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Abstract: Eschewing naive realism, we define true (classical/quantum) realism:= some existents (ie,
some Bell-beables) may change interactively. We then show that Bell’s mathematical ideas re local
causality—from his 1964:(1)-(2) to his 1990a:(6.9.3)—are valid under true realism. But we refute
Bell’s analyses (and his local realism), as we resolve his consequent ‘action-at-a-distance’ dilemma
in favor of true locality:= no influence propagates superluminally. In short: defining beables by
properties and values—and allowing that locally-causal interactions may yield new beables—we predict
the probabilities of such interaction outcomes via equivalence-classes that are weaker (hence more
general) than the corresponding classes in EPR/Bell. In this way delivering the same results as
quantum theory and experiment—using EPRB, CHSH, GHZ and 3-space—we also advance QM’s
reconstruction in spacetime with a new vector-product for geometric algebra. True local realism thus
supports local causality, resolves Bell’s dilemma, negates nonlocality, demystifies QM, rejects naive
realism, eliminates the quantum/classical divide (since observables are clearly beables; being or not
being, prior to an interaction, but certainly existing thereafter), etc: all at the level of undergraduate
math and logic, and all contra the analyses and impossibility-claims of Bell and many others. We also
show that Bayes’ Law and Malus’ Law hold, undiminished, under true local realism and the quantum.

Keywords: Bell’s theorem, causality, completeness, equivalence, GA, GHZ, true locality, true realism

Preamble: 0.1. (i) This draft replaces most of my earlier essays. (ii) Paragraphs, equations, figures,
etc, are numbered to aid discussion, improvement, correction. (iii) Key texts are freely available
online (see References). (iv) The term particle is used in accord with quantum conventions: a pristine

particle here is in its initial ex-source/pretest state; spin is intrinsic angular momentum. (v) It is
often di�cult to understand what is meant by the generic term realism; eg, see Norsen (2006). Here,
true realism is well-defined and experimentally supported. (vi) Taking math to be the best logic, it
may flow for several lines before we comment. (vii) The resultant probabilities predict the outcomes
of experiments in full accord with quantum theory and experiment. (viii) In this way advancing the
ideas of EPR and Bell (but not Bell’s conclusions), we demystify QM and refute claims like these:

(ix) Bell (1964:199), “In a theory in which parameters are added [to QM] to determine
the results of individual measurements, without changing the statistical predictions, there
must be a mechanism whereby the setting of one measuring device can influence [via an
instantaneous signal] the reading of another instrument, however remote.” Bell (1972: 880),
“The nonlocal nature of quantum mechanics ... .” Aspect (2004:9), ‘Bell discovered that the
search for [local-realistic] models is hopeless.’ Wiseman (2005:1), ‘Bell (1964) strengthened
Einstein’s theorem (but showed the futility of [Einstein’s] quest) by demonstrating that
either reality or locality is a falsehood.’ Goldstein et al (2011:1), “In light of Bell’s theorem,
[many] experiments ... establish that our world is non-local.” Maudlin (2014:25), “Non-
locality is here to stay ... the world we live in is non-local.” Gisin (2014:4), “For a realistic
theory to predict the violation of some Bell inequalities, the theory must incorporate some
form of nonlocality.” Brunner et al (2014:1), “Bell’s 1964 theorem [a profound development]
... states that the predictions of quantum theory cannot be accounted for by any local
theory.” Norsen (2015:1), “In 1964 Bell demonstrated the need for non-locality in any
theory able to reproduce the standard quantum predictions.” Bricmont (2016:112), ‘There
are nonlocal physical e�ects in Nature.’ Annals of Physics Editors (2016:67; unanimously),
in the context of Bell’s theorem ‘it’s a proven scientific fact that a violation of local realism
has been demonstrated theoretically and experimentally.’
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1 INTRODUCTION

0.2. For us (using Bell’s handy term for existents), true realism in physics: (i) a�rms the existence of
objective (ie, mind-and-theory-independent) properties and values for well-defined beables; (ii) allows
that such beables may change interactively (such changes long clear to us from Malus’ optics c1810
and Bohr’s ‘disturbance’ insight); (iii) rejects as naive any brand of realism that negates/neglects (ii).

0.3. Thus, given Malus/Bohr, we show that naive realism (as in EPR) is no longer tenable: for ‘the
results of observation are not always given prior to and independent of observation,’ after Zeilinger
(2011:56). So we reject the following realisms: Bell (2004:89) calls Einstein’s ‘deep commitment to
realism and locality’ the ‘EPR axioms’. Clauser & Shimony (1978) unclearly, ‘Realism is a philosophical
view, according to which external reality is assumed to exist and have definite properties, whether or
not they are observed by someone.’ Miller (1996:35) helpfully, ‘The usual criterion for realism’ is EPR
(1935). Janotta & Hinrichsen (2014:31) obscurely, ‘A theory obeys realism if measurement outcomes
can be interpreted as revealing a property of the system that exists independent of the measurement.’

0.4. Thus, under true local realism: True realism allows that beables may change during interactions.
True locality allows that the ‘direct causes (and e�ects) of events are nearby, and even the indirect
causes (and e�ects) are no further away than permitted by the velocity of light,’ Bell (1990a:105).

1 Introduction

1.0. (i) ‘This action-at-a-distance business will pass. If we’re lucky it will be to some big
new development like the theory of relativity. Maybe someone will just point out that
we were being rather silly. But anyway, I believe the questions will be resolved,’ after
Bell (1990:9). (ii) ‘Nobody knows where the boundary between the classical and quantum
domain is situated. More plausible is that we’ll find that there is no boundary,’ after
Bell (2004:29-30). [Under the theory here, Wholistic Mechanics (WM)—the name for our
theory (with its basis in true local realism) since 1989—we agree and deliver.]

1.1. Studying EPR (1935) in the context of EPRB—the EPR-based experiment in Bohm & Aharonov
(1957)—Bell (1964:199) claims that EPR’s program requires a grossly non-local mechanism. However,
instead of correcting EPR’s error—as we do at ¶1.5—Bell creates a personal dilemma [see ¶1.6(i)]:
not seeing that a theory of the type that he (and we and EPR) favored could succeed. Thus, after

Bertlmann (2017:40): “Bell wondered, ‘Where does the quantum world stop and the classi-

cal world begin?’ He wanted to get rid of that division. [Agreeing, that’s what we do.] For
him it was true that hidden variable theories [HVTs], where quantum particles do have defi-
nite properties governed by hidden variables, would be appropriate to reformulate quantum
theory: ‘Everything has definite properties,’ Bell said.” Thus (see ¶2.8) Bell (1980:7) en-
dorses d’Espagnat’s inferences to preexisting properties. So—contrary to QM orthodoxy,
Bohr’s insight at ¶2.9, and our theory—Bell’s HVT seems bound by Bertlmann’s (ibid)
generalization that “HVTs [not orthodox QM] postulate that the properties of individual
systems—[like the orientation of a particle’s spin]—do have preexisting values revealed by
the act of measurement”. Care is needed here, however: ‘Predetermined is Bell’s original
phrasing. If there is for Bell an identity between predetermined and preexisting I cannot
say ad hoc, but for a realist—as Bell was—there is clearly a close connection between both
phrasings,’ after R. Bertlmann (pers. comm., 14 June 2017). [See determinism at ¶2.13.]

1.1a. nb: for us, a revealed property (eg, charge) may preexist, a revealed spin-orientation may not.
So—under Bertlmann’s generalization (ibid)—ours in not an HVT. Instead, we allow an observable
to be made from beables whose (preexisting) pretest values may be forever hidden under interac-
tions/transitions/transformations. Then, to advance our understanding, we encode the consequent
incomplete—but adequate—information in conservation laws and probability relations. Thus:
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1 INTRODUCTION

1.2. Cautiously seeking consensus, we begin by accepting d’Espagnat’s (1979:158) Bell-endorsed prin-
ciples of local realism: (i) realism (regularities in observed phenomena are caused by some physical
reality whose existence is independent of human observers); (ii) locality (no influence of any kind can
propagate superluminally); (iii) induction (legitimate conclusions can be drawn from consistent ob-
servations). So this is not a dispute about di�ering principles. Rather—merging our hopes with those
of EPR and Bell; and given ¶1.0—we simply reject inferences that are false in quantum settings. We
thus show that Bell and d’Espagnat fail under (iii): ie, ignoring consistent observations re the validity
of QM—and Bohr’s insight—they draw conclusions that are false under both QM and experiment (eg,
see Aspect 2004). Indeed, for us—readily accepting the commonsense in d’Espagnat’s (i)-(iii) above;
and succeeding with it (as we’ll show)—QM seems to be better-founded than Bell imagined; eg, here’s
Bertlmann (2017:54) on Bell (with Bellian naivety, puzzlement and doubts that we do not share):

“John was totally convinced that realism is the right position of a scientist. He believed
that experimental results are predetermined and not just induced by the measurement
process. Even more, in John’s EPR analysis reality is not assumed but inferred! Otherwise
(without realism), he said, ‘It’s a mystery if looking at one sock makes the sock pink and

the other one not-pink at the same time.’ So he did hold on [to] the hidden variable
program continuously, and was not discouraged by the outcome of EPR-Bell experiments
but rather puzzled. For him: ‘The situation was very intriguing that at the foundation of

all that impressive success [of QM] there are these great doubts,’ as he once remarked.”

