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Abstract 
 
In the current paper, the internal Schwarzschild solution is examined in the context of a 
cosmological model.  The expanding Universe is likened to a collapsing star in this 
context, where the future spacetime of the Universe is empty (justifying the vacuum 
solution) and the present is a 3-sphere boundary akin to the 2-sphere surface of a 
collapsing star.  Because the present time of the Universe is the boundary, it sees the 
vacuum solution just as the surface of a collapsing star sees the vacuum solution.  It is 
shown that the model predicts an accelerated expansion that agrees with current 
observations of the expansion history of our Universe, namely that the initial expansion is 
infinitely fast, and then the expansion slows for some time followed by an accelerated 
expansion.  With a simple coordinate change we get a metric resembling the FRW metric 
for flat space with a time dependent scale factor.  It is shown that the singularity at 𝑟 = 0 
can be interpreted as a point in time where the geodesics reverse sharply, perhaps causing 
the expansion and collapse of the Universe to cycle.  The consequences for an observer in 
freefall in a local gravitational field are then examined in the context of this model. 
 
 
Expansion Along a Timelike Dimension 
 
The current Big Bang model of the Universe says that the Universe expanded from an 
infinitely dense gravitational singularity at some time in the past.  Current cosmological 
data suggests that this expansion was slowing down for some time, but is now continuing 
to expand at an accelerated rate.  The Cosmological Principle suggests that from any 
reference frame in the Universe, the mass distribution is spherically symmetric and 
isotropic.  It is proposed that the observed expansion of the Universe is the result of a 
freefall in the time dimension.  To analyze the spherically symmetric Universe freefalling 
through the time dimension, we need the Schwarzschild solution where the radial 
coordinate is the timelike coordinate.  The interior (𝑟 < 1) solution of the Schwarzschild 
field (throughout the paper, we will work in units with Schwarzschild radius equal to 1) 
gives us precisely that.  For 𝑟 < 1, the signature of the Schwarzschild metric flips and the 
radial coordinate becomes a dimension measuring time while the t coordinate becomes a 
dimension measuring space. 
 
But the Schwarzschild metric is a vacuum solution to Einstein’s equations.  Given that 
the Universe is full of energy, further justification is required to use the vacuum solution.  
Consider an isotropically collapsing spherical star (such that the surface of the star is in 
freefall).  The external Schwarzschild solution is valid outside the surface of the star and 
is static as the star collapses.  The spacetime inside the star is not governed by the 
Schwarzschild metric due to the energy inside the star.  However, the metric inside the 
star and the metric outside the star must agree at the surface of the star and therefore the 



particles on the surface of the star see the Schwarzschild metric on the surface.  For the 
𝑟 < 1 Schwarzschild metric, it will be shown that at a fixed r, we have a spacelike 3-
dimensional slice of the Universe (the space of the Universe at a given cosmological 
time).  Therefore, if we assume that in our frame of reference the future spacetime of the 
Universe is empty (i.e. the Universe for cosmological times greater than our current 
cosmological time is a vacuum), we see that the 𝑟 < 1 Schwarzschild metric can be 
applied to our cosmology for the same reasons that we can apply the external 
Schwarzschild metric to the surface of a collapsing star.  Thus, whereas in the case of the 
collapsing star, the boundary was a 2-sphere collapsing in space, in the cosmological case 
the boundary (present time) is a 3-sphere expanding in time (in both cases, the boundary 
is defined by a given value of r).  In fact, if we begin with the assumption that the future 
spacetime is a vacuum, then according to Birkhoff’s theorem, the 𝑟 < 1 Schwarzschild 
solution is the only possible cosmological solution.  Thus, the Schwarzschild solution as 
a cosmological model is based on 2 assumptions: 
 

1. The Universe is spacetime and its geometry is governed by the equations of 
General Relativity 
 

2. The ‘present’ of the Universe is defined as the state of the Universe in which 
space is uniformly filled with energy at the present time and void of energy at all 
later times 

 
That energy does not fill all times can also be justified by looking at the momentum 4-
vector: 
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As can be seen from Equation 1, the rest energy comes from the velocity of the mass 
through the time dimension.  So energy can’t just exist statically at some particular place 
and time, as would be the case if the future were already filled with energy.  For the 
energy to exist, the matter must be flowing through time, as though the present state of 
energy in the Universe is freefalling through the time dimension into the future vacuum.  
Equation 1 will also help us understand the extreme points of this freefall. 
 
