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Abstract/Background  

Anomalous changes in velocity were measured during spacecraft-Earth flybys of spacecraft launched on deep 
space missions between1990 and 2006.  The amount of the velocity change was small and varied with orbital 
parameters.  Not all such flybys exhibited the effect.  Numerous attempts have been made to explain the velocity 
changes without success. The flyby anomaly is considered a major unresolved problem in astrophysics.  A semi-
empirical description which is in agreement with results for the anomalous velocity changes was developed by 
Anderson et al. [1].  During the development of a theory of the gravitational co-field [2], it was noted that the semi-
empirical formulation of the flyby data was consistent with that model.  This paper provides a physical explanation 
of the semi-empirical result. 
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I.  EARTH SPACECRAFT FLYBY ANOMALIES 

A small, anomalous change in velocity occurred in a number of spacecraft flybys of the Earth.  

A semi-empirical description which is in agreement with results for the anomalous velocity 

changes was developed by Anderson et al. [1].  The new classical model of the gravitational 

co-field [2] provides an explanation of “Flyby” experimental data and the semi-empirical 

description.  Figure1 is a schematic of the NEAR flyby which produced the largest measured 

deflection of all the flybys. 
 

 

 
 
 

Figure 1. Schematic of the NEAR Spacecraft-Earth Flyby  
 

Anderson, et al. found that this velocity change for the spacecraft flybys of the Earth can be 

described by 
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where Eω  is the angular velocity of the Earth, ER is the Earth's radius, and c is the speed of 

light.  The remaining variables are as defined in Figure1.  From the geometry of Figure 1, 

Equation (1) can be written in vector form as 

 
0i

(2 2 ) E
E E

R

c    V ω v ω vx x  (2) 

It is noted that the angles δ in Equation (1) are measured relative to the horizontal axis.  If 

measured relative to the usual vertical axis, the cos δ becomes the sin of the complementary 

angle.  In the formulation of Equation (2), the observed velocity changes are normal to the 

spacecraft orbit and to the Earth’s angular velocity.  The terms in parenthesis represent the 

difference in the accelerations of the spacecraft between the incoming and outgoing 

asymptotes.  Given that the terms in the parenthesis represent accelerations, the RE/c term 

represents a time interval of 2.124x10-2 sec.  This implies that the measured change in velocity 

occurred in the vicinity of the closest approach, in the non-linear transition region between 

asymptotes. 
 

II.  ELEMENTS OF THE THEORY OF THE CO-FIELD USED IN FLYBY ANALYSIS 

From the Anderson et al. semi-empirical description of the data, it is possible to present an 

interpretation of the data from the perspective of the theory of the gravitational co-field [2].  A 

brief description of the results of [2] applicable to the flyby problem follows.  A gravitational-

mechanical force field is defined as consisting of Newton’s gravitational force equation and a 

rotational force term.  The gravitational-mechanical field defined in terms of force/unit mass is  

 ડ =
M

4πϵ0grଶ ොܚ + βrθሷ ી෡ (3) 

where β is a constant.  Whereas Newton and Heaviside described the equations of electricity 

and magnetism in terms of divergences and curls, the inverse approach in [2] was to apply 

curls to Equation (3) and its result to define the equations of the co-field.  Taking the curl of Γ
in cylindrical coordinates, and restricting the result to the axial direction, with

.
= θω , yields 

 ∇xડ= 
பଶ૑

ப୲
 (4) 

This result can be considered as defining an inertial induction of 2ω .  The value of a 

gravitational co-field at a given point in the field is thus given by 

 Ω=2ω (5) 

The acceleration of a mass in an Ω field resulting from the integral version of the curl is  

 a= 2ωxv (6) 

In cylindrical coordinates, using the value of   obtained from the differential curl version is 

 ∇xΩ= γΩθ 
ොܚ
r
 (7) 
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where γ is a constant.  Equation (7) is the inertial version of Amperes equation in E & M and 

can be put in similar form.  However, the important conclusion from Equation (7) is that the 

rotating earth produces an angular velocity dipole: 

 E

3
oRΩ = 2ω

R
 
 
 

 (8) 

In Equation (8), R0 is the on-axis dipole radius defined by 2 2
0 ER 0.33R ,  Ro = 0.574RE, RE is 

the radius of the Earth, and Eω is the angular velocity of the Earth. 

