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In the Aharonov-Bohm effect for a magnetic solenoid a moving charged particle seems to be influenced by
the 4-potential in a region where there are no fields in the laboratory frame of reference. The 4-potential
should be transformed to the frame of reference of the particle before computing the fields. There is an E
field in its frame of reference. The field accelerates a moving charged particle. One of the components of
the acceleration vector is in the same direction as the particle’s velocity in the first frame of reference. The
resulting longitudinal displacement in the path integral, when scaled in units of the de Broglie wavelength
for the particle, is approximately the same as the phase of the Aharonov-Bohm solution for long paths. The
scalar solution does not require transformation. It follows from the static Coulomb solution and the Newton
equations.

I. OVERVIEW

This paper has been rejected by five journals. None
of the editors sent it to a referee. I have given up on
trying to publish it until more laboratory data becomes
available. If you become aware of relevant laboratory
data then please email me at gary@s-4.com. I have the
capability of performing some of the experiments myself,
but I am preoccupied with resolving the factor of two
discrepancy in § IV. I expect to be able to perform some
simple experiments in another few months.

This paper is archived at
http://vixra.org/abs/1707.0344 and
https://figshare.com/articles/An_approximate_
non-quantum_calculation_of_the_Aharonov-Bohm_
effect/5477056 The primary depository is at
www.s-4.com/ab The version shown there may be
more current.

II. INTRODUCTION

There are hundreds of quantum papers stating that
there are no fields for moving charged particles near a
static magnetic solenoid. There is no second frame of
reference in the quantum theories, so the statement is
technically correct, but interpreting it is as applying to
classical equations distorts their meaning and is a dis-
service. Since the quantum theories do not have a sec-
ond frame of reference, they cannot utilize, and do not
need, the following calculations, but quantum concepts
should not be used to redefine the foundation of the clas-
sical method. Equally important, mis-applying quantum
concepts to classical equations strongy discourages some
desktop experiments that need to be performed.

a)Anaheim California, USA, retired; www.s-4.com/ab; Electronic
mail: gary@s-4.com

III. THE EXTERIOR SOLENOID SOLUTION

The exterior potential solution for a long static mag-
netic solenoid is

A = µ0nIϕ̂r
2
0/(2r)

ψ = 0,

where n is the number of turns per meter, r0 is the ra-
dius, I is the current in each turn, and r is the distance
from the center. In order to shorten the expressions, the
substitution k = µ0nI is made in the following calcu-
lations. After converting from cylindrical to Cartesian
coordinates,

Ax = −kr20 sinϕ/[2(x2 + y2)1/2]

Ay = kr20 cosϕ/[2(x
2 + y2)1/2]

Az = 0

ψ = 0,

with (x2 + y2)1/2 > r0. For x > 0, ϕ = arcsin[y/(x2 +
y2)1/2]

Ax = −kr20y/[2(x2 + y2)] (1)

Ay = kr20x/[2(x
2 + y2)] (2)

Az = 0

ψ = 0.

The magnetic field, B = ∇×A, is zero. ∇·A and
the scalar potential are zero, so the Lorentz condition,
∇·A+ 1/c2 ∂ψ/∂t, is also zero.

The magnetic Aharonov-Bohm9 (A-B) effect for this
solution is

∆ϕ =
q

~

∫
Ay dy,

where q is the charge of the particle and ~ is Planck’s
constant divided by 2π. From Eq. (2), the path integral
of the y component is∫ +y1

−y1

Aydy =
kr20
2

arctan
y

x

∣∣∣+y1

−y1

= kr20 arctan
y1
x
. (3)
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The quantum phase for the path is then

∆ϕ =
q

~
kr20 arctan

y1
x
. (4)

If the solenoid is driven by a low frequency alternating
current Eqs. (1) become

Ax = −k sin(ωt)r20y/[2(x2 + y2)] (5)

Ay = k sin(ωt)r20x/[2(x
2 + y2)]

Az = 0

ψ = 0.

