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Abstract

We discuss the theoretical description of dyons having simultaneously both electric and
magnetic charges on the basis of space-time algebra of sixteen-component sedeons. We show
that the generalized sedeonic equations for electromagnetic field of dyons can be reformulated
in equivalent canonical form as the equations for redefined field potentials, field strengths and
sources. The relations for energy and momentum as well as the relations for Lorentz invariants
of dyonic electromagnetic field are derived. Additionally, we discuss the sedeonic second-order
Klein-Gordon and first-order Dirac wave equations describing the quantum behavior of dyons
in an external dyonic electromagnetic field.

1 Introduction

A dyon is a hypothetical point particle, which has simultaneously both elementary electric qe and
elementary magnetic qm charges was proposed by J. Schwinger in 1969 [1]. In fact, the dyonic
concept is a development of the idea of magnetic monopoles proposed previously by P.A.M. Dirac
[2,3]. Magnetic monopoles as well as dyons increase the symmetry of the Maxwell equations. Taking
into account the magnetic charges and corresponding magnetic currents the Maxwell equations for
the electromagnetic field in a vacuum are represented in absolutely symmetric form [1]:

∇ ·E = 4πρe,

1

c

∂E

∂t
−∇×H = −4π

c
je,

∇ ·H = 4πρm,

1

c

∂H

∂t
+∇×E = −4π

c
jm.

(1)

Here ρe is a volume density of electric charge; je is a volume density of electric current; ρm is a
volume density of magnetic charge and jm is a volume density of magnetic current. These equations
are invariant under the electromagnetic duality transformations for field strengths and sources [4]:

E→ H, H→ −E,
je → jm, jm → −je,
ρe → ρm, ρm → −ρe.

(2)

In recent years, there have been a few publications devoted to the reformulation of equations for
electromagnetic field in terms of hypercomplex field potentials. The first approach is based on four-
component quaternions, which consist of scalar and vector parts that adequately describe the four-
vector concept of special relativity [5-8]. In particular quaternions were applied for the description
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of dyons [9-11]. However, since the system of Maxwell equations consists of four equations for
scalar, pseudoscalar, vector and pseudovector values, the application of eight-component algebras
is more appropriate. Taking into account this spatial symmetry several approaches have been
proposed to describe the electromagnetic field on the basis of eight-component octonions [12-16]
and octons [17-19]. Particularly these algebras were used for the description of dyonic field [20-
23]. However, a consistent relativistic consideration implies equally the space and time symmetries
that require using the extended sixteen-component space-time algebras. Recently we proposed
the space-time algebra of sixteen-component sedeons, which takes into account the symmetry of
physical values with respect to the space-time inversion and realizes the scalar-vector representation
of Poincare group [24]. In particular, we considered the equations for massive and massless fields
based on sedeonic potentials and space-time operators [25-27]. In the present paper we consider
the application of sedeonic algebra to the description of dyonic electromagnetic field and to the
reformulation of relativistic quantum equations for dyons in an external electromagnetic field.

2 Algebra of space-time sedeons

To begin with we shortly recall the main properties of sedeons [24]. The algebra of sedeons encloses
four groups of values, which are differed with respect to spatial and time inversion.

1. Absolute scalars (A) and absolute vectors ( ~A) are not transformed under spatial and time
inversion.

2. Time scalars (Bt) and time vectors ( ~Bt) change sign under time inversion and are not trans-
formed under spatial inversion.

3. Space scalars (Cr) and space vectors (~Cr) are changed under spatial inversion and are not
transformed under time inversion.

4. Space-time scalars (Dtr) and space-time vectors ( ~Dtr) change sign under spatial and time
inversion.

The indexes t and r indicate the transformations (t for time inversion and r for spatial inversion),
which change the corresponding values. The space-time sedeon S̃ is defined by the following
expression:

S̃ = A+ ~A+Bt + ~Bt + Cr + ~Cr +Dtr + ~Dtr. (3)

The components of sedeon (3) can be written in the sedeonic space-time basis as

A = e0Aa0,
~A = e0 (A1a1 +A2a2 +A3a3) ,
Bt = etBa0,
~Bt = et (B1a1 +B2a2 +B3a3) ,
Cr = erCa0,
~Cr = er (C1a1 + C2a2 + C3a3) ,
Dtr = etrDa0,
~Dtr = etr (D1a1 +D2a2 +D3a3) ,