 
III CO-FIELD ANALYSIS OF FLYBY RESULTS 

In Equation (1),   E
E i 0

R
V 2ω cosδ cosδ

c   v , and in Equation (2), the terms preceding 

RE/c represent the difference between the asymptotic accelerations of a space vehicle in its 

orbit past the Earth.  As noted, the RE/c term semi-empirically represents a time interval 

required to produce the observed V .  An alternate treatment of RE/c is proposed.  Since the 

terms preceding ER c represent an acceleration change between the spacecraft trajectory 

asymptotes, the time interval of the change must also occur along the trajectory, but in the 

non-linear part of the trajectory between asymptotes.  The trajectory between the asymptotes 

can be approximated by fR θ , where fR is the distance from the center of the Earth to the point 

of nearest approach of the orbit.  The angle θ is the effective angle in radians, over which the 

change in acceleration occurs.  Dividing by fV , the spacecraft speed at closest approach,

f fR θ V is the corresponding time of acceleration for ∞ΔV .  To maintain the Equation (1) value 

of ΔV , it is required that 

 E E f

f

R θR θ
c V

   (9) 

This assumes that in the semi-empirical model, RE is actually an arc distance with an arc Eθ =1 

rad for all the flybys.  The left side of Equation (9) is a constant but the time interval is 

exceeding short (21.24 ms).  Conversely, the term on the right yields an unrealistically large 

value of θ without a compensating constant .  The terms on the right of Equation (9) must 

correspond to the value of RE/c for agreement with Equations (1) and (2).  The angle θ must 

thus vary with each flyby.  The resulting equivalent equation to that of Equation (1) is:  

  E
f2 i 0
f

R θ
V ω cosδ cosδ

V    v  (10) 

If, in Equation (10), the actual time of acceleration to yield the observed anomalous velocity is  

f

f

R θ
V

, then must roughly account for neglected orbital properties. These include factors  
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such as radius of closest approach and inclination differences amongst the flyby orbits.  To 

account for the effect of different radii of closest approach, the field dependence on radius from 

Equation (8) should be included in Equation (10) with a new attenuation constant K0. 

  0 E

3
0 f

i 0f f

R θR
ΔV = K 2ω v cosδ - cosδR V 

 
  

 (11) 

It is assumed for the subsequent analysis that 0K is the same for all the flybys.  This constant 

is determined by normalizing to the results of the NEAR flyby.  In Figure (2), a generic dipole is 

imposed on the NEAR flyby trajectory.  It is seen that the most intense field lines occupy about 

1 radian of the non-linear region between asymptotes.  Using this value of 1 radian for θ and 

the data from the NEAR flyby, 0K = 2.67E-4.  It is assumed for the subsequent analysis that 0K
is the same for all the flybys.  Using this value of 0K  and the orbital parameters of the 

remaining flybys, one can calculate their respective values of θ.  The constant 0K  represents a 

very large attenuation, and it seems unlikely that neglected orbital factors can account for more 

than a small part of it.  Thus, the major part of 0K  is probably a co-field associated attenuation 

factor.  Equation (12) is the resulting revised version of Equation (1).  Equation 12 could also 

be presented in its basic vector form, but does not explicitly show the ∆ cos δ dependence. 

  0
3

f
E i 0f f

R R θ
ΔV = (2.67E 4 ) 2ω V cos δ - cos δR V

 
  

  
∞ ∞  (12) 

 
IV SUMMARY 

The trajectory of the NEAR spacecraft depicted in Figures 1 and 2, is Newtonian with a small 

perturbation induced by motion in the Earth's gravitational dipole co-field.  Equation (12) 

defines the perturbation for all flybys.  Table 1 summarizes values of their orbital data.  It is 

noted that the values of θ, relative to NEAR, are all also about 1 radian except for Cassini and 

Messenger. 
 

