right) F_{2} \right\} \hat{e}_{i}}{\sqrt{\sum_{i=1}^{n} \left\{ \left(\frac{x_{1i}}{x_{2i}} \right) F_{1} + \left(\frac{x_{2i}}{x_{1i}} \right) F_{2} \right\}^{2}}}$$

where $F_1 = 1$ and $F_2 = 0$ when $x_{1i} < x_{2i}$ and $F_1 = 0$ and $F_2 = 1$ when $x_{1i} > x_{2i}$

Now, we define the Similarity Measure of the considered two Vectors as

$$S_{M}(\vec{A}_{1}, \vec{A}_{2}) = \sum_{i=1}^{n} \left\{ \frac{\left\{ \left(\frac{x_{1i}}{x_{2i}} \right) F_{1} + \left(\frac{x_{2i}}{x_{1i}} \right) F_{2} \right\}}{\sqrt{\sum_{i=1}^{n} \left\{ \left(\frac{x_{1i}}{x_{2i}} \right) F_{1} + \left(\frac{x_{2i}}{x_{1i}} \right) F_{2} \right\}^{2}}} \right\}$$

References

http://www.philica.com/advancedsearch.php?author=12897 http://www.vixra.org/author/ramesh_chandra_bagadi