1.3. In this way identifying the source of Bell’s dilemma—¶1.6(i)—let’s be clear about our own
position: our core quantum-compatible principle is true local realism (TLR), the union of true lo-
cality (no influence propagates superluminally, after Einstein) and true realism (some beables change
interactively, after Bohr). TLR is therefore consistent with most interpretations of QM—and with con-
textuality; thus bypassing the Kochen-Specker theorem—since interactions need not reveal preexisting
properties. We then advance EPR’s program by including every relevant beable in our EPRB analysis
(see ¶2.1)—validating EPR’s belief (see next)—but rejecting their famous criterion (see ¶¶1.4-1.5):

“In a complete theory there is an element corresponding to each element of reality,” EPR
(1935:777). “While we have thus shown that the wavefunction does not provide a complete
description of the physical reality, we left open the question of whether or not such a
description exists. We believe, however, that such a theory is possible,” EPR (1935:780).
[Using every relevant EPRB beable at ¶2.1, we show that a more complete description
is possible. Further (¶3.7), we show that hidden dynamics can be adequately treated by
encoding incomplete information in probabilistic relations; eg, via Bayes’ Law: P (XY |
Z) = P (X | Z)P (Y | ZX). Given our focus on truth, our consequent expectations are
validated by QM and experimental facts.]

1.4. So, using vector-products and physical operators in 3-space (not wavefunctions, etc, in Hilbert
space), we study the interaction of beables (particles) with other beables (polarizers). That is, tak-
ing particles and polarizers to be sensitive contributors to the veiled reality (d’Espagnat 1983:94) of
our world, we allow: (i) any interactant may be transformed under TLR; (ii) any transformation
may be subject to an uncertainty induced by Planck’s action-constant; (iii) every less-than-certain
probability distribution represents a veiled reality. (iv) Then, identifying every relevant beable un-
der EPRB—¶¶2.1-2.7—we provide a ‘complete description’ of what can be inferred from incomplete
information. (v) We also address Bell’s dilemma—¶1.6(i)—by endorsing EPR’s next two sentences;
marked [i], [ii]: but amending—at ¶1.5—the famous [naive] EPR criterion [iii] that follows [ii] here:

“[i] The elements of physical reality ... must be found by an appeal to the results of
experiments and measurements. [ii] A comprehensive definition of reality is, however,
unnecessary for our purpose. [iii] We [ie, EPR, but not us] shall be satisfied with the
following criterion, which we regard as reasonable. If, without any way disturbing a system,
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1 INTRODUCTION

we can predict with certainty [P = 1] the value of a physical quantity, then there exists an

element of physical reality corresponding to this physical quantity,” EPR (1935:777).

1.5. Departing subtly from EPR—but wholly compatible with EPRB, QM, the Bell/d’Espagnat ‘local-
realism’ of ¶1.2, and TLR at ¶1.3—here’s our su�cient condition for an element of physical reality
(a beable), presented in the context of (8)-(9) below to be clear: ‘If, without in any way disturbing a
system q(µ

i

), we can predict with adequate accuracy the result B

i

= ≠1 of the interaction ”

±
a

q(µ
i

)—ie,
an interaction that may disturb q(µ

i

)—then local beables q(µ
i

), ”

±
a

[and the consequent interaction-
output q(a≠)] will mediate this result; ie, B

i

will be a local function of q(a≠) and [a · ú],’ after Watson
(1998:417). [As to su�ciency: this condition delivers Bell’s hope (2004:167) for ‘a simple constructive
model’ of EPRB; see ¶2.15. As to our view of adequacy: here’s Aspect’s (2004:24) example against our
predictions (when we too depart from idealization): S

WM

= S

QM

= 2.70±0.05; S

Exp

= 2.697±0.015.]

1.6. All of which brings us to: (i) Bell’s dilemma re action-at-a-distance (AAD hereafter); (ii) a
clarifying expansion about the motivation we share with Bell (and with EPR) from ¶1.0:

(i) ‘I cannot say that AAD is required in physics. I can say that you cannot get away with

no AAD. You cannot separate o� what happens in one place and what happens in another.
Somehow they have to be described and explained jointly. That’s the fact of the situation;
Einstein’s program fails ... Maybe we have to learn to accept not so much AAD, but the

inadequacy of no AAD. ... That’s the dilemma. We are led by analyzing this situation
to admit that, somehow, distant things are connected, or at least not disconnected. ...
I don’t know any conception of locality that works with QM. So I think we’re stuck with

nonlocality ... I step back from asserting that there is AAD and I say only that you cannot

get away with locality. You cannot explain things by events in their neighbourhood. But,
I am careful not to assert that there is AAD,’ after Bell (1990:5-13); emphasis added.
(ii) “Now nobody knows just where the boundary between the classical and quantum
domain is situated. ... More plausible to me is that we will find that there is no boundary.
It is hard for me to envisage intelligible discourse about a world with no classical part—no
base of given events, be they only mental events in a single consciousness, to be correlated.
On the other hand, it is easy to imagine that the classical domain could be extended to
cover the whole. The wavefunctions—[not beables in our terms; in agreement with Bell
(2004:53)]—would prove to be a provisional or incomplete description of the quantum-
mechanical part, of which an objective account would become possible. It is this possibility,
of a homogeneous account of the world, which is for me the chief motivation of the study of
the so-called ‘hidden variable’ possibility,” Bell (2004:29-30). We agree and deliver. But.

1.7. Sharing this motivation, we deliver di�erently: for we prefer short-form expectations—like LHS
(67) at ¶5.7—that at-once bypass the limitations in Bell’s analyses. However, for now, to match the
style of typical Bellian essays, we defer our use of short-forms until we’ve established their validity.
Thus, using our notation per ¶2.1, we come to what we call (for convenience; it matters not), Bell’s
definition of true local realism: ie, we come to Bell’s view (1990a:109) re ‘locally explicable’ correlations
where factorizability is not taken to be the starting point of the analysis—nor the formulation of ‘local
causality’—but a consequence thereof. Thus, with past causes included in — (which defines EPRB):

P (AB |—, a, b, ⁄) = P (A |—, a, ⁄)P (B |—, b, ⁄) after Bell 1975a:(4)-(6), 1990a:(6.9.3); with (1)

P (AB |—, a, b, q(⁄), q(µ)) = P (A |—, a, q(⁄))P (B |—, b, q(µ)), which is (1) amended prudently: (2)

because (for us, under TLR) it’s clearer to allow particle-variables ⁄ and µ to be di�erent—see
¶2.1—correlated via (6). Thus, using Bell’s widely-accepted idea, (1), we move to show—via adequate
and relevant classes of local beables—that our world is truly local and truly realistic.
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2 ANALYSIS

1.8. So, under the principles in ¶¶1.2-1.5, eliminating false inferences and non-facts and resolving
Bell’s dilemma—via Analysis, Conclusions, Acknowledgment, Appendices, References—we move to
defend the Abstract in line with our continuing respect for Oliver Heaviside and connected facts.

“Facts are of not much use, considered as facts. They bewilder by their number and
their apparent incoherency. Let them be digested into theory, however, and brought into
mutual harmony, and it is another matter. Theory is of the essence of facts. Without
theory scientific knowledge would be only worthy of the madhouse,” Heaviside (1893:12).

1.9. In short: TLR links many facts to the Bell/d’Espagnat principles in ¶1.2: eg, (i) EPR-correlations
in EPR-experiments; (ii) repeated validation of QM, Bohr’s insight and special relativity; (iii) vali-
dation of (2) and famous (1) in theory and in practice after TLR-factoring at ¶3.6; (iv) retrodiction
re spacelike-separated events via logical implication—nb: there is no backward or nonlocal causation
here—but first we best establish TLR’s credentials beyond dispute.

2 Analysis

2.0. Einstein “argued that the EPR correlations can be made intelligible only by completing
the quantum mechanical account in a classical way,” Bell (2004:86). EPR suggest that a
state, ‘richer in content than the quantum state, would provide a commonsense explanation
of certain perfect correlations predicted by QM, which are otherwise ba�ing,’ after GHSZ
(1990:1131): though Bell (1990a:108)—discussing EPR—writes contrarily, “Commonsense
does not work here.” However, certain that it does work here—agreeing with Einstein and
GHSZ; using Aspect (2004); and working through EPRB to CHSH and GHZ/Mermin,
etc—we deliver commonsense TLR-based explanations that are true via Bohr’s insight,
local via Einstein locality, and realistic via Bell beables. Therefore, seeking to provide a
helpful prelude to this analysis, we suggest that the key to the commonsense here is this
(contra Bell): under TLR, we focus on an adequate specification of beables in 3-space,
and not at all on QM formalisms. For we are of the same opinion as Einstein, and Bell
(1990a:112): ‘the new cookery of QM ... contains all the same a certain unpalatability.’