So let us take the center of our galaxy as the origin of an inertial reference frame.  We can 
draw a line through the center of the reference frame that extends infinitely in both 
directions radially outward.  This line will correspond to fixed angular coordinates (𝜃,𝜙).  
There are infinitely many such lines, but since we have an isotropic, spherically 
symmetric Universe, we only need to analyze this model along one of these lines, and the 
result will be the same for any line.   
 
The radial distance in this frame is kind of a compound dimension.  It is a distance in 
space as well as a distance in time.  The farther away a galaxy is from us, the farther back 



in time the light we currently receive from it was emitted.  Fortunately the 𝑟 < 1 
spacetime of the Schwarzschild solution plotted in Kruskal-Szekeres coordinates 
provides us with a method to understand this radial direction.  Figure 1 shows the 𝑟 < 1 
solution on a Kruskal-Szekeres coordinate chart where, in this model, the hyperbolas of 
constant r represent spacelike slices of constant cosmological time and the rays of t 
represent radial distances (each point on this plot is a 2-sphere and each hyperbola is a 3-
sphere). 

 
Figure 1 – Freefall Through Cosmological Time1 

 
We must first determine the paths of inertial observers in the spacetime.  For this we need 
the internal Schwarzschild metric and the geodesic equations for the internal 
Schwarzschild metric [1]: 
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In Equations 2, 3, and 4, we use units where 𝑐 = 2𝐺𝑀 = 1 and equations 3 and 4 assume 
no angular motion.  Looking at points 0 < 𝑟 < 1, then by inspection of Equation 3 it is 
clear that an inertial observer at rest at t will remain at rest at t (!

!!
!"!

= 0 if !"
!"
= 0).  Also, 

we see that if an observer is moving inertially with some initial !"
!"

, then if !"
!"
< 0, the 

coordinate speed of the observer will be reduced over time (the coordinates are 

																																																								
1	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	



expanding beneath her) and if !"
!"
> 0, the coordinate speed will be increased over time 

(the coordinates are collapsing beneath her). 
 
Let us therefore examine Equation 4 for an inertial observer at rest at t.  From Equation 1, 

we see that this corresponds to !"
!"
= 0 and !"

!"
= !!!

!
.  Plugging these expressions into 

Equations 4 gives: 
  !

!!
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= − !"
!!

 (5) 
 
Therefore, the inertial observer’s acceleration through cosmological time takes the form 
of Newton’s law of gravity, where r (a time coordinate) varies from 1 to 0.  So we will 
use Figure 1 to describe the freefall of the galaxies through the cosmological time 
dimension where galaxies (or galaxy clusters) follow lines of constant t (and any such 
observer can choose 𝑡 = 0 as their coordinate).  The ‘Big Bang’ will have occurred at the 
center of Figure 1 at 𝑟 = 1.  We know this because the above analysis showed that space 
expands if !"

!"
 is negative, so for our current cosmological time, our worldlines must be 

moving toward 𝑟 = 0. 
 
Expressions for the proper time interval along lines of constant t and Ω and the proper 
distance interval along hyperbolas of constant r and Ω from Equation 1 are: 
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First we should notice that neither Equation 6 nor 7 depend on the t coordinate.  This is 
good because the t coordinate marks the position of other galaxies relative to ours.  Since 
all galaxies are freefalling in time inertially, the particular position of any one galaxy 
should not matter.  The proper velocity and proper distance only depends on the 
cosmological time r.  When 𝑟 = 1, Equations 6 and 7 are both 0.  At this point (the Big 
Bang), it is our proper velocity in time that is zero.  So at that instant, we are no longer 
moving through time and therefore all points in space are coincident (the observer can 
reach every point in space without moving through time).  This is analogous to being at 
rest in space where all points of time essentially converge to a single point in space (the 
observer can reach every point in time without moving through space).  So this why the 
proper distance goes to zero there and why the lines of t in Figure 1 converge at that 
point; it is an instant where our velocity through cosmological time goes to zero as our 
speed through cosmological time changes from positive to negative (we can see that if we 
draw a worldline through the center point, !"