A more complete calculation shows that there is still no
scalar potential in the solution if the charge of the sta-
tionary protons in the wire loop is included. In the SI
system of units the E field is

E = −∂A/∂t−∇ψ. (6)

The E field for the solution in Eqs. (5) is

Ex = kω cos(ωt)r20y/[2(x
2 + y2)]

Ey = −kω cos(ωt)r20x/[2(x
2 + y2)]

Ez = 0.

If two long straight wires are placed parallel to the y
axis on either side of the solenoid, along with crossover
wires at the ends, the loop integral of the E field, from
Eq. (3), is

∆V = −kπr20ω cos(ωt).

The configuration is a limiting case of a common trans-
former with a one turn secondary winding. The voltage
induced in the winding can also be computed from the
rate of change of the magnetic flux within the solenoid.
The voltage does not depend on the path of integration,
so long as it encircles the solenoid. The voltage is zero
in other cases. These relationships are only valid at low
frequencies. The potentials have to be retarded if the
solenoid is driven at a high frequency and becomes radia-
tive. The static solution cannot be retarded, because an
irreversible information loss has occurred in integrating
around the current loops. The nearside and farside con-
duction electrons would have to be retarded separately
with the Liénard–Wiechert7 retardation equations.
Velocities do not have an absolute significance, so if the

−∂A/∂t term induces a voltage in a transformer winding
a moving charged particle near a static magnetic solenoid
should experience an E field.
The infinitesimal Lorentz transform is

r′ = r − vt (7)

t′ = t− r·v/c2.

The 4-potential transforms in the same way as the co-
ordinates. It is possible to work in a system of units
where the scalar potential has the units of time and the
vector potential has the units of distance. When the

scalar potential is initially known in SI units it is multi-
plied by ξ to convert it to the units of time. ξ is a con-
stant with the units of s/V. After transformation with
the Lorentz transform the vector potential has the units
of distance, and it can be converted to SI units by divid-
ing it by ξc2. The scalar potential is converted back to
SI units by dividing it by ξ.

In this system of units Eqs. (7) become

A′ = A− vψ (8)

ψ′ = ψ −A·v/c2,
and Eqs. (1) become

Ax = −ξc2kr20y/[2(x2 + y2)]

Ay = ξc2kr20x/[2(x
2 + y2)]

Az = 0

ψ = 0.

Using Eqs. (8) to transform to the second frame of ref-
erence with the velocity v0y, with v0x = v0z = 0, then
converting back to the SI system,

A′
x = −kr20y/[2(x2 + y2)]

A′
y = kr20x/[2(x

2 + y2)]

A′
z = 0

ψ′ = −kr20v0x/[2(x2 + y2)].

The initial velocity in the y direction, v0y, has been
abbreviated to v0 in this and the following equations.
∇×A′ is zero. To first order, ∂ψ/∂x′ = ∂ψ/∂x and
∂ψ/∂y′ = ∂ψ/∂y. The E field simplifies to −∇ψ′

E′
x = kr20v0{1/[2(x2 + y2)]− x2/(x2 + y2)2} (9)

E′
y = −kr20v0xy/(x2 + y2)2

E′
z = 0.

As discussed in the next section, the transverse compo-
nent is probably not correctly determined in this solution.

The acceleration of a charged particle in the y direction
is qE′

y/m

ay = − q

m
kr20v0

xy

(x2 + y2)2
.