2.1. Under TLR-completeness, every relevant beable of the subject reality [per Bell (1964)] follows:
including 3-space (since time and gravity are not essential to the analysis here). We let the beable ⁄
in Bell’s 1964:(1)—with its spin s implicit—denote a pristine particle’s total angular momentum; and
we allow that in the ith pair, ⁄

i

+ µ
i

= 0 via the pairwise conservation of total angular momentum.
Thus, under this relation, information about an associated property of one beable reveals information
about the other beable that is similarly associated with the given relation:

.A

i

©+1��±
a

≈q(⁄
i

) Ù—Û q(µ
i

)∆�±
b

�+1©B

i

. (3)
.A

i

©+1= a·a+� [a·ú]≈q(a+)�”

±
a

≈q(⁄
i

) Ù—Û q(µ
i

)∆”

±
b

�q(b+)∆ [b·ú]�b·b+ =+1©B

i

. (4)
T Alice’s locale U TSourceU T Bob’s locale U (5)

⁄
i

+ µ
i

=0; i=1, 2, ..., n. A

i

(a, ⁄
i

) = ≠B

i

(a, µ
i

); etc. P (⁄
i

= ⁄
j

| i ”= j) << 1. (6)
.A

i

©+1= a·a+� [a·ú]≈q(a+)�”

±
a

≈q(⁄
i

) Ù—Û q(µ
i

)∆”

±
a

�q(a≠)∆ [a·ú]�a·a≠ =≠1©B

i

. (7)

2.2. (3) shows experiment — (EPRB, with — honoring Bohm) and a test on (a decoherent interaction
with) each member of the ith particle-pair: thick arrows (∆) denote movement toward an interaction,
thin arrows (æ) point to the subsequent output (here, a transformation). With spin s implicit, and
properties ⁄

i

and µ
i

, our pristine (pretest) spin-1

2

particles q(⁄
i

) and q(µ
i

) emerge from Ù— Û (a decay
conserving angular momentum) such that (6) holds. Each particle interacts with a dichotomic linear-
polarizer-analyzer �±

x

—freely and independently operated by Alice (with result A) and Bob (result
B)—where x denotes any relevant orientation of its principal-axis. Under EPRB: x

+ = +x; x

≠ = ≠x.
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2 ANALYSIS

2.2a. Given that A and B are discrete (±1), and seeking generality, we employ variables like ⁄
i

, µ
i

(ordinary vectors with lengths in units of ~
2

) so that our EPRB results are associated with ~
2

. In this way
linking to vector-magnitudes—eg, ⁄

i

= |⁄
i

|⁄̂
i

, with |⁄
i

| in units of ~
2

, and ⁄̂
i

the direction-vector—our
variables may be continuous or discrete. This choice accords with the generality of our approach: and
with Bell’s (1964:195) indi�erence to whether such variables are discrete or continuous. [Then, in that
we seek equivalence relations under orientations—taking Bell’s (1964) a and b to be principal-axis
direction-vectors—~

2

is suppressed in (3)-(7). The more complete story under EPRB—eg, ”

±
a

q(⁄
i

) æ
q(~

2

a

±), with allied relations under magnitudes—is developed at ¶5.3.]

2.3. Identifier i is used generically: but each particle may be tested once only in (what we call) its
pristine state, and thereafter until absorbed in an analyzer; nb, under TLR, we generally favor the
term test over the term measurement. Then, since the tests are locally-causal and spacelike-separated,
we hold fast to Einstein’s principle of local causality: the real factual situation of q(µ

i

) is independent
of what is done with q(⁄

i

) which is spatially separated from q(µ
i

)—and vice-versa—per Bell (1964:
endnote 2; citing Einstein). Consistent with this principle, paired test outcomes are correlated via (6).

2.4. (4) expands on (3) to show that each polarizer-analyzer �±
x

is built from a polarizer ”

±
x

and a
removable analyzer [x · ú] that responds to the polarization-vector (ú) of each post-polarizer particle
q(ú) upon receipt. We thus assign the correct polarization x

± to q(ú) by observing the ±1 output of the
related analyzer; or by understanding the nature of particle/polarizer interactions. So experiment — is
EPRB—per Bell (1964)—with this benign finesse: to facilitate additional analysis and experimental
confirmations, we can employ additional polarizers (”±

y

) to test q(x±), etc; and y may equal x.
nb: as in (3)-(4), with q(⁄

i

) ∆ ”

±
a

leading to ”

±
a

q(⁄
i

) æ q(a±)—never requiring that
q(⁄

i

) = q(a±) prior to the interaction ”

±
a

q(⁄
i

)—we take interaction and transformation to
be concepts more fundamental than measurement: “Doesn’t any analysis of measurement
require concepts more fundamental than measurement? And should not the fundamental
theory be about these more fundamental concepts?” Bell (2004:118). We agree and deliver.

2.5. (5), with no symmetry requirements, shows the locales in (3)-(4) and (7) arbitrarily spacelike-
separated from each other and from the source. Given that (3)-(7) hold over any spacelike separation, it
follows that the relevant (pretest) particle properties are stable between emission and interaction with
a polarizer. Further, our theory is locally-causal and Lorentz-invariant because A

i

and B

i

are locally-
caused by precedent local events ”

±
a

q(⁄
i

) and ”

±
b

q(µ
i

) respectively, which are spacelike-separated.

2.6. (6) shows ⁄
i

and µ
i

pairwise correlated via the conservation of total angular momentum; our
use of ordinary vectors being prompted by Dirac (1982:149, eqn (48)) and geometric algebra as we
seek a realistic replacement for Pauli’s vector-of-matrices. (Note: via Fröhner (1998), we reject no
tools of the quantum trade.) Motivated by Bell, these TLR-based variables provide a more complete
specification of particle-pairs under —. Thus, for now, we allow these pristine spin-related variables to
be ordinary vectors for which all magnitudes and orientations are equally probable. (New conventions
begin when we integrate our approach with geometric algebra at ¶5.2-5.4.) Then, under our doctrine
of cautious conservatism—and though particle responses to interactions may be similar—(6) allows it
to be far less than certain that two pristine (ie, pretest) particle-pairs are physically the same.

2.7. (7) shows experiment — with Alice and Bob having the same polarizer setting a. (Per ¶2.2a, ~
2

is suppressed here.) Thus, as an idealized example—ie, by observing one result, we may predict the
other (spacelike-separated) result with certainty—here’s how Alice predicts Bob’s result after observing
A

i

= +1; and vice-versa, with Bob observing B

i

= ≠1 here:

A

i

= +1 * q(⁄
i

)∆”

±
a

æq(a+)∆ [a·ú] æ [a·a+] = +1. ⇧ ≠ using (6) ≠ (8)

q(µ
i

) = q(≠⁄
i

)∆”

±
a

æ q(a≠) ∆ [a·ú] æ [a·a≠] = ≠1 = B

i

. QED. ⌅ And vice-versa. (9)
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2 ANALYSIS

2.8. This is consistent with our su�cient condition for a beable [¶1.5]. For, without in any way
disturbing q(µ

i

), Alice can predict with certainty that Bob’s result will be B

i

= ≠1 when he tests
q(µ

i

) with ”

±
a

(which may be a disturber). So beables q(µ
i

), ”

±
a

and q(a≠) mediate Bob’s result; ie,
the interaction ”

±
a

q(µ
i

) will yield q(a≠) and the interaction [a · a

≠] will yield B

i

= ≠1. Thus the
particle corresponding to Bob’s B

i

= ≠1 result will be q(a≠); a TLR outcome acceptable to EPR, but
an important departure from Bell’s position. For Bell endorses d’Espagnat’s (1979:166) inference that
the input to the polarizer equals the output from the polarizer—ie, q(µ

i

) = q(a≠)—but we do not.

We thus come to the issue of Bell’s likely predilection for preexisting properties and the pos-
sibility of clarifying ¶1.1. Now the use of induction—drawing legitimate conclusions from
consistent observations—was foreshadowed at ¶1.2. But we will next see that d’Espagnat
(and thus, seemingly, Bell) ignore a long history of consistent observations/facts that
support the validity of QM and Bohr’s insight. This failing would be OK if Bell and
d’Espagnat were merely out to rebut EPR—and thus (maybe) endorse our amendment at
¶1.5—but here, as in science generally: facts and subtle distinctions matter more than
di�ering theorems based on di�erent assumptions. And one fact is this: with Bell’s
(1980:7) endorsement, d’Espagnat (1979:166) uses the phrase ‘definite spin components

at all times’—‘definite at all times’—ie, preexisting. So the d’Espagnat/Bell approach
here (unlike ours) is an HVT per ¶1.1; with related absurdities, see (28), (32), (40).
Here’s Bell’s (1980:7): “To explain this dénouement [of his (1964) theorem, say] without
mathematics I cannot do better than follow d’Espagnat (1979; 1979a).”
Here’s d’Espagnat (1979:166), recast for EPRB (and our —) in our notation, with added

emphasis: ‘A physicist can infer that in every pair, one particle has the property a

+ [a
positive spin-component along axis a] and the other has the property a

≠. Similarly, he
can conclude that in every pair one particle has the property b

+ and one b

≠, and one has
property c

+ and one c

≠. These conclusions require a subtle but important extension of

the meaning assigned to our notation a

+. Whereas previously a

+ was merely one possible
outcome of a measurement made on a particle, it is converted by this argument into an
attribute of the particle itself. To be explicit, if some unmeasured particle has the property
that a measurement along the axis a would give the definite result a

+, then that particle
is said to have the property a

+. In other words, the physicist has been led to the conclusion

that both particles in each pair have definite spin components at all times. ... This view is
contrary to the conventional interpretation of QM, but it is not contradicted by any fact
that has yet been introduced.’ [nb: definite spin components at all times = preexisting.]

2.9. However, to the contrary under TLR, as we’ll show: (i) d’Espagnat’s inferences are false; (ii)
weaker, more-general, inferences are available; (iii) there’s no need to contravene known facts re QM;
(iv) and no need to negate Bohr’s insight: which—supported by Bell hereunder—bolsters our case
against d’Espagnat’s ‘Bell-endorsed’ inferences. [See also Kochen (2015:5): in QM, physicists ‘do not
believe that the value of the spin component (S

z

) exists’ prior to the (polarizer) interaction.]

