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Abstract 

 

The internal Schwarzschild solution is examined in the context of a cosmological model 

where the intergalactic vacuum is described by the internal metric.  It is shown that the 

model predicts an accelerated expansion that agrees with current observations of the 

expansion history of our Universe, namely that the initial expansion is infinitely fast, and 

then the expansion slows for some time followed by an accelerated expansion.  An 

examination of the Hubble parameter and redshift is made, and it is shown that the model 

agrees with cosmological data in predicting the transition redshift when the expansion of 

the Universe changes from deceleration to acceleration.  Distance modulus is plotted 

against redshift and compared to cosmological data.  The angular portion of the metric is 

interpreted, and it is discussed in terms of the celestial spheres of the CMB and Big Bang. 

  

 

Introduction 

 

The currently accepted geometry used to describe the Universe as a whole is the Friedman-

Robertson-Walker (FRW) metric.  The basic form of the metric was assumed based on the 

observation that the Universe is expanding and then the details about the scale factor are 

calculated using Einstein’s filed equations.  According to this metric, at the Big Bang, the 

Universe has no spatial size and expands forever after that.   

 

There are a couple of problems with this metric.  Firstly, since the form of the metric is 

assumed and not based on any deeper principle, it does not give any insight into why the 

Universe began expanding in the first place, or what geometry, if any, existed before that 

moment.  Secondly, we now know the expansion of the Universe is accelerating, a fact that 

the FRW metric cannot account for in and of itself.  The introduction of Dark Energy in 

the form of the Cosmological constant is required to account for this accelerated expansion.  

Finally, there is the problem of the Big Bang having no spatial dimension.  When we look 

out into the Universe, we can think of the very distant galaxies and other objects that we 

see has being on different celestial spheres.  Each celestial sphere corresponds to a specific 

time in the past.  The larger the celestial sphere, the father in the past we are looking.  The 

largest sphere we can see is the Cosmic Microwave Background.  It is a sphere of finite 

size in our reference frame and the size gets bigger as we move through time.  In the future, 

the radius of the CMB will be larger in our reference frame and the light that we see from 

it will be coming from a greater coordinate distance than the light we see now.  It is 

tempting to say then that the radius of the sphere is a function of coordinate distance.  But 

suppose we were magically able to see beyond the CMB all the way back to the Big Bang 

(and imagine the light from that time was not infinitely redshifted).  It would appear to us 

as a celestial sphere of finite size, slightly larger than the CMB, that would, in our frame, 

appear to grow over time.  But the radius of that celestial sphere as described by the FRW 



metric is unclear at best.  The expansion factor is zero there and given that all of space is 

contracted, what coordinate distance would be assigned to the sphere and how could it 

change over time?  Nonetheless, the Big Bang must be a sphere that surrounds us behind 

the CMB because we are surrounded by the past and the Big Bang is the most distant past. 

 

In this paper, these issues are resolved by modelling the expanding Universe using the 

internal Schwarzschild metric.  In this metric, the radius of the angular term is a time, rather 

than a distance.  This is what solves the Big Bang celestial sphere problem.  In the internal 

metric, the Big Bang sphere is a sphere of finite surface area where all points on the surface 

are identical (a perfect sphere).  The metric also predicts the accelerated expansion and the 

moment where the expansion transitions to accelerating is calculated in this paper and it is 

found that the calculated transition is in line with observation.  The metric is also based on 

two assumptions.  The first is that the Universe is spherically symmetric.  The second is 

that the energy of the Universe actually flows through time, meaning that the future 

spacetime geometry of the Universe exists, but the energy of the Universe only exists in 

the present and flows into the future (the present is analogous to the surface of an expanding 

star).  In Schwarzschild coordinates with this model, the Universe is effectively falling 

through time. 