There are no scale changes with an infinitesimal Lorentz
transform, so the acceleration in the laboratory system
is the same, except for a possible sign inversion. The
particle, which has the initial velocity v0, acquires the
additional velocity

∫
aydt in the Newtonian approxima-

tion. When the E field is weak the acquired velocity is
low, and dt is approximately dy/v0. There are trans-
verse acceleration terms in the equations, but they will
not have a first order effect on the longitudinal solution
when vy ≪ v0. The incremental velocity is then

vy =

∫ y2

−y1

−qkr
2
0

m

xy

(x2 + y2)2
dy

=
qkr20
2m

x

x2 + y2

∣∣∣y=y2

y=−y1

=
qkr20
2m

(− x

x2 + y21
+

x

x2 + y22
).
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In the second frame of reference the particle is initially
at rest at the location y2 = −y1. The velocity of the
particle, relative to an uncharged particle, then steadily
increases, reaching a maximum at the closest approach
to the solenoid, where y2 is 0. The relative velocity then
steadily diminishes, returning to zero again when the par-
ticle is at the location y2 = +y1 in the laboratory frame
of reference. The system would not conserve energy if the
particle acquired a net velocity change in its encounter
with the solenoid unless there is a way to extract energy
from the solenoid, which is not likely with the Maxwell
equations.
From the perspective of an observer in the frame of ref-

erence of the particle, the retarded location of the moving
solenoid is not at the origin when y is zero, but this re-
lationship does not significantly affect the longitudinal
acceleration when the particle velocity is low.
The particle’s velocity is now v0 + vy in the labora-

tory system. The relative displacement of the particle is∫
vy dt. When the E field is weak dt is approximately

dy/v0

∆y =

∫ y2=+y1

y2=−y1

qkr20
2mv0

(− x

x2 + y21
+

x

x2 + y22
) dy2

=
qkr20
2mv0

(− xy2
x2 + y21

+ arctan
y2
x
)
∣∣∣y2=+y1

y2=−y1

=
qkr20
mv0

(− xy1
x2 + y21

+ arctan
y1
x
).

The de Broglie wavelength of the particle in the labo-
ratory frame of reference is

λ = h/(mv0).

The relative phase in cycles of the de Broglie wavelength
is ∆y/λ, then the phase in radians is obtained by substi-
tuting ~ for h

∆ϕ =
qkr20
~

(− xy1
x2 + y21

+ arctan
y1
x
). (10)

For y1 = 10 x this solution is 6.7% less than the value
in Eq. (4). It is 0.64% less at y1 = 100 x. The limiting
value for long paths is the same as the A-B solution.
For this particular and unusually simple solution, it is

only the scalar potential that matters in Eqs. (9). It is
only the vector potential that matters in the first frame of
reference. A vector potential transforms into a scalar po-
tential. The solutions represent the same problem from
the perspectives of two different observers. Since the
scalar and vector potentials do not have distinguishable
meanings with classical equations, the difference in the
parameterization of the equations is of no consequence
in this context. Similarly, the Liénard–Wiechert7 retar-
dation equations represent the transformation of a scalar
potential into a vector potential, although in that case
the solution contains both vector and scalar terms. The
current loop solution would also if the contribution of the
stationary protons was not subtracted from the solution.

The electrostatic energy associated with the charge of
the conduction electrons is enormous in relation to the
energy of the magnetic field within the solenoid, but each
conduction electron must be paired with a nearby pro-
ton. The electrons and protons must nevertheless be
transformed separately if the potentials are retarded or
advanced. An electron does not remain nearby to its as-
sociated proton as time progresses, and a moving circular
loop does not appear to be circular after it is retarded.
There are subtle consequences of these relationships.

For these reasons, a zero value for the E and B fields
in our frame of reference does not necessarily imply that
the fields are zero in other frames of reference. Our frame
of reference is as good as any, but solutions representing
special cases cannot be generalized if a cancellation of
terms occurs in obtaining them. The solution for a spe-
cial case should be obtained from a more general solution.
The inverse calculation does not work unless there is no
cancellation of terms for the special case.

IV. THE INTERIOR SOLENOID SOLUTION

The interior potential solution in the Lorentz gauge is

A = krϕ̂/2

ψ = 0.

In Cartesian coordinates

Ax = −ky/2
Ay = kx/2

Az = 0

ψ = 0.