Here’s Bell (2004: xi-xii): It’s “Bohr’s insight that the result of a ‘measurement’ does not in
general reveal some preexisting property of the ‘system’, but is a product of both ‘system’
and ‘apparatus’. It seems [to Bell] that full appreciation of [Bohr’s insight] would have
aborted most of the ‘impossibility proofs’ [like Bell’s impossibility theorem, as we’ll see],
and most of ‘quantum logic’.” We agree, for in this way we reject the quantum/classical
divide. Under true realism [¶1.3]—some beables change interactively—we do not assume
that all ‘measured’ properties already exist prior to ‘measurement’ interactions. Thus,
under TLR—and given our view that Malus’ experiments involve disturbing interactions
between polarizers and light-beams—we negate and reject the following assumption: “In
classical physics, we assume that the measured properties of the system already exist prior

7
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to the measurement. ... The basic [classical] assumption is that systems have intrinsic
properties and the experiment measures the value of them,” Kochen (2015:5); see ¶2.19a.

2.10. Thus, to be clear and consistent with Bohr’s insight, TLR goes beyond the Bell-d’Espagnat
inferences wherein the ‘measured’ property is equated to a pristine property. That is—going beyond
d’Espagnat’s subtle extension cited in ¶2.8—we instead infer here to equivalence under a ‘polarizing’

operator . For equivalence—a relation without which science would hardly be possible; a weaker, more
general relation than equality—is here compatible with QM, Bohr’s view, and the consequent need to
recognize the e�ect of ‘the means of observation’ on EPRB inputs:

“... the unavoidable interaction between the objects and the measuring instruments sets
an absolute limit to the possibility of speaking of a behaviour of atomic objects which is
independent of the means of observation,” Bohr (1958:25).

2.11. So now, under TLR—via the known e�ect of linear-polarizer ”

±
x

on polarized particles q(x+)—we
can match interactions like ”

±
x

q(⁄
i

) � q(x+) with ancillary interactions like ”

±
x

q(x+) � q(x+). Then,
since ”

±
x

is a dichotomic operator that dyadically partitions its binary domain, we let ≥ here denote
the equivalence relation has the same output under the same operator. Thus, in the context of EPRB:

If ”

±
a

q(⁄
i

)�q(a+) then q(⁄
i

)≥q(a+) * ”

±
a

q(a+)�q(a+) only. ⇧ q(µ
i

)≥q(a≠) via q(≠⁄
i

)≥q(a≠). (10)

If ”

±
b

q(µ
i

)�q(b+) then q(µ
i

)≥q(b+) * ”

±
b

q(b+)�q(b+) only. ⇧ q(⁄
i

)≥q(b≠) via q(≠µ
i

)≥q(b≠). (11)

2.12. That is, in (10)—consistent with Alice’s frame of reference wherein Alice observes A

i

= +1, per
q(a+)—we confirm ≥ under ”

±
a

as follows: (i) polarizing-operators ”

±
a

deliver q(⁄
i

) and q(a+) to the
same output; (ii) it is impossible (under idealization) that an interaction with a ”

±
a

might to deliver
q(⁄

i

) and q(a+) to two di�erent outputs; (iii) an equivalence relation ≥ therefore holds between q(⁄
i

)
and q(a+) under ”

±
a

. (11) similarly, via Bob’s frame of reference, wherein Bob observes B

i

= +1:
the equivalence relation ≥ now holding between q(µ

i

) and q(b+) under ”

±
b

. [nb: further, at (20)-(21)
and ¶¶2.17-2.19 below, we find that particles equivalent under ”

±
a

are also equivalent under ”

±
b

in
probability functions; an important result because it licenses Malus’ Law under TLR.]

2.13. Re our equivalence relations ≥ (using the format ”

±
x≥ to include the operator when clarity requires):

Q © {q(⁄
i

), q(µ
i

); q(a±) |—, ”

±
a

, ⁄
i

+ µ
i

=0, i = 1, 2, ..., n}, given (7); (12)

[q(a+)] © {q(•
i

) œ Q | —, q(•
i

) ”

±
a≥ q(a+)}; [q(a≠)] © {q(•

i

) œ Q | —, q(•
i

) ”

±
a≥ q(a≠)}; (13)

Q/≥ = {[q(a+)], [q(a≠)]}; (14)

where Q is the set of n particle-pairs under — and ”

±
a

: ie, 2n input particles q(•
i

) and 2n output
particles q(a±) via ”

±
a

q(•
i

) æ q(a±). In (13), equivalence classes [q(a+)] and [q(a≠)] show Q partitioned
dyadically under the mapping ”

±
a

q(•
i

) æ q(a±). So, on the elements of ”

±
a

’s domain, ≥ denotes: has the

same output under ”

±
a

. (”±
b

similarly.) So the quotient set Q/≥ in (14)—the set of all equivalence classes
under ≥ —is a set of two diametrically-opposed extremes: a maximal antipodean discrimination; a
powerful deterministic push-pull dynamic; a sound basis for determinism; see ¶¶2.16, 5.3.

2.13a. Consequently, in our terms: under —, the deterministic classes [q(a+)] and [q(a≠)] in (13)-
(14) are adequately concrete—ie, adequately informative—to adequately fulfill ‘the more complete
specification’ that Bell (1964:195) wanted ‘to be e�ected by means of ⁄. It is a matter of indi�erence
in the following whether ⁄ denotes a single variable or a set ... .’ And testing new pairs of particles
(say j = n + i) under — and ”

±
b

yields a similar deterministic dichotomy; eg, see ¶2.25 and ...

8
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2.14. ... this. We now combine (3), (4), (10), (11) into a single test on the ith particle-pair from two
perspectives: (15), which Alice reads from left-to-right; (16), which Bob reads from right-to-left:

A

i

©+1··· q(a+)��±
a

≈q(⁄
i

) Ù—Û q(µ
i

)=q(≠⁄
i

)≥q(a≠) ∆”

±
b

∆q(b+)� [b·ú]�b·b+ =+1©B

i

; (15)

A

i

©+1= a·a+ � [a·ú]≈q(a+)�”

±
a

≈q(b≠)≥q(≠µ
i

)=q(⁄
i

) Ù—Û q(µ
i

)∆�±
b

�q(b+) ···+1©B

i

: (16)

Thus, in line with Bell’s (1964:196) specification for his ⁄: (i) seeking a physical theory
of the type envisioned by Einstein/EPR, our variables have dynamical significance and
laws of motion; (ii) our pristine ⁄ and µ—correlated under (6)—are the initial pretest
values of such variables at some suitable instant; (iii) since di�erent tests produce di�erent
disturbances, di�erent properties may be pairwise revealed under ≥ without contradiction:
ie, finding q(⁄

i

≥a

+) experimentally, we learn q(µ
i

≥a

≠) relationally via (6); etc. QED.⌅

2.15. So, from (6) and (10)-(16), with A

± (B±) denoting Alice’s (Bob’s) results (±1), we can now
provide (under — per Bell 1964): (i) functions that satisfy Bell 1964:(1); (ii) valid correlated EPRB
probabilities and expectations; (iii) our rejection of the generality of Bell’s 1964 theorem; (iv) the whole
followed by explanatory comments. [nb: here we use Malus’ classical Law at (20-(21) and Bayes’ Law
at (22). At (52)-(54) and (78)-(80) we use Malus’ Law to deliver Bayes’ Law. We thus show (contra the
views of many) that both laws—one from classical physics; one from classical logic—are valid under
TLR. To be clear: there are many logical implications here, but no backward or nonlocal causation.]

�±
a

q(⁄)æA(a, ⁄)=cos(a, ⁄ |q(⁄)≥q(a±))= ±1©A

±; ÈA |—Í=0 * P (A+ |—)≠P (A≠ |—)=0. (17)

�±
b

q(µ)æB(b, µ)=cos(b, µ |q(µ)≥q(b±))= ±1©B

±; ÈB |—Í=0 * P (B+ |—)≠P (B≠ |—)=0. (18)
P (A+ |—) = P (A≠ |—) = P (B+ |—) = P (B≠ |—) = 1

2

* ⁄ and µ are random variables here. (19)
P (A+ |—B

+)=P (q(⁄≥a

+) |—, q(µ≥b

+))=P (”±
a

q(b≠)�q(a+) |—)=cos2

s (a+

, b

≠)=sin2

1

2

(a, b). (20)
P (B+ |—A

+)=P (q(µ≥b

+) |—, q(⁄≥a

+))=P (”±
b

q(a≠)�q(b+) |—)=cos2

s (a≠
, b

+)=sin2

1

2

(a, b). (21)
⇧ P (A+

B

+ |—) = P (A+ |—)P (B+ |—A

+) = P (B+ |—)P (A+ |—B

+) = 1

2

sin2

1

2

(a, b). QED. ⌅ (22)

⇧
e
A

+

B

+ |—
f

=
+
A

≠
B

≠ |—
,

= 1

2

sin2

1

2

(a, b);
e
A

+

B

≠ |—
f

=
e
A

≠
B

+ |—
f

= ≠1

2

cos2

1

2

(a, b). (23)

⇧ ÈAB |—Í ©
e
A

+

B

+ |—
f

+
e
A

+

B

≠ |—
f

+
e
A

≠
B

+ |—
f

+
+
A

≠
B

≠ |—
,

= ≠a·b. QED. ⌅ (24)

2.16. That is. Given (15), the cosine function in (17) reads: with q(⁄) equivalent to q(a+) under ≥,
cos(a, ⁄ | q(⁄) ≥ q(a+)) denotes the cosine of the angle

!
a, a

+

"
: ie—under the deterministic push-pull

dynamic identified in ¶2.13; with q(⁄) ≥ q(a+)—the outcome is +1 = A

+ here. (18) similarly, given
(16); etc. Thus, under ≥, we could embrace Bell-d’Espagnat inferences [¶2.8] to equality, but: (i) the
probability that such inferences are valid is negligible; (ii) their theory does not embrace ours; (iii)
under our safe conservatism—allowing P (⁄

i

= ⁄
j

|—, i ”= j) << 1, per (6)—we get the right results.