(4)

where values a0, a1, a2, a3 are scalar-vector basis (a0 ≡ 1 is absolute scalar unit and the values
a1, a2, a3 are absolute unit vectors generating the right Cartesian basis) and values e0, et, er,
etr are space-time basis (e0 ≡ 1 is a absolute scalar unit; et is a time unit; er is a space unit; etr
is a space-time unit). Going forward we will omit the units a0 and e0 for simplicity and redefine
space-time units as et ≡ e1, er ≡ e2, etr ≡ e3.

The multiplication and commutation rules for the sedeonic absolute unit vectors a1, a2, a3 and
space-time units e1, e1, e3 are presented in the tables 1 and 2 respectively (i is the imaginary unit
(i2 = −1)). Note that sedeonic units e1, e2, e3 commute with a1, a2, a3.
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Table 1: The rules of multiplication for absolute unit vectors

a1 a2 a3

a1 1 ia3 −ia2
a2 −ia3 1 ia1
a3 ia2 −ia1 1

Table 2: The rules of multiplication for space-time units

e1 e2 e3

e1 1 ie3 −ie2
e2 −ie3 1 ie1
e3 ie2 −ie1 1

Thus the sedeon S̃ is understood as a compound space-time object consisting of absolute scalar,
time scalar, space scalar, space-time scalar, absolute vector, time vector, space vector and space-
time vector.

Further we assume the sedeonic multiplication of vectors. For example, the sedeonic product
of two absolute vectors ~A and ~B can be presented in the following form:

~A~B =
(
~A · ~B

)
+
[
~A× ~B

]
. (5)

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “·”
and round brackets (

~A · ~B
)

= A1B1 +A2B2 +A3B3, (6)

and sedeonic vector multiplication (external product) by symbol “×” and square brackets[
~A× ~B

]
= i (A2B3 −A3B2)a1 + i (A3B1 −A1B3)a2 + i (A1B2 −A2B1)a3. (7)

Note that in sedeonic algebra the definition of vector product is differed from the analogous ex-
pression in Gibbs-Heaviside vector algebra. For the transition to the common used vector algebra
the change i[ ~A× ~B]⇒ −[A×B] should be made in all vector expressions.

3 The equations for electromagnetic field of dyons

The sedeonic wave equation for electromagnetic field of electric and magnetic charges can be written
in the following form [26, 27]:(

ie1
1

c

∂

∂t
− e2

~∇
)(

ie1
1

c

∂

∂t
− e2

~∇
)
W̃ = J̃. (8)

Here W̃ is the sedeon of electromagnetic field potential

W̃ = ie1ϕe − ie2ϕm + e1
~Am + e2

~Ae, (9)

where ϕe is electric scalar potential, ϕm is magnetic scalar potential, ~Ae is electric vector potential,
~Am is magnetic vector potential. We use the following sedeonic definition of Hamilton nabla
operator and vectors ~Ae and ~Am :
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~∇ =
∂

∂x
a1 +

∂

∂y
a2 +

∂

∂z
a3,

~Ae = Ae1a1 +Ae2a2 +Ae3a3,

~Am = Am1a1 +Am2a2 +Am3a3.

(10)

The sedeonic source is

J̃ = −ie14πρe − e2
4π

c
~je + ie24πρm − e1

4π

c
~jm, (11)

where ρe is a volume density of electric charge, ~je is a density of electric current, ρm is a volume
density of magnetic charge and ~jm is a density of magnetic current. The electric and magnetic
field strengths are defined as

~E = −1

c

∂ ~Ae

∂t
− ~∇ϕe + i

[
~∇× ~Am

]
,

~H = −1

c

∂ ~Am

∂t
− ~∇ϕm − i

[
~∇× ~Ae

]
.