∇·A is zero. ∇×A is Bx = 0, By = 0, Bz = k. In a
system of units where A has the units of distance,

Ax = −ξc2ky/2
Ay = ξc2kx/2

Az = 0

ψ = 0.

Transforming to the frame of reference of the particle
with Eqs. (8) and the velocity vy, then converting back
to SI units,

A′
x = −ky/2

A′
y = kx/2

A′
z = 0

ψ′ = −kvyx/2.

−∇ψ′ is

E′
x = kvy/2

E′
y = 0

E′
z = 0.
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FIG. 1. A CV2302 28 mm cathode ray tube. Photo credit:
langrex.co.uk.

There is no longitudinal component of the E field in the
interior region. To first order only, the magnetic field
is the same in the second frame of reference as it was
in the first. The magnetic force on the particle is F =
qv×B. The transverse force due to the E field is half of
that value. v has the other sign in the second frame of
reference, so the total transverse force on the particle is
half of what the solution is known to be.

The Thomas precession1,3 was originally used to ex-
plain a factor of two discrepancy in the spin-orbit cou-
pling of the hydrogen atom. The velocity of conduction
electrons in the solenoid windings is so low that the pre-
cession would not be expected to affect this solution, but
it might. A factor of two discrepancy for the magnetic
field also occurs in the Einstein – de Haas effect10, which
is attributed to the spin of the electron. Another pos-
sibility is that the potentials of each moving conduction
electron need to be advanced to the coordinates of the
moving test particle. From this perspective, the test par-
ticle is in the third frame of reference. The Lorentz trans-
form is for the second frame of reference.

The inconsistency in the calculation for the interior re-
gion casts doubt on the validity of the transverse terms in
the exterior region. These relationships could be inves-
tigated with a miniature cathode ray tube near a static
magnetic toroid. There will be no deflection of the elec-
tron beam if the transverse component of the E field is
zero. A static magnetic toroid cannot supply power to
the electron beam, but it could influence the amount of
current drawn from the power supply. Miniature cath-
ode ray tubes have not been manufactured anywhere in
the world for many years, but limited supplies and data
sheets are still available from internet sources. They were
produced in various sizes.

Linear charged particle accelerators based on an array
of pulsed magnetic toroids have been constructed5,6. A
charged particle passing through a series of static toroids
would not experience a net velocity change, but that does
not imply that the particle velocity is constant in the
vicinity of each toroid. Since a stationary charged parti-
cle is accelerated by the −∂A/∂t term of a pulsed toroid,
it should also be accelerated when the particle is station-
ary and a nearby static toroid is moving. Our frame of
reference is not special, and it is not different. Whether
the particle or the toroid is moving depends on which

frame of reference the observer is in.
Our frame of reference is the only one we can ever

measure anything in, but we are free to send messengers
elsewhere.

If an electron beam is projected through the center of
a magnetic toroid and modulated sinusoidally, the con-
figuration is not essentially different from applying an
alternating current to a wire passing through the toroid.
The electron beam could be in a glass tube. The next
step would be to pulse the electron beam so that a sin-
gle bunch of electrons passes through the toroid. Does
the electron bunch induce a voltage in the toroid wind-
ings? If it does, there must be a back-reaction that affects
the velocity of any electron passing through the toroid
when the toroid windings are carrying a direct current.
Consequently, the voltage drop along a wire carrying a
direct current would not be uniformly distributed along
the wire. Due to the low velocity of conduction electrons
in metal, the effect would be extremely small. It would
be larger in materials with a high electron mobility.

There should also be a current induced in the wires
leading to a moving parallel plate capacitor, since there
are no electrons between the capacitor plates to respond
to the −∂A/∂t term. The velocity of a moving capacitor
can be far higher than the velocity of conduction elec-
trons, but the capacitance will be small, typically less
than a picofarad, so the current required to charge the
capacitor will also be small. There are no significant
relativistic corrections at low velocities, so it should not
matter whether the capacitor is moving near a stationary
toroid or the toroid is moving near a stationary capaci-
tor. An isolated metal sphere with a wire leading to it
has a specific and computable capacitance, so it is not
necessary for there to be two wires. This configuration
would be more sensitive, although a metal curtain might
be needed to minimize stray signals.