 

 

Freefall Through Time 

 

The current Big Bang model of the Universe says that the Universe expanded from an 

infinitely dense gravitational singularity at some time in the past.  Current cosmological 

data suggests that this expansion was slowing down for some time, but is now continuing 

to expand at an accelerated rate.  The Cosmological Principle suggests that from any 

reference frame in the Universe, the mass distribution is spherically symmetric and 

isotropic.  It is proposed here that the observed expansion of the Universe is the result of a 

freefall in the time dimension.  To analyze the spherically symmetric Universe freefalling 

through the time dimension, we need the Schwarzschild solution where the radial 

coordinate is the timelike coordinate.  The interior (𝑟 < 1) solution of the Schwarzschild 

field gives us precisely that.  For 𝑟 < 1, the signature of the Schwarzschild metric flips and 

the radial coordinate becomes a dimension measuring time while the t coordinate becomes 

a dimension measuring space. 

 

But the Schwarzschild metric is a vacuum solution to the field equations.  Given that 

observation tells us that the Universe is not a total vacuum, the only way that this solution 

can be valid is if the future is truly void of energy.  In this way, the present Universe would 

be like the surface of a star and the future would be the external vacuum.  This means that 

the energy of the quantum and local gravitational fields would truly be propagating into 

the future as the Universe evolves; the future only contains the empty spacetime described 

by the internal Schwarzschild solution and the present is a three dimensional shell that falls 

into that vacuum. 

So let us take the center of our galaxy as the origin of an inertial reference frame.  We can 

draw a line through the center of the reference frame that extends infinitely in both 

directions radially outward.  This line will correspond to fixed angular coordinates (𝜃, 𝜙).  



There are infinitely many such lines, but since we have an isotropic, spherically symmetric 

Universe, we only need to analyze this model along one of these lines, and the result will 

be the same for any line.  

  

The radial distance in this frame is kind of a compound dimension.  It is a distance in space 

as well as a distance in time.  The farther away a galaxy is from us, the farther back in time 

the light we currently receive from it was emitted.  Fortunately the 𝑟 < 1 spacetime of the 

Schwarzschild solution plotted in Kruskal-Szekeres coordinates provides us with a method 

to understand this radial direction.  Figure 1 shows the 𝑟 < 1 solution on a Kruskal-

Szekeres coordinate chart where, in this model, the hyperbolas of constant r represent 

spacelike slices of constant cosmological time and the rays of t represent radial distances 

(each point on this plot is a 2-sphere and each hyperbola is a 3-sphere).  We will not be 

considering differences in angles until a later section in the paper, so we only need to 

consider the two halves of Figure 1.  We will focus on the upper half where the half 

represents an observer pointed in a particular direction and the positive t’s represent the 

coordinate distance from the observer in that particular direction while the negative t’s 

represent coordinate distance in the opposite direction.   

 

 
Figure 1 – Freefall Through Cosmological Time1 

 

We must first determine the paths of inertial observers in the spacetime.  For this we need 

the internal Schwarzschild metric and the geodesic equations for the internal Schwarzschild 

metric [1].  In these equations u represents a time constant that in the external metric would 

be the Schwarzschild radius.  In Figure 1, the value of u is 1. 
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1 Diagram modified from: “Kruskal diagram of Schwarzschild chart" by Dr Greg. Licensed under CC BY-SA 3.0 via Wikimedia 
Commons - 
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg 
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In Equations 1, 2, and 3, we use units where 𝑐 = 1 and equations 2 and 3 assume no angular 

motion.  Looking at points 0 < 𝑟 < 𝑢, then by inspection of Equation 2 it is clear that an 

inertial observer at rest at t will remain at rest at t (
𝑑2𝑡

𝑑𝜏2 = 0 if 
𝑑𝑡

𝑑𝜏
= 0).  Also, we see that if 

an observer is moving inertially with some initial 
𝑑𝑡

𝑑𝜏
, then if 

𝑑𝑟

𝑑𝜏
< 0, the coordinate speed 

of the observer will be reduced over time (the coordinates are expanding beneath her) and 

if 
𝑑𝑟

𝑑𝜏
> 0, the coordinate speed will be increased over time (the coordinates are collapsing 

beneath her).   