(12)

The potentials satisfy the Lorentz gauge conditions

1

c

∂ϕe

∂t
+
(
~∇ · ~Ae

)
= 0, (13)

1

c

∂ϕm

∂t
+
(
~∇ · ~Am

)
= 0. (14)

Then we have (
ie1

1

c

∂

∂t
− e2

~∇
)(

ie1ϕe − ie2ϕm + e1
~Am + e2

~Ae

)
= e3

~E − i ~H, (15)

and the wave equation (8) is rewritten as(
ie1

1

c

∂

∂t
− e2

~∇
)(

e3
~E − i ~H

)
= −ie14πρe − e2

4π

c
~je + ie24πρm − e1

4π

c
~jm. (16)

Producing action of the operator on the left side of this equation and separating the values with dif-
ferent space-time properties, we obtain the system of Maxwell’s equations for electric and magnetic
charges (

∇ · ~E
)

= 4πρe,

1

c

∂ ~E

∂t
+ i
[
∇× ~H

]
= −4π

c
~je,(

∇ · ~H
)

= 4πρm,

1

c

∂ ~H

∂t
− i
[
∇× ~E

]
= −4π

c
~jm.

(17)

Let us further consider only dyonic fields and sources. Note that the electric and magnetic prop-
erties of dyons are not independent, since their electric and magnetic charges belong to the same
point particle. The Coulomb force between two point bodies charged with dyons can be written as

~F1,2 =
Qe1Qe2

r3
12

~r12 +
Qm1Qm2

r3
12

~r12, (18)

where Qe is dyon elictical charge, Qm is dyon magnetic charge and ~r12 is the vector directed from
body1 to body 2 (r12 is the distance between bodies). Using elementary qe and qm charges the
expression (18) can be rewritten as

~F1,2 = q2
e

N1N2

r3
12

~r12 + q2
m

N1N2

r3
12

~r12, (19)
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or
~F1,2 = (q2

e + q2
m)
N1N2

r3
12

~r12, (20)

where N1 and N2 are the numbers of dyons on first and second body. Then the Coulomb force
(20) can be represented as the electrostatic interaction between two electrically charged bodies
with elementary charge

q =
√

(q2
e + q2

m), (21)

as
~F1,2 = q2N1N2

r3
12

~r12. (22)

Therefore, for dyons the following relations hold [28]:

1

qe
ρe =

1

qm
ρm,

1

qe
~je =

1

qm
~jm,

1

qe
ϕe =

1

qm
ϕm,

1

qe
~Ae =

1

qm
~Am.

(23)

To describe the dyons it is convenient to introduce new sources:

ρ =
q

qe
ρe =

q

qm
ρm,

~j =
q

qe
~je =

q

qm
~jm,

(24)

and field potentials:

ϕ =
q

qe
ϕe =

q

qm
ϕm,

~A =
q

qe
~Ae =

q

qm
~Am.

(25)

Then taking into account (24) and (25) the field potential (9) and source (11) can be rewritten as

W̃ =

(
ie1

qe
q
− ie2

qm
q

)
ϕ+

(
e1
qm
q

+ e2
qe
q

)
~A

=
(
ie1ϕ+ e2

~A
)(qe

q
− ie3

qm
q

)
,

(26)

J̃ = −4π

(
ie1

qe
q
− ie2

qm
q

)
ρ− 4π

c

(
e1
qm
q

+ e2
qe
q

)
~j

= −4π

(
ie1ρ+ e2

1

c
~j

)(
qe
q
− ie3

qm
q

)
.

(27)

Substituting (26) and (27) in the wave equation (8) and multiplying on

(
qe
q

+ ie3
qm
q

)
from the

right we obtain the following wave equation:(
ie1

1

c

∂

∂t
− e2

~∇
)(

ie1
1

c

∂

∂t
− e2

~∇
)(

ie1ϕ+ e2
~A
)

= −4π

(
ie1ρ+ e2

1

c
~j

)
. (28)

Let us introduce new electric and magnetic field strengths of dyons

~E = −1

c

∂ ~A

∂t
− ~∇ϕ, (29)
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~H = −i[~∇× ~A]. (30)

Since dyonic potentials satisfy the Lorentz gauge condition

1

c

∂ϕ

∂t
+
(
~∇ · ~A

)
= 0, (31)

we have (
ie1

1

c

∂

∂t
− e2

~∇
)(

ie1ϕ+ e2
~A
)