!"
 will change signs as it passes the 𝑟 = 1 

point). 
 



At 𝑟 = 0, both equations 6 and 7 are infinite.  So when the worldlines enter or exit one of 
the 𝑟 = 0 hyperbolas, they do so at infinite proper speed through the time dimension. If 
something is travelling through space at the speed to light, the proper distance between 
points in space is zero.  In this case, since we have infinite proper velocity in the time 
dimension, the proper distance between points in space will be infinite, because you 
would traverse an infinite amount of time in order to move through an infinitesimal 
amount of space.  What we see then is that at 𝑟 = 0 space will be infinitely expanded.    
 
We can also understand these extreme points using Equation 1.  At 𝑟 = 1, !"

!"
= 0 and 

according to Equation 1, this would mean that massive objects no longer have rest 
energy.  Thus there are no inertial reference frames in the Universe at that point; all 
worldlines are lightlike at that instant.  Since lightlike objects see space infinitely 
contracted, we see that at 𝑟 = 1 space will be infinitely contracted in all frames.  At 
𝑟 = 0, !"

!"
= ∞, meaning that the rest energies of massive objects is effectively infinite.  

We can think of this as objects having infinite inertia.  With infinite inertia, objects at rest 
cannot be accelerated and thus space is effectively infinitely expanded since motion is no 
longer possible.  We saw previously that inertial observers with non-zero initial !"

!"
 will be 

slowed down during expansion and this was explained by saying that the coordinates 
were expanding beneath her.  But we can also think of it as her inertia increasing as a 
result of her increasing !"

!"
, stopping her motion completely at 𝑟 = 0. 

 
A plot of !"

!"
 vs. r during the expansion !"

!"
< 0  is given in Figure 2 below: 

 

 
Figure 2 - !"

!"
 vs. r  

 
In Figure 2, time moves forward as we move right to left along the diagram.  So the 
leftmost dot represents us at our current cosmological time in the Universe.  The other 
dots represent galaxies at various distances from us (the farther they are to the right of the 
diagram, the greater the distance from us) whose signals we are currently receiving.  
Since the signals we receive now were emitted in the past, they were emitted from 
galaxies with a lower proper velocity than we have currently.  Thus, the signals should all 
be redshifted since our proper velocity is currently greater than the velocities of the 
galaxies when they emitted the signals and the magnitude of the redshift should be 
proportional to the difference in velocity.  Now note that in the region where the other 
dots are, the difference in velocity of the two more distant emitters is less than the 

		
		

	



difference in velocity of the closer emitters.  This difference means that when we get the 
signals from the galaxies, the difference in redshift for the two closer galaxies will be 
greater than the difference in redshift from the two more distant galaxies, which looks 
like accelerated expansion.  But on this graph, there is actually an inflection point at 
𝑟 = 0.75.  That means that from 𝑟 = 1 to 𝑟 = 0.75, it would appear as if the Universe is 
expanding, but the expansion is slowing down.  Then from 𝑟 = 0.75 to 𝑟 = 0, the 
Universe will look like it is expanding at an accelerated rate. This change from a 
negatively accelerating expansion to a positively accelerating expansion is consistent 
with current cosmological data.  Note that Equation 7, which describes the proper 
distance between coordinate points at a given r, has the same form as the function plotted 
in Figure 2 such that the rate of increase in proper distance decreases from 𝑟 = 1 to 
𝑟 = 0.75 and then increases afterwards.  Thus, from this equation, we can see that the 
rate at which wavelengths of light are stretched will first decrease and then increase, just 
as was discussed above (the exact equation for the redshift will be examined in the last 
section of this paper).  A plot of !