Table 1. Numerical Data and Results Relevant to Equation (12) 
 ∆V∞ 2ωE(Ro/Rf)3 V∞ ∆ Cos δ Rf/Vf θ Rf Vf DA φ 

FLYBY mm/s rad/s m/s  sec rad m m/s Deg Deg 

NEAR 13.46 2.17E-05 6851 0.6254 542.4 1.00 6.91E+06 12739 66.9 33.0 

GLL-1 3.92 1.82E-05 8949 0.1487 533.6 1.14 7.33E+06 13740 47.7 25.2 

GLL-2 -4.6 2.41E-05 8877 -0.1699 474.0 1.00 6.67E+06 14080 51.1 -33.8 

Cassini -2 1.66E-05 16010 -0.0215 396.7 3.31 7.55E+06 19026 19.7 -23.5 

Rosetta 1.80 1.24E-05 3863 0.1796 791.8 0.99 8.33E+06 10517 99.3 20.2 

M'GER 0.02 1.08E-05 4056 0.0044 839.9 0.46 8.72E+06 10389 94.7 47.0 

Notes: Earth's angular velocity Eω  = 7.292E-5 rad/s, Earths radius
E

R = 6.371E+6 m, 0R =3.660E+6m; 

∆ cos δ is the difference between cosines of the incoming and outgoing asymptotes.  DA is the deflection angle 
between asymptotes.  The angle φ is the latitude of the point of closest approach.  
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Figure 2. NEAR Flyby with Generic Ω Dipole Field Superimposed 
 

A comparison of the NEAR orbital parameters and its ΔV with other flybys illustrates the 

factors which determine the magnitude of the flyby anomaly.  The NEAR, Cassini, and 

Messenger flybys represent extremes amongst the flybys.  The relative positions of the 

distance of closest approach for NEAR, Cassini, and Messenger and their latitudes, 

irrespective of longitude, are shown in Figure 2.  NEAR has the largest ∆V∞ value of  

13.6 mm/s, with Cassini at 2 and Messenger at 0.02. In Equation (12), the value of ΔV is 

increased by large values of V∞, ∆ cos δ, θ and by small values of Rf and Vf.  While all of these 

orbital factors contribute to the observed ΔV , the ∆ cos δ term appears to predominate in 

determining whether a ΔV  is observed and its magnitude.  Except for the Rosetta flyby, the 

values of ΔV , in descending order, correspond with those of ∆ cos δ.  Finally, the interaction 

of the spacecraft velocity with the Ω dipole field varies with the position of closest approach.  

Maximum contribution to ΔV occurs when ω is normal to v.  For NEAR, the field lines having 

a large angle to the orbit are most intense roughly from the Earth's axis to the point of closest 

approach as seen in Figure 2.  They subtend about 1 radian of arc of the non-linear portion of 

the trajectory.  Normalization to the NEAR trajectory produced θ values of 3.31 and 0.46 

radians for Cassini and Messenger, respectively.  The lines of Ω to the trajectory are less 

inclined to the trajectory for Cassini, but the interaction angle θ is larger.  The orbital inclination 

for Messenger is less favorable.  In summary, the Newtonian trajectory provides the conditions 

for the size of the flyby anomaly.  The Ω field-velocity interaction yields the perturbation. 
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V CONCLUSION 

The anomalous velocity changes observed during spacecraft flybys of the Earth are explained 

in terms of the flyby's orbital parameters interacting with the Earth's gravitational co-field [2].  

The experimental foundation for the present work was the semi-empirical equation developed 

by Anderson et al. [1].  The semi-empirical equation provides a good description of the 

observed anomalous velocities in terms of orbital parameters.  The present analysis partially 

re-formulates the Anderson et al. equation, and identifies a probable new physical constant 

which attenuates the effect of the co-field.  The gravitational co-field model provides a physical 

explanation of the flyby anomaly through its prediction of the 2ωxv interaction and of the 

gravitational dipole co-field. 
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