= e3
~E − i ~H, (32)

and the wave equation (28) is rewritten as(
ie1

1

c

∂

∂t
− e2

~∇
)(

e3
~E − i ~H

)
= −4πie1ρ− e2

4π

c
~j. (33)

Producing action of the operator on the left side of this equation and separating the values with
different space-time properties, we obtain the system of Maxwell’s equations for dyons in the
following canonical form: (

∇ · ~E
)

= 4πρ,

1

c

∂ ~E
∂t

+ i
[
∇× ~H

]
= −4π

c
~j,(

∇ · ~H
)

= 0,

1

c

∂ ~H
∂t
− i
[
∇× ~E

]
= 0.

(34)

There are the simple relations between ~E, ~H and ~E , ~H field strengths. Taking into account (25)
the definitions (12) can be rewritten as

~E = −qe
q

(
1

c

∂ ~A

∂t
+ ~∇ϕ

)
+ i

qm
q

[
~∇× ~A

]
,

~H = −qm
q

(
1

c

∂ ~A

∂t
+ ~∇ϕ

)
− i qe

q

[
~∇× ~A

]
.

(35)

Thus we have the following relations:

~E =
qe
q
~E − qm

q
~H,

~H =
qm
q
~E +

qe
q
~H,

(36)

or
~E =

qe
q
~E +

qm
q
~H

~H = −qm
q
~E +

qe
q
~H.

(37)

4 The energy and momentum of dyon electromagnetic field

Multiplying (33) on
(
e3
~E − i ~H

)
from the left we have(

e3
~E − i ~H

)(
ie1

1

c

∂

∂t
− e2

~∇
)(

e3
~E − i ~H

)
= −

(
e3
~E − i ~H

)(
4πie1ρ+ e2

4π

c
~j

)
. (38)
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Equating in (38) the components with different space-time properties we get

1

8π

∂

∂t

(
~E2 + ~H2

)
− i c

4π

(
~∇ ·
[
~E × ~H

])
+
(
~E ·~j

)
= 0, (39)

1

8π
~∇
(
~E2 + ~H2

)
− i 1

4πc

∂

∂t

[
~E × ~H

]
− 1

4π

{(
~∇ · ~E

)
~E +

(
~∇ · ~H

)
~H
}

+ ρ~E + i
[
~H×~j

]
= 0,

(40)

1

4π

{(
~E · ∂

~H
∂t

)
−

(
~H · ∂

~E
∂t

)}
−i c

4π

{(
~E ·
[
~∇× ~E

])
+
(
~H ·
[
~∇× ~H

])}
−
(
~H ·~j

)
= 0,

(41)

−i 1

4π

{[
~E × ∂~E

∂t

]
+

[
~H× ∂ ~H

∂t

]}
+

c

4π

{
~E
(
~∇ · ~H

)
− ~H ·

(
~∇× ~E

)}
+
c

4π

{[
~E ×

[
~∇× ~H

]]
−
[
~H×

[
~∇× ~E

]]}
+ cρ ~H− i

[
~E ×~j

]
= 0.

(42)

The expression(39) is the Poynting theorem for dyons. The value

W =
~E2 + ~H2

8π
(43)

is the volume density of field energy, while vector

~P = −i c
4π

[
~E × ~H

]
(44)

is the vector of energy flux density (Poynting vector). Using (37) one can get that

W =
1

8π

(
~E2 + ~H2

)
, (45)

and
~P = −i c

4π

[
~E × ~H

]
. (46)

We see that these values are the volume density of energy and energy flux density of electromagnetic
field.

5 Relations for Lorentz invariants of dyon electromagnetic
field

Using sedeonic algebra it is easy to derive the relations for the values

I1 =
(
~E2 − ~H2

)
, (47)

and
I2 =

(
~E · ~H

)
, (48)

which are the Lorentz invariants of dyon electromagnetic field (the Lorentz transformations for
sedeons are considered in [24, 29]). Indeed, substituting (37) we have

I1 =
4qeqm

(q2
e + q2

m)

(
~E · ~H

)
+

(q2
e − q2

m)

(q2
e + q2

m)

(
~E2 − ~H2

)
, (49)

7



and

I2 =
(q2

e − q2
m)

(q2
e + q2

m)

(
~E · ~H

)
− qeqm

(q2
e + q2

m)

(
~E2 − ~H2

)
. (50)

Thus one can see that I1 and I2 are the combinations of Lorentz invariants of the electromagnetic
field.