Such experiments do not represent a measurement of
the vector potential. It is the integral of the E field that
is measured. There is no significant E field for moving
particles near the center of the toroid, where the vector
potential is approximately constant. The velocity of a
free charged particle moving through the toroid is never-
theless at a maximum or minimum at that point on the
trajectory.

Some experimental results for a parallel plate capacitor
driven by alternating current near a magnetic toroid that
is also driven by alternating current are shown in Ref. 4.
Sadly, the authors concluded that the configuration does
not conserve energy, but the coupling exhibited by the
data is probably valid. From Eq. (6), the energy density
of the E field is

1

2
ϵE·E =

1

2
ϵ[|∂A/∂t|2 + |∇ψ|2 + 2(∂A/∂t)·(∇ψ)].

The energy density of the scalar and vector poten-
tials cannot be computed separately because there is no
known way of telling them apart in dynamic solutions.
(There is a −∇ψ term on both sides of each capacitor
plate, which will complicate the analysis.)
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The measurable penetrating power of the −∂A/∂t
term cannot be any better than is allowed by the Maxwell
equations. It will cause a redistribution of the conduc-
tion electrons on the surface of a metal object, causing
the E field to disappear, even though the vector poten-
tial is still present. The dipole moment caused by the
charge redistribution could not be sustained in a conduc-
tor without the −∂A/∂t term. The −∂A/∂t and −∇ψ
terms are separately present inside the metal object, but
the energy density is zero. (This is just a model to serve
as a design tool. The actual governing equations are in
terms of the second derivatives, as constrained by the
Maxwell equations.)
The inseparability of the scalar and vector potentials

can be viewed in another way. In the Lorentz gauge
the far field potential solution for a current loop antenna
contains only vector potential terms. The solution for
a dipole antenna contains both scalar and vector terms.
The potential solutions are completely different, but they
do not represent two different kinds of radiation.
From another perspective, there is no magnetic field

associated with a non-spinning charge that is at rest in
our frame of reference, yet the dial on a moving magne-
tometer would register a magnetic field. That is because
there would be a magnetic field if the magnetometer was
at rest near a moving charge, and we have no way of
knowing which frame of reference we are in. The magne-
tometer dial can be read from any frame of reference, so
it does not matter what frame of reference we are in. The
solution would be unphysical if the mutual interactions
of a charged particle and magnetometer depended on the
velocity of a distant observer. The advanced potentials
for a charge that is at rest in our frame of reference are
the retarded potentials for an observer in the other frame
of reference. The advanced potentials do not matter for
us, but they do matter for almost everyone else.
It is possible that the −∂A/∂t and −∇ψ terms actu-

ally are distinguishable in a physical sense, in which case
the energy density within a metal object immersed in a
high frequency electromagnetic field is minuscule but not
zero. Such solutions, if they exist, are not representable
with the Maxwell equations.

V. SCALAR SOLUTIONS

If a charged particle is moving at the center of a metal
sphere, then a voltage is suddenly applied to the surface
of the sphere, the particle will no longer be at the center
when the potentials propagate to its location. That will
result in an asymmetry in the potentials between the
forward and reverse directions.
Alternatively, in the low frequency quasi-static approx-

imation, the scalar potential within a Faraday cage is the
same as the voltage on the external surface

A = 0

ψ = ξψ0 sin(ωt).

Transforming to the frame of reference of the particle
with Eqs. (8)

A = −ξψ0v sin(ωt)

ψ = ξψ0 sin(ωt).

In SI units

−∂A/∂t = ψ0vω cos(ωt)/c2 (11)

−∇ψ = 0.