 

Let us therefore examine Equation 3 for an observer with no angular motion. Combining 

Equations 1 and 3 with 𝑑Ω = 0, equation 3 becomes: 

 

  
𝑑2𝑟

𝑑𝜏2 = −
𝑢

2𝑟2 (4) 

 

Notice that the observer’s acceleration through cosmological time is similar to the form of 

Newton’s law of gravity, where r (a time coordinate) varies from u to 0 (If the 

Schwarzschild constant was 2GM, as it would be in the external solution, Equation 4 would 

be Newton’s gravity).  

 

So we will first use Figure 1 to describe the freefall of the galaxies through the 

cosmological time dimension where galaxies (or galaxy clusters) follow lines of constant t 

(and any such observer can choose 𝑡 = 0 as their coordinate).  The ‘Big Bang’ will have 

occurred at the center of Figure 1 at 𝑟 = 1.  We know this because the above analysis 

showed that space expands if 
𝑑𝑟

𝑑𝜏
 is negative, so for our current cosmological time, our 

worldlines must be moving toward 𝑟 = 0.  

 

 

How we see the Universe 

 

Looking at Figure 1, we should note that light signals travel on 45-degree angles.  So when 

we look out at the Universe, we can imagine that we are seeing light emitted from 

concentric 2-spheres from when the energy of the Universe was at the particular coordinate 

time corresponding to a particular 2-sphere.  They are 2-spheres because each sphere 

represents a specific coordinate time in the past and distance from us, they are not 

independent.  We can choose to observe the Universe at any arbitrary past time, but we 

cannot choose to observe the Universe at an arbitrary distance and time, the distance from 

us we observe depends on the present age of the Universe and the age of the 2-sphere we 

observe.  Nonetheless, each 2-sphere will appear to us to be spatially homogeneous and 



isotropic and this is reflected in Equation 2 (if we fix the r of a 2-sphere, the space will be 

homogenous and isotropic). 

 

 

The Scale Factor  

 

Expressions for the proper time interval along lines of constant t and Ω and the proper 

distance interval along hyperbolas of constant r and Ω from Equation 1 are: 

 

  
𝑑𝑟

𝑑𝜏
= ±√

𝑢−𝑟

𝑟
= ±𝑎 (5) 

 

  
𝑑𝑠

𝑑𝑡
= ±√

𝑢−𝑟

𝑟
= ±𝑎 (6) 

 

Where a is the scale factor.  First we should notice that neither Equation 5 nor 6 depend on 

the t coordinate.  This is good because the t coordinate marks the position of other galaxies 

relative to ours.  Since all galaxies are freefalling in time inertially, the particular position 

of any one galaxy should not matter.  The proper velocity and proper distance only depends 

on the cosmological time r.   

 

What is notable here is that in Schwarzschild coordinates, the scale factor is equal to the 

velocity through the time dimension for an observer at rest (
𝑑𝑡

𝑑𝜏
=

𝑑Ω

𝑑𝜏
= 0).  When 𝑟 = 𝑢, 

Equations 5 and 6 are both 0.  At this point (the Big Bang), it is our proper velocity in time 

that is zero.  So at that instant, we are no longer moving through time and therefore all 

points in space are coincident (the observer can reach every point in space without moving 

through time, all paths are light-like).  So this why the scale factor goes to zero there and 

why the lines of t in Figure 1 converge at that point; it is an instant where our velocity 

through cosmological time goes to zero as our speed through cosmological time changes 

from positive to negative (we can see that if we draw a worldline through the center point, 
𝑑𝑟

𝑑𝜏
 will change signs as it passes the 𝑟 = 1 point).  In fact, for any choice of time coordinate, 

that point will be a stationary point in those coordinates. 