Multiplying both parts of equation (33) on sedeon
(
e3
~E + i ~H

)
from the left we have:(

e3
~E + i ~H

)(
ie1

1

c

∂

∂t
− e2

~∇
)(

e3
~E − i ~H

)
= −

(
e3
~E + i ~H

)(
4πie1ρ+ e2

4π

c
~j

)
. (51)

Equating in (51) the components with different space-time properties we obtain the following
relations for the Lorentz invariants of dyon electromagnetic field:

1

8π

∂

∂t

(
~E2 − ~H2

)
+ i

c

4π

{(
~E ·
[
~∇× ~H

])
+
(
~H ·
[
~∇× ~E

])}
+
(
~E ·~j

)
= 0, (52)

c

8π
~∇
(
~E2 − ~H2

)
= i

1

4π

{[
~E × ∂ ~H

∂t

]
+

[
~H× ∂~E

∂t

]}
+
c

4π

{
~E
(
~∇ · ~E

)
+
(
~E · ~∇

)
~E − ~H

(
~∇ · ~H

)
−
(
~H · ~∇

)
~H
}

−cρ~E + i
[
~H×~j

]
,

(53)

1

4π

∂

∂t

(
~E · ~H

)
= i

c

4π

{(
~E ·
[
~∇× ~E

])
−
(
~H ·
[
~∇× ~H

])}
−
(
~H ·~j

)
, (54)

c

4π
~∇
(
~E · ~H

)
= −i 1

4π

{[
~E × ∂~E

∂t

]
−

[
~H× ∂ ~H

∂t

]}
+ i
[
~E ×~j

]
+
c

4π

{
~E
(
~∇ · ~H

)
+ ~H

(
~∇ · ~E

)
− (~E · ~∇) ~H+ ( ~H · ~∇)~E

}
− cρ ~H.

(55)

6 Sedeonic Klein-Gordon equation for dyons

The sedeonic wave equation for the quantum particle with electric charge qe and magnetic charge
qm in an external electromagnetic field described by electric ϕe, ~Ae and magnetic ϕm, ~Am potentials
is obtained from the equation for free particle by the following replacements [30, 31]:

∂

∂t
→ ∂

∂t
+
i

h̄
qeϕe +

i

h̄
qmϕm,

~∇ → ~∇− i

ch̄
qe ~Ae −

i

ch̄
qm ~Am,

(56)

and can be written as{
ie1

1
c

(
∂
∂t + i

h̄qeϕe + i
h̄qmϕm

)
− e2

(
~∇− i

ch̄qe
~Ae − i

ch̄qm
~Am

)
− ie3

mc
h̄

}
×
{
ie1

1
c

(
∂
∂t + i

h̄qeϕe + i
h̄qmϕm

)
− e2

(
~∇− i

ch̄qe
~Ae − i

ch̄qm
~Am

)
− ie3

mc
h̄

}
Ṽ = 0.

(57)

Here Ṽ is the sedeonic wave function and m is the mass of particle. For dyon in dyonic electro-
magnetic field this equation can be rewritten in simplified form. Taking into account the relations
for dyonic potentials (25) we obtain{

ie1
1

c

(
∂

∂t
+
i

h̄
qϕ

)
− e2

(
~∇− i

ch̄
q ~A

)
− ie3

mc

h̄

}
×
{
ie1

1

c

(
∂

∂t
+
i

h̄
qϕ

)
− e2

(
~∇− i

ch̄
q ~A

)
− ie3

mc

h̄

}
Ṽ = 0.

(58)
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Producing the action of operators on the left side of equation (58) we obtain{
1

c2
∂2

∂t2
−4+

m2c2

h̄2 +
i2q

ch̄

(
ϕ

c

∂

∂t
+ ( ~A · ~∇)

)
+

q2

c2h̄2 ( ~A2 − ϕ2)

}
Ṽ

+e3
iq

ch̄
~EṼ − q

ch̄
~HṼ = 0.