!"
!"
!"

, which is the rate of change of proper distance 
between coordinates (i.e. expansion rate), is shown in Figure 3 below, demonstrating this 
expansion profile. 
 

 
Figure 3 - !

!"
!"
!"

 vs. r 
 
Figure 4 shows the past light cone of an inertial observer at a given time during the 
expansion: 

 
Figure 4 – Past Light Cone of Inertial Observer During the Expansion2 

																																																								
2	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	



 
Notice that at all times during the expansion, the past light cone includes the entire width 
of the Universe.  This means that the observable Universe is the entire Universe.  From 
this we can conclude that the Schwarzschild radius of the entire Universe (𝑟!, which we 
have so far set to 1 in the current paper) is the Schwarzschild radius of the observable 
Universe.  We see however from Equation 7 that the proper distance to the edge of the 
observable Universe when 𝑟 < 1 is infinite (because t ranges from negative infinity to 
infinity). 
 
We can calculate the duration of the expansion of the Universe in the frame of an inertial 
observer by integrating Equation 6 from 0 to 1.  This integral yields a value of !

!
, but this 

is in units where the Schwarzschild radius is 1.  The total time of expansion is therefore: 
 
  𝜏 = !

!
𝑟! (8) 

Where 𝑟! is measured in light-years and 𝜏 is in years (or equivalent units where the speed 
of light is 1).   
 
A plot of 𝜏 vs. r from the uppermost to lowermost hyperbola in Figure 1 is given in 
Figure 5 below.  It illustrates well the relationship to typical spatial projectile motion. 
 

 
Figure 5 - 𝜏 vs. r 

 
Consider a perfectly rigid and elastic ball in simple Newtonian mechanics.  If we throw it 
straight up in the air with initial velocity !"

!"
, the velocity will continuously decrease until 

at some height !"
!"
= 0, at which point the ball will reverse direction and fall with 

increasingly negative !"
!"

 until it returns to the ground.  When it hits the ground, since it is 
perfectly rigid and elastic, it will experience an infinite acceleration that will bounce it 
back toward its maximum height and this cycle will continue ad infinitum.  So there are 
two turnaround points for the ball.  One point is maximum height, where the ball does not 
experience any special acceleration; it just stops moving through space as it turns around.  
The second point is a hard acceleration that the ball can really feel a (infinite) force 
changing its direction. 
 
Likewise, we can see that the Schwarzschild cosmology is a similar situation except that 
the Universe is the ball and the acceleration is through time rather than space.  The point 
𝑟 = 1  (Big Bang) corresponds to maximum height, where the Universe’s velocity 



through time changes sign.  The Hyperbolas are the ‘bounce’.  When the ball bounced, it 
experienced an infinite acceleration.  In the cosmological case, when 𝑟 = 0 the curvature 
of the spacetime is infinite [1].  This infinite curvature may be a point in time where the 
worldlines of the Universe turn back on themselves as if the spacetime is folded there and 
the worldlines go up one side and down the other (the infinite curvature is at the fold).  
Equation 5 is the inertial coordinate acceleration through time (proper acceleration is 
zero).  If we express that equation in terms of proper acceleration we get: 
 
   𝐴! = !!!

!"!
+ !"

!!
 (9) 

 
Immediately before 𝑟 = 0, the coordinate velocity !"

!"
 for the rest observers will be 

negatively infinite and immediately after the bounce the coordinate velocity will be 
infinitely positive.  Therefore the inertial coordinate acceleration will need to be 
instantaneously zero at 𝑟 = 0 and there will be a real proper acceleration given by: 
 
  𝐴! = !"

!!
 (10) 

 
As was the case when the ball bounced, the proper acceleration will be infinite in the 
direction of increasing r.  It is this instantaneous acceleration that would reverse the flow 
of the geodesics when the Universe is infinitely cold and dilute. 
 