 

At 𝑟 = 0, both equations 5 and 6 are infinite.  So when the worldlines enter or exit one of 

the 𝑟 = 0 hyperbolas, they do so at infinite proper speed through the time dimension. If 

something is travelling through space at the speed to light, the proper distance between 

points in space is zero.  In this case, since we have infinite proper velocity in the time 

dimension, the proper distance between points in space will be infinite, because you would 

traverse an infinite amount of time in order to move through an infinitesimal amount of 

space.  What we see then is that at 𝑟 = 0 space will be infinitely expanded and thus the 

scale factor is infinite.  A plot of the scale factor vs. r (with 𝑢 = 1) is given in Figure 2 

below: 



 
Figure 2 – Scale Factor vs. r 

 

In Figure 2, there is an inflection point at 𝑟 = 0.75.  This is the point at which the expansion 

changes from decelerating to accelerating. 

 

 

Redshift and the Hubble Parameter 

 

We can use the fact that √
𝑢−𝑟

𝑟
 is the scale factor and get the expression for cosmological 

redshift caused by the expansion [1]: 

  𝑧 = √
𝑟𝑒𝑚𝑖𝑡

(𝑢−𝑟𝑒𝑚𝑖𝑡)
√

𝑢−𝑟

𝑟
− 1 (7) 

 

We can use Equation 7 to predict the redshift of the Universe at the time the expansion 

changed from decelerating to accelerating.  First, we must find the value of u.  For the 

external metric, this constant has the value of the Schwarzschild radius of a mass given by 

2GM.  For the interior metric, this constant will need to be a time; specifically, it will be 

the coordinate time in years from the ‘Big Bang’ to 𝑟 = 0.  We can use the known Hubble 

parameter and current age of the Universe to find this constant.  The Hubble parameter is 

given by: 

  𝐻 =
𝑎̇

𝑎
=

𝑑

𝑑𝑟
(√

𝑢−𝑟

𝑟
) √

𝑟

𝑢−𝑟
=

𝑢

2𝑟(𝑢−𝑟)
 (8) 

 

We know that the Universe is around 13.8 billion years old, so in Equation 8 we can make 

the substitution 𝑟 = 𝑢 − 13.8  (because the Big Bang occurs at 𝑟 = 𝑢 ).  The Hubble 

parameter at this time has been measured to be around 67.8 (km/s)/Mpc.  Converting that 

value to units of 1/(billion years), setting Equation 8 equal to that value and solving for u 

we get an approximate value of: 

 

  𝑢 ≈ 28.8 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟𝑠 (9) 

 

We can now express r in units of billions of years from 𝑟 = 0 (the Big Bang occurs at 𝑟 =
28.8).  A plot of Equation 8 with the value 𝑢 = 28.8 and the ΛCDM model [2] with Λ =
0.013 is given in Figure 3 below (our current time is shown as the dashed vertical line): 



 
Figure 3 – Hubble Parameter vs. r (𝑢 = 28.8, Λ = 0.013) 

 

Equation 7 can be used to find the transition redshift, which is the redshift we observe at 

the point when the Universe transitioned from a decelerating expansion to an accelerating 

expansion.  In Equation 7, this transition occurs at 𝑟𝑒𝑚𝑖𝑡 = 21.6 and our current time is 

𝑟 = 14.98.  Plugging those values into Equation 8 we get an estimated transition redshift 

of: 

  𝑧𝑡 = 0.66 (10) 

 

This value is within the 2σ bound for the parameter [3,4], and therefore it does appear to 

be in agreement with cosmological measurements.  A plot of redshifts measured at our 

current time vs. time is given in Figure 4 below: 

 

 
 

Figure 4 – Redshift vs. Time 

 

Finally, the deceleration parameter is given by: 

 

  𝑞 =
𝑎𝑎̈

𝑎̇2
=

4𝑟

𝑢
− 3 =

𝑟

7.2
− 3 (11) 

 

Time (billions of years ago) 

z 



A plot of the deceleration parameter is given in Figure 5 below: 

 

 
Figure 5 – Deceleration Parameter vs. r 

 

 

Coordinate Distance & Distance Modulus 

 