The solution does not conserve charge, but it would if
the sphere is placed inside a larger sphere and the two
enclosures connected by a wire with a sinusoidal volt-
age source in series with it. For a charged sphere ψ0

is q0/(4πϵ0r0). The solution for two concentric spheres
becomes

E =
q0vω cos(ωt)

4πϵ0c2
(
1

r0
− 1

r1
).

There is obviously no requirement that the enclosures
be spherical. It has experimentally verified to a high
level of precision that stationary charged particles inside
a Faraday cage do not sense an E field3.

Quasi-static approximations do not provide non-trivial
solutions to the Maxwell equations. The calculations
have to be complete enough to represent the second
derivatives of the potentials to obtain a full solution. The
second derivatives are not always needed in low order ap-
proximations.

At 1 KV an electron has a velocity of 0.06c. For ψ0 =
10 V and a frequency of 1 MHz Eq. (11) evaluates to
0.013 V/m peak. The current in the wire leading to the
sphere will vary as ω1 in charging and discharging the
capacitance of the sphere. −∂A/∂t will vary as ω2, so
the vector potential in the first frame of reference can be
set aside at low frequencies, although it would be required
for obtaining a solution to the Maxwell equations.

The calculation does not transform nothing into some-
thing. The fields are there all along, but the contribu-
tion of individual charged particles is canceled by other
charged particles when the test particle is stationary. The
fields propagate at the speed of light from each charged
particle to the detector. If a cancellation of terms occurs
it does not happen until after the fields have propagated
to the detector. (It is not possible to determine if the
fields propagate at c in static solutions, but solutions
that are static in our frame of reference are not static in
any other frame of reference.)

Transforming the integral over the surface of a sphere
is not the same as transforming and then integrating.
The integral in our frame of reference has no meaning
for an observer in the frame of reference of a moving
test particle. At low velocities the retarded integral over
the surface of a sphere that is moving in our frame of
reference is equivalent to evaluating the integral in the
frame of reference of a moving test particle. There will
be relativistic corrections if the v2 terms are carried, and
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they are not necessarily symmetrical between the two
perspectives.

A more general solution for a Faraday cage could be
obtained by applying the Liénard–Wiechert retardation
equations to a moving and radially pulsating charged
sphere. The solutions to the Liénard–Wiechert equations
are always solutions to the Maxwell equations. To first
order only, and except for a sign inversion, the solution
in the frame of reference of a moving test particle should
be the same. As with the current loop solution, there are
two velocities and three frames of reference in the pulsat-
ing sphere solution, so there may be some inconsistencies
with the equations for the second frame of reference. Ex-
periments only accurate to within a factor of about two
would therefore not constitute a confirmation of the cal-
culations – a discrepancy would not necessarily be due
to calibration errors.

In being optimized for other purposes, the high fre-
quency response of conventional cathode ray tubes is very
poor. The limitation could be worked around by modu-
lating the grid with a nearby frequency to produce a beat
frequency. Nonlinear interactions are required for there
to be a beat frequency, so the grid modulation should be
of large amplitude. A custom design would not have this
limitation. Other styles of vacuum tubes may be usable,
but a short beam length will reduce the sensitivity, and
the anode might shield the signal.

There are other considerations, such as the skin effect,
which prevents a high frequency transverse E field from
penetrating metal. The transverse component is the only
component in the far field, but this is not a far field solu-
tion. It is probably not yet possible to reliably determine
if there is a signal, but it is not a difficult experiment.
With battery powered microprocessor based instrumen-
tation it is not even necessary to have a connection to
the outside world, minimizing signal leakage problems.
A similar configuration has been proposed for a quan-
tum experiment2.

To first order, there are no fields in the frame of refer-
ence of the particle when ω is zero, indicating that it is
not necessary to transform to its frame of reference for
obtaining the 4-potential version of the scalar A-B effect.
The difference in the behavior of the scalar and vector
solutions occurs because, until magnetic monopoles are
discovered, the magnetic field is a transformed E field.