(59)

In this equation the term

e3
iq

ch̄
~EṼ (60)

describes the interaction of dyon with dyonic electric field, while the term

q

ch̄
~HṼ (61)

describes the interaction of dyon with dyonic magnetic field.
The sedeonic wave equation (58) can be rewritten as the system of Maxwell-like equations for

some quantum field [24]. Let us introduce for brevity the following new operators:

∂0 =
1

c

(
∂

∂t
+
i

h̄
qϕ

)
,

~∇0 =

(
~∇− i

ch̄
q ~A

)
,

m0 =
c

h̄
m.

(62)

Then the wave equation (58) is rewritten in the following compact form:

(ie1∂0 − e2∇0 − ie3m0) (ie1∂0 − e2∇0 − ie3m0) Ṽ = 0. (63)

On the other hand, let us define a field G̃ according to

G̃ = (ie1∂0 − e2∇0 − ie3m0) Ṽ. (64)

Then the wave equation (63) takes the following equivalent form:

(ie1∂0 − e2∇0 − ie3m0) G̃ = 0. (65)

Let us choose the wave function in the following form [26]:

Ṽ = iV1e1 − iV2e2 + V3 − iV4e3 + ~V1e2 + ~V2e1 − ~V3e3 + i~V4, (66)

and the field G̃ as

G̃ = −g1 + ig2e3 + ig3e1 − ig4e2 + ~G1e3 − i ~G2 + ~G3e2 + ~G4e1. (67)

Then taking into account (64) we have the following definitions of G̃ components through the
components of the wave function Ṽ:

g1 = ∂0V1 +
(
~∇0 · ~V1

)
+m0V4,

g2 = ∂0V2 +
(
~∇0 · ~V2

)
−m0V3,

g3 = ∂0V3 +
(
~∇0 · ~V3

)
+m0V2,

g4 = ∂0V4 +
(
~∇0 · ~V4

)
−m0V1,

~G1 = −∂0
~V1 − ~∇0V1 + i

[
~∇0 × ~V2

]
+m0

~V4,

~G2 = −∂0
~V2 − ~∇0V2 − i

[
~∇0 × ~V1

]
−m0

~V3,

~G3 = −∂0
~V3 − ~∇0V3 − i

[
~∇0 × ~V4

]
+m0

~V2,

~G4 = −∂0
~V4 − ~∇0V4 + i

[
~∇0 × ~V3

]
−m0

~V1.

(68)
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Separating in wave equation (65) the values with different space-time properties we obtain the
system of Maxwell-like equations for quantum field G̃ :

∂0g1 +
(
~∇0 · ~G1

)
−m0g4 = 0,

∂0g2 +
(
~∇0 · ~G2

)
+m0g3 = 0,

∂0g3 +
(
~∇0 · ~G3

)
−m0g2 = 0,

∂0g4 +
(
~∇0 · ~G4

)
+m0g1 = 0,

∂0
~G1 + ~∇0g1 + i

[
~∇0 × ~G2

]
+m0

~G4 = 0,

∂0
~G2 + ~∇0g2 − i

[
~∇0 × ~G1

]
−m0

~G3 = 0,

∂0
~G3 + ~∇0g3 − i

[
~∇0 × ~G4

]
+m0

~G2 = 0,

∂0
~G4 + ~∇0g4 + i

[
~∇0 × ~G3

]
−m0

~G1 = 0.

(69)

Multiplying each of the equations (69) to the corresponding field strength and adding these equa-
tions to each other, we obtain that

∂0W +
(
~∇0 · ~P

)
= 0, (70)

where
W = g2

1 + g2
2 + g2

3 + g2
4 + ~G2

1 + ~G2
2 + ~G2

3 + ~G2
4 (71)

and
~P = g1

~G1 + g2
~G2 + g3

~G3 + g4
~G4 − i

[
~G1 × ~G2

]
+ i
[
~G3 × ~G4

]
(72)

The expression (70) is the analog of Poynting theorem for quantum field G̃ describing the quantum
dyon in an external dyonic electromagnetic field.