Figure 1 is a plot of the metric on a Kruskal-Szekeres coordinate chart where the T-axis is 

the vertical axis and the X-axis is the horizontal axis.  The definition of T and X are given 

below for 𝑢 = 28.8: 

  𝑋 = sinh (
𝑡

57.6
) √(28.8 − 𝑟)𝑒

𝑟

28.8 (12) 

 

  𝑇 = cosh (
𝑡

57.6
) √(28.8 − 𝑟)𝑒

𝑟

28.8 (13) 

 

Light travels on 45-degree lines in these coordinates so if we consider our current reference 

frame at 𝑡 = 0 and 𝑟 = 15, we can find the coordinate distance t of some galaxy we 

observe along the 45-degree line at some r by setting Δ𝑋 = −Δ𝑇 and solving for t.  When 

we do this, we get: 

  𝑡 = 28.8 ln (
23.23

28.8−𝑟
) − 𝑟 (14) 

 

Where t is in billions of light years and 15 ≤ 𝑟 ≤ 28.8. Note that Equation 14 is only valid 

for the current cosmological time.  The 23.23 constant is specific to this time so for some 

other time, a different constant would be required and is given by the value 𝐶 = (28.8 −

𝑟0)𝑒
𝑟0

28.8.  We can also use Equation 7 to find 𝑟𝑒𝑚𝑖𝑡 as a function of z and substitute that into 

Equation 14 to get the coordinate distance as a function of redshift.  If we set 𝑟 = 15 for 

𝑢 = 28.8 in Equation 7 and solve for 𝑟𝑒𝑚𝑖𝑡 we get: 

 

  𝑟𝑒𝑚𝑖𝑡 = 28.8
𝑧2+2𝑧+1

𝑧2+2𝑧+1.92
 (15) 

 

Substituting Equation 15 into 14 will give the coordinate distance as a function of measured 

redshift.  A commonly used parameter in cosmology is the distance modulus, μ, which is 

defined as: 

  𝜇 = 5 log10 (
𝑑

10
) (16) 



Where d is the distance measured in parsecs.  A plot of distance modulus vs. redshift 

obtained by combining Equations 14, 15, and 16 (where we use t measured in parsecs for 

d in Equation 16) is shown in Figure 6 below plotted over data obtained from the Supernova 

Cosmology Project [6]: 

 

 
Figure 6 – Distance Modulus vs. Redshift 

 

Note that all these predictions only required the spherical symmetry assumptions of the 

Schwarzschild metric and calculation of a single parameter, u, from cosmological data; it 

requires no information regarding the detailed energy distribution within the Universe.  In 

fact, the value of u only determines the units we are working in; it does not affect the form 

of the model.  This reflects the fact that the details of the expansion are the result of the 

vacuum solution alone.   

 

 

Proper Time of the Rest Observer 

 

Figure 7 shows the past light cone of an inertial observer at a given time during the 

expansion: 

 
Figure 7 – Past Light Cone of Inertial Observer During the Expansion2 

                                                      
2 Diagram modified from: “Kruskal diagram of Schwarzschild chart" by Dr Greg. Licensed under CC BY-SA 3.0 via Wikimedia 
Commons - 
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg 

z 

μ 



We can calculate the duration of the expansion of the Universe in the frame of an inertial 

observer at rest by integrating Equation 5 from 0 to u.  The total time of expansion is 

therefore: 

  𝜏 =
𝜋

2
𝑢 (17) 

 

Where 𝜏 is measured in billions of years.  Equation 17 tells us that in the frame of an 

observer at rest at t, the time elapsed from the Big Bang to 𝑟 = 0 measured by her clock 

would be around 45.2 billion years and there is only about 8.8 billion years of proper time 

between now and 𝑟 = 0 for her.   

 

Thinking of 𝜏  in Equation 17 as a ‘Universal Period’ allows us to define a Universal 

constant 𝑈 =
𝜋

2
𝑢 for time and space.  Equation 17 is the maximum amount of time that can 

be measured between the Big Bang and 𝑟 = 0.  So if we set 𝑈 =
𝜋

2
𝑢 = 𝑐 = 1 then we are 

working in units where space and time have the same units and all measurable times will 

be between 0 and 1.  When working in these units, the constant in the interior 

Schwarzschild metric will be 𝑢 =
2

𝜋
. 