2.17. Next in the logic-flow, (19) is self-explanatory. Then, re (20)—and (21) similarly—via stan-
dard probability theory and Bayes’ Law ¶1.3: (i) the correlation of A

± and B

± via (6) induces the
probability relation at LHS (20); (ii) such correlation is recognized by Bell (in our favor) as follows:

Recasting Bell (2004:208) in line with EPRB: “There are no ‘messages’ in one system from
the other. The inexplicable [sic] correlations of quantum mechanics do not give rise to
signalling between noninteracting systems. Of course, however, there may be correlations
(eg, those of EPRB) and if something about the second system is given (eg, that it is the
other side of an EPRB setup) and something about the overall state (eg, that it is the
EPRB singlet state) then inferences from events in one system [eg, from Alice’s A

+] to
events in the other [eg, to Bob’s B

+] are possible.” [All consistent with our use of Bayes’
Law in (22). The use of Malus’ Law in (20)-(21) is discussed next.]

9
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2.18. Continuing the logic flow: in (20) under ≥, the LHS probability relation is—from the middle
term in (20)—equivalent to a test on spin-1

2

particles of known polarization. So we derive RHS (20) by
extending Malus’ cos2

s (a+

, b

≠) Law (c.1808)—re the relative intensity of beams of polarized photons
(s = 1)—to spin-1

2

particles (s = 1

2

). (21) similarly. Then, since our equivalence relations hold
under probability functions P , P is well-defined under ≥ and is that same law—Malus’ Law—now
TLR-compatible by extension; validated under s = 1

2

in (20)-(21), under s = 1 in Aspect (2004).

Thus: re Aspect’s (2004:5-7) ‘concerned’ discussion of Malus’ Law, our trigonometric argu-
ments represent clear law-based dynamical processes under (10)-(11) and ¶¶2.3, 2.13: eg,
(q(⁄

i

) ≥ q(a+)) © (”±
a

q(⁄
i

) æ q(a+)); the a in ”

±
a

denotes the orientation of a non-uniform
field with which q(⁄

i

) interacts; superscript ± denotes two output ports. A wire-grid
microwave-polarizer provides a macroscopic analogy. With its conducting wires represented
by a direction-vector in 3-space, an impinging unpolarized beam of microwaves drives elec-
trons within the wires, thereby generating an alternating current (Hecht 1975:104). So
the wires become polarizing-operators (in our terms), for the transmitted beam is strongly
linearly polarized. (Polaroidr-sheet is a molecular equivalent for photons.) This suggests
(see ¶5.3), that the micro-dynamics of particle/polarizer interactions may be represented
by a suitable vector-product with two boundary-conditions: (i) the remnant angular mo-
mentum finally aligned (±) with the field is typically the spin s~; (ii) each pairwise EPRB

correlation arises from the pairwise-dynamics associated with the conservation of total
angular momentum in (6).

2.19. Thus, from (21), P (B+ | —A

+) under ≥ is given by Malus’ Law under TLR. And Malus’ Law
applies to the properties of beables—ie, the polarization of a Malusian light-beam or an equivalence
relation related to the angular momentum of an EPRB particle—defined to the point of adequacy, as
at ¶3.6. So, using (10), (21) expands to:

P (B+ |—A

+) © P (”±
b

q(µ) � q(b+) |—, ”

±
a

q(⁄) � q(a+)) = P (”±
b

q(µ) � q(b+) | —, q(⁄)≥q(a+))

=P (”±
b

q(µ)�q(b+) |—, q(≠µ)≥ q(a+))=P (”±
b

q(µ≥a

≠)�q(b+) |—)=cos2

s (a≠
, b

+)=sin2

1

2

(a, b). (25)

⇧ [using LHS (65)]: ÈAB |—Í = 2P (B+ |—A

+) ≠ 1 = 2 sin2

1

2

(a, b) ≠ 1 = ≠a·b. QED. ⌅ (26)

2.19a. Given (25)-(26), we’re in good company: “Nobody knows just where the boundary between the
classical and quantum domain is situated. ... More plausible to me is that we will find that there is no
boundary,” Bell (2004:29-30). QM ‘can be understood as a powerful extension of ordinary probability
theory,’ Fröhner (1998:652). “The major transformation from classical to quantum physics lies not in
modifying the basic classical concepts ... but rather in the shift from intrinsic to extrinsic properties,”
Kochen (2015:26). But our strategy di�ers. Under TLR, we adequately predict the probabilities of
interaction outcomes (including internal interactions in composite systems), via relevant classes of
beables. Thus, from (25), interactions ”

±
b

q(µ≥a

≠)�q(b±) proceed probabilistically to a cos2 Malusian
distribution: q(b+) proportional to q(b≠) as cos2

1

2

(a≠
, b

+) is to cos2

1

2

(a≠
, b

≠).

2.20. That is—allowing that every relevant beable here can be classified under an equivalence rela-
tion—Malus’ Law applies generally. To put it another way, in Malus’ 19th-century context, consider
two photons: (i) under the format in (4), (”±

x

q(⁄
j

)�q(x+)) © q(⁄
j

”

±
x≥ x

+) is a defining relation in our
terms; (ii) (”±

x

q(⁄
k

= x

+)�q(x+)) is our notation for ”

±
x

interacting with an x

+-polarized photon in
a Malusian x

+-polarized beam . We then say that (x+) is a defining property under ≥. For—with P

well-defined under ≥ from ¶2.17—they yield identical/valid results; ie, with s = 1 here:

P (”±
a

q(⁄
j

”

±
x≥ x

+) æ q(a+)) = P (”±
a

q(⁄
k

= x

+) æ q(a+)) = cos2

s(a+

, x

+) = cos2(a, x). (27)
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“It is not easy [maybe] to identify precisely which physical processes are to be given the
status of ‘observations’ and which are to be relegated to the limbo between one observation
and another. So it could be hoped that some increase in precision [as is our aim here] might
be possible by concentration on the beables, which can be described ‘in classical terms’,
because they are there [like our q(⁄

j

), with q(⁄
j

≥ x

+) under ”

±
x

; and q(⁄
k

= x

+)]. ...
‘Observables’ [like A

j

and A

k

in our notation] must be made, somehow, out of beables [as
our results are; eg, in (27)]. The theory of local beables should contain, and give precise
physical meaning to, the algebra of local observables [as TLR does],” Bell (2004:52).

2.21. Returning to the logic-flow in (17)-(24): (22) follows from (19)-(21) via Bayes’ Law; which is ap-
plicable here—and thus applicable to EPR studies generally—since A

± and B

± are correlated via (6).
The expectations in (23) follow from (22) via the definition of an expectation. Then, with (24) from
(23) via the definition of the overall expectation, we have the expectation ÈAB |—Í. Thus—despite
Bell’s claim in the line below his 1964:(3) that (24) is impossible—the generality of Bell’s theorem is

constrained by the limited generality of his inferences. [See Appendix B for a consequential refutation
of Bell’s 1964 impossibility claim.] With N denoting absurdity, the source of that ‘impossibility theo-
rem’—ie, the mathematical consequence of Bell’s EPR-inspired false inference [¶¶2.8-2.9]—follows:

2.22. Under ‘Contradiction: The main result will now be proved’, Bell (1964:197) takes us via his
1964:(14), direction-vector c, and three unnumbered equations—say, (14a)-(14c)—to his 1964:(15); ie:

|ÈAB |—Í ≠ ÈAC |—Í | Æ 1 + ÈBC |—Í ; ie, using our (24): |(a·c) ≠ (a·b) | Æ 1 ≠ (b·c); N (28)

ie, Bell 1964:(15) is absurd under TLR, mathematics and QM * |(a·c) ≠ (a·b) | Æ 3

2

≠ (b·c). (29)
2.23. To pinpoint the source of this absurdity (and avoid any defective intermediaries), we now link
LHS Bell 1964:(14a) directly to LHS Bell 1964:(15). Using illustrative angles, Bell’s 1964:(15) allows:

0 Æ ÈAB |—Í ≠ ÈAC |—Í Æ 1 + ÈBC |—Í ; (30)

ie, using our (24), 0 Æ (a·c) ≠ (a·b) Æ 1 ≠ (b·c); (31)
so, if (a, b) = fi

4

and (a, c) = (c, b) = fi

8

, then 0 Æ 0.217 Æ 0.076 (conservatively); N (32)
ie, Bell 1964:(14a) ”= Bell 1964:(14b) = Bell 1964:(14c) = Bell 1964:(15). QED. ⌅ (33)

2.24. Thus, under EPRB and TLR: Bell’s theorem (and related inequalities) stem from the ”= in (33);
ie, they begin with Bell’s move from his valid (14a) to his invalid (14b). Now, via Bell’s note at
1964:(14b), we find that Bell moves from (14a) to (14b) via the generalization (A(b, ⁄))2 = 1. But if
i ”= j, A(b, ⁄

i

)A(b, ⁄
j

) = ±1; ie, the product of uncorrelated scalars—[each of which may take the value
±1]—is ±1. So, as we’ll show, Bell’s generalization—ie, his set here of ⁄ that allows (A(b, ⁄))2 = 1 to
go through—is invalid under EPRB, with the following consequences: (i) absurdities—like (28), (32),
(40)—flow from the likes of Bell’s limiting generalization (A(b, ⁄))2 = 1; (ii) Bell’s theorem is limited
to systems for which his limited generalization holds; (iii) EPRB-based settings are not such systems;
(iv) Bell’s generalization has nothing to do with local causality; (v) based on such a constrained
‘realism’, Bell’s ambit claims are misleading. So let’s find the source of his problem:

2.25. Under TLR we distinguish between relevant classes of beables. Using our (3)-(7) and a particle-
by-particle analysis of —: let 3n random particle-pairs be equally distributed over three randomized
polarizer-pairings (a, b), (b, c), (c, a). We allow each particle-pair to be unique, and thus uniquely
indexed [i = 1, 2, ..., 3n] for identification purposes. [This conservative unrestricted generalization
under TLR is consistent with our incomplete knowledge in (6).] Let n be such that (for convenience
in presentation and to an adequate accuracy hereafter):

Bell 1964:(14a) = ÈAB |—Í ≠ ÈAC |—Í = ≠ 1
n

nÿ

i=1

[A(a, ⁄
i

)A(b, ⁄
i

) ≠ A(a, ⁄
n+i

)A(c, ⁄
n+i

)] (34)
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= 1
n

nÿ

i=1

A(a, ⁄
i

)A(b, ⁄
i

)[A(a, ⁄
i

)A(b, ⁄
i

)A(a, ⁄
n+i

)A(c, ⁄
n+i

) ≠ 1] (35)

= 1
n

nÿ

i=1

A(a, ⁄
i

)A(b, ⁄
i

)[A(b, ⁄
i

)A(c, ⁄
i

)≠1] (after using ⁄
i

= ⁄
n+i

[sic])=Bell 1964:(14b) : N (36)

absurd, for under —, and TLR per (6) : P (⁄
i

=⁄
n+i

|—) << 1. So (36) joins (28) under N. (37)

2.26. Thus, via (A(b, ⁄))2 = 1 at ¶2.24, Bell makes a quantum-incompatible move akin to using an
ordered sample of n objects subject to repetitive non-destructive testing, with ⁄

i

© ⁄
n+i

per (36).
Allowing that adequate concreteness will eliminate such absurdities, we now derive the consequences.
Since the average of |A(a, ⁄

i

)A(b, ⁄
i

) | is Æ 1, valid (35) reduces to valid (38):

Bell 1964:(14a) = |ÈAB |—Í ≠ ÈAC |—Í| Æ 1 ≠ 1
n

nÿ

i=1

A(a, ⁄
i

)A(b, ⁄
i

)A(a, ⁄
n+i

)A(c, ⁄
n+i

). (38)

2.27. Now, under TLR: (i) the independent and uncorrelated random variables ⁄
i

and ⁄
n+i

generate
independent and uncorrelated random variables (ie, the binary outputs ± 1), per (6); (ii) the expec-
tation over the product of two independent and uncorrelated random variables is the product of their
individual expectations; (iii) so valid (38) reduces to valid (39), a mathematical fact:

Bell 1964:(14a) = |ÈAB |—Í ≠ ÈAC |—Í | Æ 1 ≠ ÈAB |—ÍÈAC |—Í ”= Bell 1964:(14b); (39)

ie, |(a · b) ≠ (a · c) | Æ 1 ≠ (a · b)(a · c) ”= RHS Bell 1964:(15) unless a = b ‚ c, which is absurd.N (40)

2.28. In short: since LHS (40) is a mathematical fact, Bell’s 1964:(15) is absurd and false. In passing,
the CHSH (1969) inequality—eg, Peres (1995:164)—falls to a similar mathematical fact. To wit:

|(a·b) + (b·c) + (c·d) ≠ (d·a) | Æ 2
Ô

2. ⇧ |(a·b) + (b·c) + (c·d) ≠ (d·a) | Æ 2 is absurd. N (41)

2.29. Finally, furthering our analysis, we consider experiment “, Mermin’s (1990) 3-particle variant of
GHZ (1989); often regarded as the best variant of Bell’s theorem. Respectively, hereafter : three spin-1

2

particles with properties ⁄, µ, ‹ emerge from an angular-momentum conserving decay such that

⁄ + µ + ‹ = fi. ⇧ ‹ = fi ≠ ⁄ ≠ µ (for convenience; the choice matters not). (42)

2.30. The particles separate in the y-z plane and interact with spin-1

2

polarizers that are orthogonal
to the related line of flight. Let a, b, c here [nb: elsewhere, they are direction-vectors] be the angle
of each polarizer’s principal-axis relative to the positive x-axis; and let the equivalence relations for
⁄, µ, ‹ be expressed in similar terms. Finally, let the test results be A, B, C. Then, based on LHS
(17)-(18) in short-form—ie, A

+ = cos(a, ⁄ |q(⁄)≥q(a+)) = cos(a≠⁄ |⁄≥a

+) = 1; etc—let

A

+ = cos(a≠⁄ |⁄≥a) = 1; B

+ = cos(b≠µ |µ≥b) = 1; C

+ = cos(c≠‹ |‹ ≥c) = 1. (43)

2.31. Via the principles in (3)-(24)—and nothing more—we now derive ÈABC |“Í, the expectation for
the Mermin/GHZ experiment “. (Explanatory notes follow the derivation.)

e
A

+

B

+

C

+ |“
f

©

P (⁄≥a |“) cos(a≠⁄ |⁄≥a)·P (µ≥b |“) cos(b≠µ |µ≥b)·P (‹ ≥c |“, ⁄≥a, µ≥b) cos(c≠‹ |‹ ≥c) (44)

= 1

2

· 1

2

· P (‹ ≥c |“, ⁄≥a, µ≥b) = 1

4

P ((fi ≠ ⁄ ≠ µ)≥c |“, ⁄≥a, µ≥b) (45)

= 1

4

P ((fi ≠a ≠ b)≥c |“) = 1

4

cos2

1

2

(fi ≠a ≠ b≠c) = 1

4

sin2

1

2

(a + b + c). (46)

Similarly:
e
A

+

B

≠
C

≠ |“
f

=
e
A

≠
B

+

C

≠ |“
f

=
e
A

≠
B

≠
C

+ |“
f

= 1

4

sin2

1

2

(a + b + c), and (47)
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e
A

+

B

+

C

≠ |“
f

=
e
A

+

B

≠
C

+ |“
f

=
e
A

≠
B

+

C

+ |“
f

=
+
A

≠
B

≠
C

≠ |“
,

= ≠1

4

cos2

1

2

(a + b + c). (48)

⇧ ÈABC |“Í © �
+
A

±
B

±
C

± |“
,

= sin2

1

2

(a+b+c)≠cos2

1

2

(a+b+c) = ≠ cos(a+b+c). QED.⌅ (49)

2.32. Here’s the logic-flow: (44) defines the required expectation. (45) follows (44) by reduction
using (17)-(19). (46) follows from (45) by allocating the equivalence relations in the conditioning
space to the related variables. Thus, in words, LHS (46) is one-quarter the probability that ‹ — ie,
‹ ≥ (fi ≠ a

+ ≠ b

+) — will be equivalent to c

+ under ”

±
c

. In other words: LHS (46) = 1

4

P (”±
c

q(‹ ≥
fi ≠a

+ ≠ b

+) æ q(c+) |“) = RHS (46) via Malus’ Law. So (46) is the three-particle variant of (23) in
the two-particle EPRB experiment sketched in (3)-(6). (47)-(49) then follow naturally.

2.33. Thus, delivering Mermin’s (1990:11) crucial minus sign, (49) is the correct result for “: for when
(a+b+c) = 0, ÈABC |“Í = ≠1. So—using TLR and our rules for physical operators and EPRB-based
interactions in 3-space—we again deliver intelligible EPR/QM correlations. [nb: our use of a, b, c as
the angle of a polarizer’s principal-axis relative to the positive x-axis ends here.]

2.34. Via TLR’s valid results for EPRB at (24), CHSH at (41), Mermin/GHZ at (49), Aspect (2004)
at (68)—and such results so clearly in conflict with Bellian conclusions—we rest our case. With TLR’s
credentials established—contra Bell—ours is a valid general theory; eg, see how we factor (1) at ¶3.6.

3 Conclusions

3.0. TLR resolves Bell’s dilemma re AAD and fulfills his hope: ‘Let us hope that these
analyses [local-causality ‘impossibility’ proofs] also may one day be illuminated, perhaps
harshly, by a simple constructive model. However long that may be, long may Louis de
Broglie continue to inspire those who suspect that what is proved by impossibility proofs
is lack of imagination,’ Bell (2004:167). For Bellian di�culties arise from inadequately
imagining the nature of micro-reality: ie, missing true (classical/quantum) realism at ¶0.2,
they champion nonlocality at ¶0.1(ix) against true (relativistic) locality [¶0.4)], ¶0.1(viii)
notwithstanding.

3.1. To be clear: via the Bell-endorsed d’Espagnat-principles at ¶1.2—deriving the correct results
for EPRB at (24), CHSH at (41), Mermin (1990) at (49), Aspect (2004) at (68); GHSZ and GHZ
similarly—TLR resolves Bell’s AAD/locality dilemma in line with his hope for a simple constructive
model of EPRB. And though we reject and amend EPR’s ‘realism’ at ¶1.5, we still justify their belief
that additional variables would bring locality and causality to QM. We conclude that we rightly reject
‘nonlocal’ claims—like those at ¶0.1(ix)—for, as demonstrated via our simple constructive models:
the world (with no quantum/classical divide) is governed by true local realism, etc.