What we see from this paper is that the Schwarzschild solution describes two different 
scenarios, neither of which is the so-called black hole.  The solution for 𝑟 > 1 describes 
the gravitational field when the gravitational source is a location in space for all time 
whereas the solution for 𝑟 < 1 describes the gravitational field when the gravitational 
source is a location in time for all space, where the gravitational center is at 𝑟 = 1 in both 
cases.  This is why the metric signature flips at 𝑟 = 1. 
 
 
Coordinate Change and the FRW Metric 
 
We can make a coordinate change to make the metric resemble the FRW metric, which is 
the currently accepted metric for the Universe at-large.  Basically, we want a radial 
coordinate whose interval is equal to the proper time interval of the inertial observer at 

rest (𝑡 = 𝑐𝑜𝑛𝑠𝑡).  Thus, we can use Equation 5 to define T such that !"
!"
= ± !

!!!
.  (+ on 

one the top half of Figure 1, - on the bottom or vice versa) Substituting this into Equation 
2, we get the following: 
  𝑑𝜏! = 𝑑𝑇! − !!!

!
𝑑𝑡! − 𝑟!𝑑Ω! (11) 

 
In these coordinates, the proper time interval of the inertial observer at rest is just 𝑑𝑇.  
The t and Ω intervals are multiplied by time-dependent functions (the r coordinate is a 
timelike coordinate) that play the role of the scale factors in the FRW metric for flat 
space.  The T coordinate ranges from 0 at 𝑟 = 1 to ± !

!
 at 𝑟 = 0.  As we can see, the scale 



factor squared in front of the 𝑑𝑡! is just !"
!"

!
 from Equation 6, which we have found can 

be interpreted as a proper velocity through time for an inertial observer. 
 
We can use the fact that !!!

!
 is the square of the scale factor and get the expression for 

cosmological redshift caused by the expansion [1]: 
 

  𝑧 = !!"#$
(!!!!"#$)

(!!!)
!

− 1 (12) 

 
In Equation 12, 𝑟!"#$ is the time at which the signal was emitted and 𝑟 is the time when 
the signal was received.  Plots of Equation 12 for fixed 𝑟!"#$ = 0.9 (left) and 𝑟 = 0.1 
(right) are shown in Figure 6 below: 
 

 
Figure 6 – z vs. r for 𝑟!"!" = 0.9 (left) and z vs. 𝑟!"#$ for 𝑟 = 0.1 (right) 

 
Interestingly, when looking at the right plot in Figure 6 where we see redshifts seen by an 
observer at 𝑟 = 0.1 from emitters at various distances, the inflection point occurs at 
𝑟 = 0.25 as opposed to Figure 3, where one can see that the spatial expansion changes 
from decelerating to accelerating at 𝑟 = 0.75.  Thus, there is a significant lag between the 
time the expansion begins to accelerate and the time that redshift measurements would 
indicate the acceleration. 
 
Returning to Equation 11, a notable issue is the 𝑟!𝑑Ω! term.  This is because r is a time 
coordinate in this context.  Normally, the r in that term would be a spacelike Euclidean 
radius.  However, the fact that this metric is describing a cosmological geometry makes 
the temporal characteristic of the radius more understandable.  When we look to distant 
galaxies, we are seeing them in the past.  The more distant the galaxy, the farther into the 
past we are seeing it.  In our current reference frame, farther into the past corresponds to 
a larger r.  Therefore, we can assign a unique r to the shell of galaxies around us at a 
fixed distance.  Furthermore, the more distant the shell, the larger the value of r we can 
assign.  What makes having a time coordinate as the radius make the most sense is that 
we can’t see farther back in time than the Big Bang, so even though the Universe is ever 
expanding, we will always only have a finitely observable Universe.  This is because 

z 

r 

z 

remit 



since we are looking back in time as we look out in space, the past of the Universe is 
finite and thus the maximum radius must be finite, in this case, 𝑟 = 1. 
 