 

 

Metric and Geodesics in Terms of the Hubble Parameter and Scale Factor 

 

We can re-express equations 1-4 in terms of the scale factor a and the Hubble parameter: 

 

  𝑑𝜏2 = 𝑎−2𝑑𝑟2 − 𝑎2𝑑𝑡2 − 𝑟2𝑑Ω2 (18) 

 

  
𝑑2𝑡

𝑑𝜏2 = 2𝐻
𝑑𝑟

𝑑𝜏

𝑑𝑡

𝑑𝜏
 (19) 

 

  
𝑑2𝑟

𝑑𝜏2 = 𝑎2𝐻 [𝑎2 (
𝑑𝑡

𝑑𝜏
)

2
− 𝑎−2 (

𝑑𝑟

𝑑𝜏
)

2
] (20) 

 

  
𝑑2𝑟

𝑑𝜏2 = −𝑎2𝐻 (21) 

 

Equation 21 gives us a quantity analagous to the surface gravity used in the external 

solution.  The non-zero Christoffel symbols of the model (for 𝑑Ω = 0) in terms of H are: 

 

  Γ𝑟𝑟
𝑟 = −𝐻 (22) 

 

  Γ𝑡𝑟
𝑡 = Γ𝑟𝑡

𝑡 = 𝐻 (23) 

 

  Γ𝑡𝑡
𝑟 = 𝑎4𝐻 (24) 

 

 

 

 

 



The Angular Term 

 

We have to this point ignored the angular portion of the Schwarzschild metric.  For the 

internal metric, the angular term seems initially curious because the radius associated with 

it is a time rather than a distance.  According to Figure 1, if we look out at the Universe to 

a sphere of fixed r, we are also seeing a slice of the Universe that is a fixed t from our 

position at that r.  Thus, in our frame, dt between objects on that shell is zero.  But we know 

that some distance separates them, and that distance must come from the angular part of 

the metric.  But the radius of the angular part of the metric is independent of the distance 

of a shell from us.  This means that as the celestial spheres, which are spheres of constant 

r appear to expand over time, it is the angle associated with these spheres that is changing, 

not the radius. 

 

If we imagine that we could observe the celestial spheres over billions of years, they would 

appear to us to be expanding.  For simplicity, let us only consider the CMB sphere.  Over 

those billions of years, we will always see the CMB, but it is not that the CMB is expanding, 

it is fixed in the past, so what we see is the CMB at greater and greater coordinate distance 

to us.  What is happening is that we are falling away from the CMB through time and that 

is why we would see the more distant light from it over time.  We can never get closer or 

father to the CMB in space because the CMB itself only exists in the past and the only way 

our distance from it can increase is through the time dimension.  Since the radius of the 

CMB as described by the metric is fixed and it appears larger and larger to us over time, it 

must be the angle of the metric that is changing.  Since the entire CMB is in our past and 

we are falling away from it through time, the angle from one point on the CMB to the 

diametrically opposed point is not 180 degrees.  Rather, a great circle on the CMB (or any 

celestial sphere) in our reference frame corresponds to the lip of a cone who’s tip is at 𝑟 =
𝑡 = 0.  Thus, in terms of the metric, the great circle is not the equator of a sphere but rather 

a circular secant on a sphere defined by the intersection of a sphere of radius r and a cone 

whose opening angle depends on the value of t corresponding to the circle and whose tip 

is at the center of the sphere.  Therefore, when we see the CMB get bigger over time, it is 

the opening angle of the cone that is getting larger, not the radius.  In fact, the maximum 

observable opening angle would be 90 degrees beause any angle larger than that would 

require faster than light travel. 