3.2. Further, under true realism: against false Bell/d’Espagnat inferences to equality—¶¶2.8-2.10—our
weaker more-general equivalence relations (≥) in (10)-(11) correctly relate beables like q(⁄) to more
familiar beables like q(a±); etc. So Bellian absurdities arise under equality relations while (as in
TLR), science is hardly possible without equivalence relations under operators. Nevertheless, in and
from Bellian studies—and honoring Bohr; though we learnt it from Malus’s work—we conclude that
Bohr’s oft-neglected insight into true realism should henceforth rank equally with Einstein’s well-
known insight into true locality. The more so since it is this neglect that leads to the naivety of Bell’s
realism—¶1.1—and the rejection of locality in many Bellian studies. Here’s a wiser Bell in 1989:

“When it is said that something is ‘measured’ it is di�cult not to think of the result as
referring to some pre-existing property of the object in question. This is to disregard Bohr’s
insistence that in quantum phenomena the apparatus as well as the system is essentially
involved. If it were not so, how could we understand, for example, that ‘measurement’

13
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of a component of ‘angular momentum’ – in an arbitrarily chosen direction – yields one
of a discrete set of values? When one forgets the role of the apparatus, as the word
‘measurement’ makes all too likely, one despairs of ordinary logic – hence ‘quantum logic’.
When one remembers the role of the apparatus, ordinary logic is just fine,” Bell (2004:216).

3.3. Bringing logic to Bell’s equation at (1), TLR: (i) amends EPR’s su�cient condition for a beable;
(ii) corrects Bell/d’Espagnat inferences; (iii) negates the quantum/classical divide; (iv) distinguishes
our approach to realism—with no hint of, nor need for, nonlocal or backwards causation.

3.4. Thus, under causal and logical independence—given the outputs A and B in (1)—we should find
ÈAB |—Í= ÈA |—ÍÈB |—Í = 0. However,

from (17)-(18), ÈA |—Í= ÈB |—Í= 0; but from (24), ÈAB |—Í ”= 0: (50)

so, with A and B causally independent (via true locality) but correlated, we conclude that our simple
departure from Bell’s naive position—via logical implication—makes all the di�erence.

3.5. For—(i) replacing Bell’s (1990a:106) “full specification of all local beables in a given space-time
region” (our emphasis) with TLR’s adequate specification of local micro-beables, foreshadowed at ¶1.7;
(ii) given Bell’s (1990a:109) reference to logically independent correlations which permit symmetric
factorizations as locally explicable; (iii) taking such factorizations to be a consequence of local causality
and not a formulation thereof; (iv) and using (6) and (19)—we conclude that TLR’s adequacy goes
beyond Bell to deliver a rudimentary factorization of (1); like this [but also see what follows at ¶3.6]:

P (A+

B

+ |—, a, q(⁄≥a

+), b, q(µ≥b

+))=P (A+ |—, a, q(⁄≥a

+))P (B+ |—, b, q(µ≥b

+))=1. (51)

3.6. We therefore conclude that Bell’s focus on (an improbable) full specification (¶3.5)—in typical
unrealistic HVT fashion—prevents him from deriving the result that follows next via TLR’s adequate

specification. For, more prudent and conservative, TLR allows us to complete (1)—which is often
called Bell’s locality hypothesis—via (2) like this [with · denoting and; using (19)-(22) at the end]:

P (A+

B

+ |—, a, q(⁄), b, q(µ)) = P (A+ |—, a, q(⁄))P (B+ |—, b, q(µ)) (52)

= P (q(⁄) ”

±
a≥ q(a+) |—)P (q(µ)

”

±
b≥ q(b+) |—) = 1

2

P (q(a≠)
”

±
b≥ q(b+) |—) · 1

2

P (q(b≠) ”

±
a≥ q(a+) |—) (53)

= 1

2

sin2

1

2

(a, b) = P (A+|—)P (B+|—A

+) · P (B+|—)P (A+|—B

+) = P (A+

B

+ |—). QED. ⌅ (54)

3.7. (51)-(54) shows that logical independence at the micro-level—in (51), with 1x1 = 1; or in
(52)—may lead to Malus’ Law at the macro-level, per (54); and vice-versa. Moreover, against Aspect
(2004:9 with that hopeless search) and Bell generally, our TLR factorings under Bayes’ Law are licensed
by the experimentally-verified generality of Malus’ Law; and vice-versa: note the link between (53)
and (54) under our equivalence relations. (Moreover, contra Bell and his dilemma at ¶1.6(i), TLR
explains events via local interactions.) In passing: the symmetry associated with · in (53)-(54) shows
that Alice’s factoring is—of course—similar to Bob’s. Importantly, wrt Bayes’ Law at ¶1.3: valid
equivalence relations allow us the encode better information about random beables and their hidden

dynamics in our probability relations; thus (52) leads to RHS (54), and vice-versa.

3.8. Per du Sautoy (2016:170), “Bell’s theorem is as mathematically robust as they come.” But Bell’s
use of [A(b, ⁄)]2 = 1 (see ¶2.24), renders his theorem unphysical under EPRB, physically false at (24),
absurd at (28) and (32), refuted at (80), etc. For, per ¶2.25, [A(b, ⁄)]2 = 1 is invalid under EPRB due
to matching problems; ie, under i ”= j, the product of uncorrelated outcomes is: A(b, ⁄

i

)A(b, ⁄
j

) = ±1.
[nb: macro-pairing (eg, B

± with A

+ and A

≠ via Malus’ Law) yields valid results; see (54).] We con-
clude: Bayes’ Law is never false here (neither mathematically nor experimentally). We thus confirm
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Bell’s (1990a:106) utmost suspicion: he did throw the baby—baby Bayes—out with the ‘macro’ bath-
water. For, since A and B are ‘macro’ and independent—but correlated per ¶3.4 and (50)—Bayes’ Law
(and thus Malus’ Law), is central to a commonsense understanding of EPRB. And that understanding
leads back from RHS (54) to (52): delivering the local explicitness that Bell sought.

3.9. Re ¶¶2.19 -20, we conclude that opportunities for a wholesale reconstruction of QM remain:
‘collapse’ as the Bayesian updating of an equivalence class via prior correlations; ‘states’ as states
of information about multivectors; ‘measurements’ as the outcomes of interactions involving physical
operators; more physically-significant TLR-style approaches, like that at (56) re Pauli’s vector-of-
matrices. For: (i) our Lorentz-invariant analysis resolves Bell’s AAD/locality dilemma; (ii) we dispense
with AAD; (iii) we validate Einstein’s program; (iv) we do get away with locality; (v) we thus justify
Bell’s motivation and validate our common enterprise; based on ¶¶1.0, 1.6-1.7.

3.10. Finally, re our position at ¶1.2—concerned re the meaning of generic realism; taking QM to be

better-founded than Bell imagined; correcting Bellian naiveties, puzzlements and doubts that we do not

share—we’ve justified our concern re the content of Bell’s remarks (in Bertlmann 2017:54) at ¶1.2.

3.11. In sum, consistent with Einstein’s locally-causal Lorentz-invariant worldview: (i) Bell’s theorem
is bypassed; (ii) its unphysical restriction—via (36)—leads to its consequent lack of generality; (iii)
Bell’s dilemma at ¶1.6(i) is resolved; (v) Bell’s chief motivation via ¶1.6(ii) is justified; (vi) his locality
-causality at ¶1.7 is developed; (vii) his questions answered via (22), (24), (33), (49), (51)-(54), etc. We
thus conclude that—at peace with QM and relativity—a truly realistic account of the world beckons:
TLR—true local realism—via interactions/transitions/transformations per (52)-(54), etc.

TLR: true via Bohr’s insight, local via Einstein’s locality, realistic via Bell’s beables.
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5 Appendix A: A new vector product for Geometric Algebra (GA)

5.1. Our TLR analysis—via equivalence relations under orientations; consistent with EPRB, QM and
experiment—resolves the Bellian dilemma defined at ¶1.6(i). So, from ¶2.2a and ¶2.6, we now show
TLR’s accord with QM via relations under magnitudes. To this end: (i) from Bell 1964:(1) and ¶2.1,
we let the beable ⁄ denote a pristine particle’s total angular momentum; (ii) from ¶2.15 we have the
relationships missing from Bell 1964:(1); (iii) from ¶2.34, and the likes of Aspect’s experiments, such
relationships are experimentally-validated; (iv) new relationships may be validated similarly.

5.2. The link between TLR and GA) follows: (i) let a

1

, a

2

, a

3

be a right-handed set of orthonormal
basis vectors; (ii) let our a © a

3

; (iii) let a be our preferred term. As the original identifier of
the principal axis of Alice’s polarizer (from ¶2.1), a is the unit-vector denoting the key variable
of polarizing-operator ”

±
a

with respect to spin-1

2

particles q(⁄) under EPRB. Then, in conventional
short-form notation under GA—eg, Chappell et al (2011:3)—with ‘

ijk

the Levi-Civita symbol:

a

i

a

j

= a

i

·a
j

+ a

i

· a

j

= ”

ij

+ ı‘

ijk

a

k

; ı © a

i

a

j

a

k

; ı

2 = (a
i

a

j

a

k

)2 = ≠1; a

1

a

2

= a

1

· a

2

= ıa

3

. (55)

So our real vectors satisfy the defining relation of the Pauli matrices: ‡

i

‡

j

= ”

ij

+ ı‘

ijk

‡

k.