 
Freefall In Space 
 
Let us consider a meter stick at rest at the center of a collapsing spherically symmetric 
collapsing shell.  According to Birkhoff’s theorem, the spacetime inside the shell, where 
the meter stick resides, will be flat Minkowski spacetime.  The meter stick inside the 
shell stretches from the center of the shell out to a distance 2GM (the shell is at a radius 
greater than 2GM so the entire stick is in flat spacetime).  An observer in freefall on the 
collapsing shell does so with speed (in natural units measured by her clock) [2]: 
 

  !"
!"
= − !!"

!
 (13) 

 
Therefore, the freefall observer will see observers at rest at r moving past her at the speed 
given in Equation 13.  Since the meter stick is also at rest relative to observers at rest at 
any r, Equation 13 will also give the relative velocity between the freefall observer and 
the meter stick when the shell is at r.  Since the spacetime between the freefall observer 
and central observer is flat, they will each see the other’s clock dilated by the Special 
Relativity Relationship: 
 

  𝑑𝜏 = 𝑑𝑡 1− 𝑉! = 𝑑𝑡 1− !!"
!

 (14) 

 
Because the meter stick will appear to be moving in the frame of the freefalling observer, 
its length in her frame would be: 
 

  𝐿 = 2𝐺𝑀 1− !!"
!

 (15) 

 
We see from Equation 15 that as the freefalling observer approaches 𝑟 = 2𝐺𝑀 the length 
of the meter stick in her frame will contract to zero length.  Thus, in her frame the center 
of the collapsing shell (𝑟 = 0) and 𝑟 = 2𝐺𝑀 are coincident.  This implies that in her 
frame, the event horizon lies at 𝑟 = 0 which, cosmologically speaking, is the state of the 
Universe when it is fully expanded.  This is also bolstered by the fact that the freefaller’s 
velocity through time is given by: 
 

  !"
!"
= 1− !!"

!

!!

 (16) 

 
Her rest energy/inertia therefore goes to infinity as she falls, just as the rest energy/inertia 
of the aforementioned cosmological observers at rest goes to infinity.  We also know that 
the clock of the freefalling observer ticks slower than the clock of an observer at infinity, 



and thus we expect that the shell observer will reach 𝑟 = 0 in less time according to her 
clock than the observer at infinity. 
 
Let us make a radial coordinate change for the freefalling observer.  We choose R such 
that !"

!"
= !

!!!!"
.  This coordinate varies identically to the r coordinate for large r and 

then diverges from it at the horizon.  Note that 𝑅 → ∞  as 𝑟 → ∞  and 𝑅 → −∞  as 
𝑟 → 2𝐺𝑀. The coordinate velocity of the freefalling observer with this coordinate is 
given by: 

   !"
!"
= − !!"

!
= − !!"

! !!!! !!
 (17) 

 
Where W is the product-log function.  This coordinate choice is also useful because the 
speed of light in these coordinates is 1 independent of R and t.  The external 
Schwarzschild metric with the new coordinate becomes: 
 
  𝑑𝜏! = !!!!"

!
𝑑𝑡! − 𝑑𝑅!  (18) 

 
A plot of the integral of Equation 17 is given in Figure 7 below: 
 

 
Figure 7 – Light Signals on t-R Chart 

 
Figure 7 is a t-R chart that shows a single infalling signal representing the signal to which 
the freefall worldline is asymptotic.  The freefalling observer will never receive this 
signal or any subsequent signal before the Universe reaches 𝑟 = 0.  The dots in Figure 7 
represent intervals of equal proper time along the worldline and we can see that rest 
observers will receive signals from the freefalling observer at longer and longer intervals. 
 
In the frame of the freefalling observer, rest observers will be moving away from her at 
the speed given in Equation 13.  Therefore, she will see the external Universe 
accelerating away from her at an even faster rate than observers at infinity see other 
observers at infinity accelerating away from them, their signals increasingly redshifted as 
time passes.  Nonetheless, the freefalling observer will never fall into a ‘black hole’, she 
will simply reach the cosmological 𝑟 = 0 more quickly than observers far from any local 
gravitational fields.  In fact, as observers on the shell approach 𝑟 = 2𝐺𝑀, their feefall 
velocity will be opposed by the spatial acceleration defined by Equation 3 such that they 
will never reach full collapse. 
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