 

The radius in the metric being a time rather than a space is also important when considering 

the Big Bang itself.  Even though we cannot see beyond the CMB, if we could the Big 

Bang itself would need to be a slightly bigger sphere surrounding everything.  The FRW 

cannot handle this problem.  How can the Big Bang, a time when the Universe was fully 

contracted, have a spatial dimension when viewed at later times?  This is only possible if 

the true metric radius of the celestial spheres (where the Big Bang would be the 

largest/oldest one) is a time rather than a space.  Also, if we could see the celestial sphere 

of the Big Bang, it would appear completely black to us because any signals from that time 

would be infinitely redshifted when viewed at any later time and every point on the sphere 

would be necessarily identical.  Thus, when observed from the future, the Big Biang looks 

very much like the surface of a black hole, and these similarities will be more formally 

investigated in the final section of the paper.    



The ‘Big Bounce’? 

 

A plot of 𝜏 vs. r from the uppermost to lowermost hyperbola in Figure 1 is given in Figure 

9 below.  It illustrates well the relationship to typical spatial projectile motion (for 𝑢 = 1). 

 

 
Figure 9 - 𝜏 vs. r 

 

Consider a perfectly rigid and elastic ball in simple Newtonian mechanics.  If we throw it 

straight up in the air with initial velocity 
𝑑𝑥

𝑑𝜏
, the velocity will continuously decrease until 

at some height 
𝑑𝑥

𝑑𝜏
= 0 , at which point the ball will reverse direction and fall with 

increasingly negative 
𝑑𝑥

𝑑𝜏
 until it returns to the ground.  When it hits the ground (which we 

will assume has infinite inertia), since the ball is perfectly rigid and elastic, it will 

experience an infinite acceleration that will bounce it back toward its maximum height and 

this cycle will continue ad infinitum.  So, there are two turnaround points for the ball.  One 

point is maximum height, where the ball does not experience any special acceleration; it 

just stops moving through space as it turns around.  The second point is a hard acceleration 

that the ball can really feel a (infinite) force changing its direction. 

 

Likewise, we can see that the Schwarzschild cosmology is a similar situation except that 

the Universe is the ball and the acceleration is through time rather than space.  The Big 

Bang corresponds to maximum height, where the Universe’s velocity through time changes 

sign.  The 𝑟 = 0  hyperbolas are, perhaps, the ‘bounce’.  When the ball bounced, it 

experienced an infinite acceleration.  In the cosmological case, when 𝑟 = 0 the curvature 

of the spacetime is infinite [1].  This infinite curvature may be a point in time where the 

worldlines of the Universe turn back on themselves as if the spacetime is folded there and 

the worldlines go up one side and down the other (the infinite curvature is at the fold). 

 

 

Relationship to the External Solution 

 

Let us consider a meter stick at rest at the center of a collapsing spherically symmetric 

collapsing shell.  The meter stick inside the shell stretches from the center of the shell out 

to a distance 2GM (the shell is at a radius greater than 2GM so the entire stick is in flat 

space).  An observer in freefall on the collapsing shell does so with speed (in natural units 

measured by her clock) [5]: 



  
𝑑𝑟

𝑑𝜏
= −√

2𝐺𝑀

𝑟
 (29) 

 

Therefore, the freefall observer will see observers at rest at r moving past her at the speed 

given in Equation 29.  Since the meter stick is also at rest relative to observers at rest at 

any r, Equation 29 will also give the relative velocity between the freefall observer and the 

meter stick when the shell is at r.  Since the spacetime between the freefall observer and 

central observer is flat, they will each see the other’s clock dilated by the Special Relativity 

Relationship: 

  𝑑𝜏 = 𝑑𝑡√1 − 𝑉2 = 𝑑𝑡√1 −
2𝐺𝑀

𝑟
 (30) 

 

Because the meter stick will appear to be moving in the frame of the freefalling observer, 

its length in her frame would be: 

  𝐿 = 2𝐺𝑀√1 −
2𝐺𝑀

𝑟
 (31) 

 

We see from Equation 31 that as the freefalling observer approaches 𝑟 = 2𝐺𝑀 the length 

of the meter stick in her frame will contract to zero length.  So observers in freefall will see 

the space beyond 𝑟 = 2𝐺𝑀 fully contracted as they approach 𝑟 = 2𝐺𝑀. 