7 Sedeonic Dirac equation for dyons

The equation (63) admits a special class of solutions that are described by the sedeonic first-order
wave equation [25]:

(ie1∂0 − e2∇0 − ie3m0) Ṽ = 0. (73)

This equation is equivalent to the following system:

∂0V1 +
(
~∇0 · ~V1

)
+m0V4 = 0,

∂0V2 +
(
~∇0 · ~V2

)
−m0V3 = 0,

∂0V3 +
(
~∇0 · ~V3

)
+m0V2 = 0,

∂0V4 +
(
~∇0 · ~V4

)
−m0V1 = 0,

−∂0
~V1 − ~∇0V1 + i

[
~∇0 × ~V2

]
+m0

~V4 = 0,

−∂0
~V2 − ~∇0V2 − i

[
∇0 × ~V1

]
−m0

~V3 = 0,

−∂0
~V3 − ~∇0V3 − i

[
∇0 × ~V4

]
+m0

~V2 = 0,

−∂0
~V4 − ~∇0V4 + i

[
∇0 × ~V3

]
−m0

~V1 = 0.

(74)

In fact, the dyons described by equation (73) do not create a quantum field G̃.
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8 Discussion

The hypothesis of dyons, which have simultaneously both elementary electric qe and elementary
magnetic qm charges enables considering the electric and magnetic phenomena from the same uni-
fied positions. However, as we have shown the introduction of unified sources ρ, ~j and unified field
strengths ~E and ~H leads us to the classical Maxwell equations (34) for the dyonic electromagnetic
field. It is amazing that the expressions for volume density of electromagnetic field energy and
Poynting vector for the vectors ~E, ~H and ~E , ~H are the same. From this point of view there is the
interesting assamption that particle electron can be interpreted as a dyon and elementary electric
charge e can be represented as

e =
√
qe2 + qm2. (75)

If we accept this hypothesis about dyonic nature of electron then we have absolutely symmetry
between electric and magnetic phenomena in electromagnetic theory. Indeed, let us consider two
point bodies charged by electrons. Then the Coulomb force in this case is

~F1,2 = e2N1N2

r3
12

~r12, (76)

where N1 and N2 are numbers of electrons on first and second body respectively. Assuming possible
dyonic nature of electron we have

~F1,2 = q2
e

N1N2

r3
12

~r12 + q2
m

N1N2

r3
12

~r12. (77)

Thus the Coulomb force is the same for electrons and dyons if we assume that the relation (75) is

satisfied. On the other side, according (40) the volume density of force ~f is equal to

~f = ρ~E + i
[
~H×~j

]
, (78)

where the value ρ can be interpreted as volume density of dyonic charge or as the volume density
of electric charge and value ~j is the volume density of corresponding current. Substituting in (78)

the expressions for ~E and ~H from (37) we have

~f = ρe ~E + ρm ~H + i
[
~H ×~je

]
− i
[
~E ×~jm

]
. (79)

We see that Lorentz force
~fL = i

[
~H ×~je

]
− i
[
~E ×~jm

]
(80)

deflects the electron (dyon) in the same direction since currents ~je and ~jm are directed in the

same directions but fields ~H and ~E created for example by solenoid are opposit directed. Besides,
the value q plays the role of electric charge in the quantum equations (59) and (73). Thus from
the experimental point of view the assumptions of electrical or dyonic nature of electron have the
same consequences. The hypothesis that electrons and protons are dyons should be additionally
investigated.

9 Conclusion

The advantage of sedeons is that the sedeonic space-time algebra provides the Lorentz invariance of
the equations and can be correctly applied for the description of classical and quantum fields. We
have shown that the sedeonic wave equation for electromagnetic field of dyons can be reformulated
in equivalent form as the system of classical Maxwell equations for the field strengths ~E , ~H and
sources ρ, ~j. The relations for energy and momentum of dyonic electromagnetic field (Poynting
theorem) as well as the relations for Lorentz invariants have been derived. Also we have shown that
the sedeonic second-order Klein-Gordon equation describing the quantum behavior of dyons in an

11



external dyonic electromagnetic field can be reformulated in the form of Maxwell-like equations
for the quantum field G̃ and the analogue of Poynting theorem for this field have been derived.
Additionally we shown that the sedeonic first-order Dirac wave equation describes the dyons, which
do not create the quantum field G̃.
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