(56)
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The equiprobable spin-bivectors under the interaction ”

±
a

q(⁄) are then: ±|s |a
1

a
2

= ±|s | ıa
3

; (57)

where the spin-vector is: s = ±~
2

a

3

= ±~
2

a; where + denotes spin-up wrt a; etc. (58)

5.3. Based on ¶2.18, we now represent particle/polarizer interactions by a new vector-product. Sym-
metrically, under the deterministic push-pull dynamics of ¶2.13, let a≠ be appropriately orthogonal
to a

+ as determined by the relevant spin; see (59). Then—with h denoting equiprobability; ü © xor;
a

≠ antiparallel to a

+; a

‹ perpendicular to a

+—we define the spin-product a{s~}⁄, a fair-coin:

a{s~}⁄ h s~a

+

≠: if s = 1

2

, a

+

≠ h a

+ü a

≠; if s = 1, a

+

≠ h a

+ü a

‹
. (59)

5.4. For digital outputs, eg Bell 1964:(1), here’s the reduced spin-product a{s}⁄, another fair-coin:

a{s}⁄ h cos 2s(a, a

+

≠) = ±1 = A

±; with a

+

≠ defined in (59). (60)

5.5. Thus, using (4) to create two examples, we have for Alice under — (where s = 1

2

):

(�±
a

q(⁄
i

)æA(a, ⁄
i

) |—)=+1 © A

+ = cos 2s(a, ⁄
i

|q(⁄
i

)≥q(a+)) © a{s}⁄
i

= a·a+ = +1; (61)

(�±
a

q(⁄
j

)æA(a, ⁄
j

) |—)= ≠1 © A

≠ = cos 2s(a, ⁄
j

|q(⁄
j

)≥q(a≠)) © a{s}⁄
j

= a·a≠ = ≠1. (62)

5.6. Then, given (60), Bob’s corresponding results B

± are correlated with Alice’s A

± via (6). So,
using the most basic (ie, a probability-based) definition of an expectation—eg, Whittle (1976:20)—we
take the expectation ÈX |—Í to be the conventional arithmetic mean of X under the conditional —:

⇧ ÈX |—Í ©
nÿ

i=1

P

i

x

i

: given P

i

© P (X = x

i

|—);
nÿ

i=1

P

i

= 1. (63)

⇧ ÈAB |—Í = P (AB = +1 |—) ≠ P (AB = ≠1 |—) = 2P (AB = 1 |—) ≠ 1 = 4P (A+

B

+ |—) ≠ 1 (64)

= 2P (B+ |—A

+) ≠ 1 = 2P (b{s}µ = 1 |—, a{s}⁄ = 1) ≠ 1, using Bayes’ Law and (60), (65)

= 2 sin2

1

2

(a, b) ≠ 1 = ≠a·b, using Malus’ Law as in (20). QED. ⌅ (66)

5.7. Note that the short-form representation of the expectation on LHS (65) is our preferred format.
[Earlier (per ¶1.7), to be more in line with typical Bell essays, we refrained from using it.] By way of
experimental confirmation—using –—the experiment in Aspect (2004) with photons (s = 1):

ÈAB |–Í = 2P (B+ |–A

+) ≠ 1 = 2P (b{s}µ = 1 |–, a{s}⁄ = 1) ≠ 1, using (65), (67)

= 2 cos2(a, b) ≠ 1 = cos 2(a, b), using Malus’ Law as in (27). QED. ⌅ (68)

5.8. Thus, with Bayes’ Law and Malus’ Law to the fore here in our short-form expressions, and in
the light of TLR, we now analyze Fröhner 1998:(75). There we see the inner products of the polarizer
direction-vectors a and b with ‘the spin ‡

1

= ≠‡
2

taken to be an ordinary vector for which all
orientations are equally probable’. Fröhner is thus able to ‘equal the QM result’ (in his terms):

Fröhner 1998:(75): È(a·‡
1

)(‡
2

· b)Í = ≠ È(a·‡
1

)(‡
1

· b)Í = ≠È‡

2
1Í

3

(a·b). (69)

5.9. Thus, in our terms, and to match Bell 1964:(1), (69) needs to be solved for:

(a·‡
1

) = ±1; (‡
2

· b) = ±1; È‡

2
1Í

3

= 1. (70)

5.10. Fröhner 1998:(70)-(73) does this by describing the spin-coordinates via Pauli matrices and using
EPR’s criterion at ¶1.4 [that we reject and amend at ¶1.5]. In that our method is coordinate-free,
we now show our resolution of (69)-(70). Under TLR—using the statistical terms variance (var),
covariance (cov) and statistical-correlation (cor); with ÈA |—Í = ÈB |—Í = 0 from (17)-(18)—we have:

cov (A, B |—) © È(A ≠ ÈAÍ)(B ≠ ÈBÍ) |—Í = (AB |—) = ≠a·b : from (24) or (66); (71)

16



6 APPENDIX B: BELL’S (1964) IMPOSSIBILITY CLAIM REFUTED

var (A |—) ©
e
(A ≠ ÈAÍ)2 |—

f
=

e
A

2 |—
f

= 1; (72)

var (B |—) ©
e
(B ≠ ÈBÍ)2 |—

f
=

e
B

2 |—
f

= 1. (73)

⇧ cor (A, B |—) © cov (A, B |—)


var (A |—)


var (B |—)
= ÈAB |—Í = ≠a·b. QED. ⌅ (74)

5.11. Thus, independent of (71)-(74): our spin-products in (59)-(60), with their fair-coin outputs,
deliver the correct (ie, QM/TLR-compatible) results.

5.12. In relation to EPRB and Bell (1964)—more particularly to EPR-completeness at ¶1.3 and our
EPR-amendment at ¶1.5—TLR leads us to conclude that ⁄ represents the total angular momentum
of a particle in units of s~; ie, in units of spin (the intrinsic angular momentum). It follows that our
spin-product [¶5.3] represents the reduction of ⁄ and the collateral rotation of the remnant angular
momentum—ie, per ¶2.18, the rotation of the irreducible spin s~—onto a relevant axis via each
particle/polarizer interaction. With µ similarly, under its pairwise correlation with ⁄ at (6): ie, via
the centrality and validated generality of Bayes’ Law and Malus’ Law to EPRB, Aspect (2004), etc.

6 Appendix B: Bell’s (1964) impossibility claim refuted

6.1. In our terms, Bell’s (1964) impossibility claim—stated in the line below his 1964:(3)—is:

A(a, ⁄)= ±1=cos(a, ⁄ |q(⁄)≥q(a±)); B(b, µ)= ±1=cos(b, µ |q(µ)≥q(b±)); (75)

⁄ + µ = 0; 0 Æ fl(⁄); Úd⁄ fl(⁄)=1: ÈAB |—Í = Úd⁄ fl(⁄)A(a, ⁄)B(b, µ) ”= ≠a·b. (76)

6.2. (i) (75) follows from Bell 1964:(1) and its completion via the functions that we introduced in (17)-
(18); (ii) LHS (76) follows from our specification of EPRB (—)—(3)-(6)—and Bell (1964) generally;
(iii) RHS (76) is our representation of Bell’s claim. Our refutation of Bell’s claim follows:

.A

i

©+1= a·a+� [a·ú]≈q(a+)�”

±
a

≈q(⁄
i

) Ù—Û q(µ
i

)∆”

±
b

�q(b+)∆ [b·ú]�b·b+ =+1©B

i

. (77)

ÈAB |—Í = Úd⁄ fl(⁄)A(a, ⁄)B(b, µ) = Úd⁄ fl(⁄) cos(a, ⁄ |q(⁄)≥q(a±) cos(b, µ |q(µ)≥q(b±)) (78)

= 1

2

(1)[P (q(µ)≥q(b+) | —, q(⁄)≥q(a+)) ≠ P (q(µ)≥q(b≠) | —, q(⁄)≥q(a+))

≠ 1

2

(1)[P (q(µ)≥q(b+) | —, q(⁄)≥q(a≠)) ≠ P (q(µ)≥q(b≠) | —, q(⁄)≥q(a≠)) (79)

= 1

2

[sin2

1

2

(b+

, a

+) ≠ cos2

1

2

(b≠
, a

+) ≠ cos2

1

2

(b+

, a

≠) + sin2

1

2

(b≠
, a

≠)] = ≠a·b. QED : ⌅ (80)

6.3. Bell’s claim, RHS (76), is refuted. In the context of our (4)—for the i≠th particle-pair; reproduced
here as (77)—and via (78), a progressive denouement from Alice’s point-of-view follows: (i) integrating
over the space of ⁄, particles from the equivalence classes [q(a+)] and [q(a≠)] in (13) interact with
Alice’s polarizer ”

±
a

equiprobably; (ii) via the corresponding Malusian distribution (21)—see ¶¶2.16-
2.17—each clearly-separated twin [a member of the opposite class] interacts with Bob’s polarizer ”

±
b

.
(iii) (79) shows the related outcomes (±1) and probabilities delivering the QM expectation. (iv)
Importantly, (78)-(80) is consistent with the most basic definition of an expectation; see ¶5.6. (v)
(80) follows similarly, from Bob’s point-of-view, via (20) and the particle classes [q(b+)], [q(b≠)].

6.4. We conclude: Bell’s defective analyses start where our valid analyses begin—Bell 1964:(14a)
”= Bell 1964:(14b)—see ¶¶2.26-2.28 and (40). And we stress: under TLR, experimentally-confirmed
logical implications give no license to nonlocal or backwards causation.
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