 

Thus, just as the internal and external solutions of the Schwarzschild metric must match up 

mathematically, so do the black hole event horizon and Big Bang celestial sphere.  Both 

have a finite radius.  In the external solution, the radius appears smaller as you fall toward 

it in space, in the internal solution, the radius appears smaller as you move toward it in time 

(but the metric radius remains fixed regardless of observer).  And as was just demonstrated, 

the apparent radius of both shrinks to zero for observers approaching 𝑟 = 𝑢.  Finally, all 

signals from both are infinitely redshifted such that they appear perfectly black and 

featureless to distant observers.  

 

But the freefalling observer of the external solution will never fall into a ‘black hole’.  It 

would take an infinite amount of time in the frame of an observer at infinity for the 

freefalling observer to reach the event horizon.  But the Universe will expand infinitely 

(and possibly recollapse) in a finite amount of time in the frame of the infinite observer 

and therefore the freefalling observer will only reach the 𝑟 = 2𝐺𝑀  location when the 

Universe itself has recollapsed (if it does indeed recollapse).  We know this because the 

proper time of an observer at rest in the internal solution is the coordinate time of the 

external solution: 

 𝑑𝑡𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑎𝑑𝑟𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (34) 

 

Since it takes a freefalling observer an infinite amount of coordinate time to reach the 

horizon in the external solution, but there is only a finite amount of proper time to 𝑟 = 0 

and then back to 𝑟 = 𝑢 in the internal solution, the freefaller can never reach the horizon 

during the expansion or collapse of the Universe.  When she reaches 𝑟 = 2𝐺𝑀, the entire 

Universe will be fully contracted (it will have reached the 𝑎 = 0 state described in the 

previous sections) as though everything in the Universe has collapsed to the same 𝑟 =



2𝐺𝑀, and the observer as well as the entire Universe will have reached the next ‘Big Bang’ 

state at which point it will presumably begin its expansion once more.  This is how the 

internal and external Schwarzschild solutions relate to one another, they both correspond 

to the ‘Big Bang’ state of the Universe. 

 

It is also notable that the external and internal solutions seem to turn smoothly into one 

another as one crosses the horizon, but consider the external metric measured in some 

arbitrary units of space and time.  In that case, one must include the speed of light in the 

metric: 

  𝑑𝜏2 = 𝑐2 𝑟−𝑢

𝑟
𝑑𝑡2 −

𝑟

𝑟−𝑢
𝑑𝑟2 − 𝑟2𝑑Ω2 (35) 

 

In equation 35, we put 𝑐2 in the 𝑑𝑡 term because r and t are measured in common units of 

space and time.  If we now allow r to be less than u such that we get the internal solution, 

Equation 35 becomes: 

 

  𝑑𝜏2 =
𝑟

𝑢−𝑟
𝑑𝑟2 − 𝑐2 𝑢−𝑟

𝑟
𝑑𝑡2 − 𝑟2𝑑Ω2 (36) 

 

For the internal solution, t is supposed to be the spatial term and r is the time term.  But we 

see from Equation 36 that if one just allows r to become less than u as though an observer 

crosses the horizon, the units of the metric no longer make sense as a result of the 𝑐2 (the 

second term ends up with units like 𝑚
4

𝑠2⁄ ).  This may be evidence that the internal and 

external solutions are in fact unique, separate solutions to the field equations meaning that 

black holes are not actually a facet of General Relativity. 

 

 

Conclusion 

 

It has been shown that the internal Schwarzschild metric will give observations that very 

closely resemble cosmological observations in our Universe.  So either the internal solution 

is in fact a cosmological solution, or observers inside a Black Hole will see a spacetime 

that evolves in a strikingly similar way to the evolution of large-scale Universe we 

ourselves observe.  
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