In the following calculations there is a charged metal
sphere at the origin with two small holes on opposite
sides. From a great distance a charged particle is pro-
jected toward the nearby hole with the initial velocity
v0. The particle is accelerated by the E field, and it ac-
quires the velocity v0 + v. It then drifts across the diam-
eter of the sphere without further acceleration and exits
the hole on the other side. The voltage on the surface
of the sphere has to be arbitrarily low in order for these
calculations to be valid. It is an infinitesimal voltage.

The E field in the exterior region of the sphere is
E = q/(4πϵ0r

2). The potential at its surface, relative
to a point at infinity, is ψ0 = q/(4πϵ0r0), where r0 is the

radius. Solving the second equation for q and substitut-
ing it into the first provides the equation E = ψ0r0/r

2.
The acceleration of the particle is qE/m, and it acquires
the velocity qE dt/m, with dt = dr/(v0 + v). v is small
when the voltage on the sphere is low, so the equation
simplifies to dt ≈ dr/v0. v0 is assumed to be positive.

During the inbound traverse the particle acquires the
incremental radial velocity

vi =

∫ r=r1

r=r2

q

m

ψ0r0
r2

dr

v0

= −qψ0r0
mv0

(
1

r1
− 1

r2
). (12)

The particle is slowed if it has the same sign as the charge
on the sphere. The radial displacement that occurs dur-
ing the inbound traverse is

∫
vidt ≈

∫
vidr/v0.

∆ri =

∫ r1=r0

r1=r2

−qψ0r0
mv20

(
1

r1
− 1

r2
) dr1

=
qψ0r0
mv20

(
r1
r2

− ln r1)
∣∣∣r1=r0

r1=r2

=
qψ0r0
mv20

(
r0
r2

− 1 + ln
r2
r0

).

After exiting the hole on the other side of the sphere
the outbound incremental radial velocity is

vo =

∫ r=r2

r=r1

q

m

ψ0r0
r2

dr

v0

=
qψ0r0
mv0

(
1

r1
− 1

r2
).

The radial displacement that occurs during the outbound
portion of the trajectory is

∆ro =

∫ r1=r2

r1=r0

qψ0r0
mv20

(
1

r1
− 1

r2
) dr1

=
qψ0r0
mv20

(−r1
r2

+ ln r1)
∣∣∣r1=r2

r1=r0

=
qψ0r0
mv20

(
r0
r2

− 1 + ln
r2
r0

).

When the particle source and target are symmetrically
located on either side of the sphere there is no net change
in the velocity or position during the traverses. In the full
symmetrical path integral the particle behaves as though
there were no external E field. However, it drifts across
the diameter of the sphere with the velocity v0+v rather
than v0, resulting in a permanent position shift, rela-
tive to an uncharged particle. For r2 = ∞ and r1 = r0
Eq. (12) becomes

v = − qψ0

mv0
.

This equation is not valid unless v is small in relation
to v0. The relative displacement that occurs during the
drift is vt = 2vr0/v0

∆r = −2
qψ0r0
mv20

.
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Substituting r0 = tv0/2

∆r = −qψ0t

mv0
.

Rescaling by the de Broglie wavelength as in Eq. (10),

∆ϕ = −qψ0t/~.

The solution is the same as the A-B scalar solution9.

This effect is large. For an electron energy of 1 KeV
and a sphere radius of 1 cm a voltage change of only
3.8 µV would account for one fringe in the interference
pattern. A voltage this low qualifies as an infinitesimal
voltage in most cases.

It is concluded in Ref. 8 that surface charges in a metal
tube cancel the scalar A-B effect. The acceleration of
the electrons in the external E field will still be present,

implying that the phase shift for the full path is about
the same as the A-B solution. Quantum solutions cannot
be localized9, making it difficult to attribute the phase
shift to any one portion of the trajectory.
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