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ABSTRACT 

 

Data loss is a big problem in many online monitoring systems due to various reasons. 

Copula-based approaches are effective imputation methods for missing data imputation; however, 

such methods are highly dependent on a reliable distribution of missing data. This article proposed 

a functional regression approach for missing probability density function (PDF) imputation. PDFs 

are first transformed to a Hilbert space by the log quantile density (LQD) transformation. The 

transformed results of the response PDFs are approximated by the truncated Karhunen–Loève  

representation. Corresponding representation in the Hilbert space of a missing PDF is estimated by 

a vector-on-function regression model in reproducing kernel Hilbert space (RKHS), then mapping 

back to the density space by the inverse LQD transformation to obtain an imputation for the 

missing PDF. To address errors caused by the numerical integration in the inverse LQD 

transformation, original PDFs are aided by a PDF of uniform distribution. The effect of the added 

uniform distribution in the imputed result of a missing PDF can be separated by the warping 

function-based PDF estimation technique.  

Keywords: missing data, probability density function, log quantile density transformation, 

functional regression, reproducing kernel Hilbert space. 

 

1. Introduction 

For a variety of reasons, data missing is a very common phenomenon in many online 

monitoring systems. When the amount of missing data is huge or certain applications require the 

full data, imputing missing values is very meaningful. Monitoring data collected by different 

sensors are usually correlated, therefore, harnessing correlations to impute missing data is a 

promising direction. Copula-based imputation methods are effective imputation methods for 

missing random values by harnessing probability distributions and correlations [1-6]. However, 

copula-based methods are highly dependent on reliable distributions of missing data. To reduce 

errors caused by imputation models in a copula-based approach, imputing missing distributions 

intelligently by reliable distribution learning technique is more preferable. Inspired by the newly 

developed log quantile density (LQD) transformation [7] and RKHS-based functional regression 

[8], this article proposed a new regression-based approach for missing distribution imputation.  

 

2. Technical Background 

The log quantile density (LQD) transformation is proposed by Petersen and Müller in 2016 

[7]. Given a PDF  f x  with support on  0,1 , the LQD transformation is mapping the PDF to 
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a Hilbert space by the following functional transformation 

          log log , 0,1t q t f Q t t      (1) 

where, 
1Q F   is the quantile function of the PDF  f x , i.e., the inverse function of the 

corresponding cumulative distribution function    
x

F x f d 


  ,  q t  is the quantile 

density function, i.e.,         
1

1d
q t Q t F t f Q t

dt


       . The transformed result  t  is 

an ordinary function and do not need to satisfy corresponding constraints of a PDF (i.e., 

nonnegative and integrating to one), thus general functional regression methods can be applied to 

the transformed results of distributions. 

 The transformed result  t  can be mapped back to the original density space by the 

following inverse LQD transformation 

         1 1

0
exp ,

t
s

f x F x F t e ds


         (2) 

where 
 1

0

s
e ds


   . 

 For more detailed discussion, readers are referred to [7]. 

 

3. Problem Formulation 

 In this section, we formalize the problem to be addressed in this article. Specifically, suppose 

we have obtained n  pairs of correlated PDFs, i.e.,  
1

,
n

i i i
g f


. Given a new PDF 0g , suppose the 

corresponding PDF 0f  is missing (due to no valid observed samples for density estimation), the 

task in this article is to develop an imputation method to obtain a substituted PDF to replace 0f  

by harnessing the information of available PDFs, i.e.,   01
,

n

i i i
g f g


 .  

All investigated PDFs in this study are assumed to be one-dimensional continuous PDFs with 

strictly positive support on  0 1， , distributions with general finite supports can be easily tackled 

by the scale transformation introduced in [9]. 

  

4. LQD Transformation and FPCA 

Functional regression methods have good potential in dealing with the problem of missing 

curve imputation; however, general functional regression methods cannot be directly used in 

missing PDF imputation, because PDFs are special functions with the constraints of nonnegative 

and integrating to one. The newly developed log quantile density (LQD) transformation [7] 

provides a particularly promising approach to transform PDFs to ordinary functions by an 

invertible map; however, the numerical integration in the inverse LQD transformation (see Eq. (2)) 

may introduce significant errors for a PDF taken values approximately equal to zero in the interval 

  0, 0   . To illustrate this, consider a PDF  f x  with finite support on  0, 1 , suppose 

 =f x   (  is a very small number that approximately equals to zero) when  0,x  , from 

Eq. (1), it can be seen   f Q t  is also near zero within the start interval  0,t   , thus the 



corresponding transformed result by the log function tends to infinity, i.e.,  t   when 

 0,t   , therefore, the integral in Eq. (2) calculated by numerical integration methods may 

introduce significant errors. To address this problem, the original PDF is pre-processed by adding 

a PDF of the uniform distribution on  0, 1 , i.e., 

       * 1 , 0.5 0.9f x f x u x        (3) 

where,   is the combination coefficient,  u x  is the PDF of the uniform distribution on 

 0, 1 , i.e.,  

 
 1, 0,1

=
0,

x
u x

otherwise





 (4) 

The original PDF  f x  can be approximately recovered from  *f x  by the newly 

developed warping function-based density estimation technique [9] aided by a known auxiliary 

PDF  h x  with support on  0 1， , i.e., 

           
1

*

0
ˆ argmin 1h u f d



         


      (5a) 

      ˆ ˆf x h x x    (5b) 

where,   is the warping function used to transform the PDF  h x  to get close to the target 

PDF  f x ,   is the set of all valid warping functions for one-dimensional continuous 

distributions with support on  0 1， , i.e.,  

    1, 0 0, 1 1, ,is invertible is smooth is smooth           (6) 

For detailed discussion of warping function-based density estimator, readers are referred to [9]. 

 After the aforementioned pretreatment, all PDFs are transformed to a Hilbert space by the 

LQD transformation (see Eq. (1)), i.e., 

     
* * *

,log , 1,2, ,f

i i f it f Q t i n      (7a) 

     
* * *

,log , 0,1, ,g

i i g it g Q t i n      (7b) 

where,  *= 1i if f u   ,  *= 1i ig g u   , 
*

,f iQ  and 
*

,g iQ  are quantile functions of 
*

if  

and 
*

ig , respectively.  

The functional principal component analysis (FPCA) is applied to reduce the dimensionality 

of   
*

1

n
f

i
i

t


(reasons for such treatment will detailed in the end of section 5). For detailed 

discussion of the FPCA technique, readers are referred to [7, 10]. In the FPCA framework, 

 
*f

i t  can be approximated by the truncated Karhunen–Loève representation, i.e., 

     
*

*

1

, 1,2, ,
f

m
f j

i i j

j

t t t i n


   


     (8) 

where,   
1

m

j j
t


 are eigenfunctions, *f


 
is the estimated mean function of   

*

1

n
f

i
i

t


, i.e.,



 
*

*

1

1
f

n
f

i

i

t
n

 


  ,  
1

m
j

i j



are PFC scores given by       

*

*

1

0 f

j f

i i j d


         , 

1,2, ,j m   . 

 The feature of the function  
*f

i t  can be characterized by the feature vector 

1 2 m

i i i i     ξ  . By such treatment, the information of available PDFs   01
,

n

i i i
g f g


  are 

transformed to 

 
*

1

1

g t

  
 
  

ξ
, 

 
*

2

2

g t

  
 
  

ξ
,    , 

 
*

n

g

n t

  
 
  

ξ
, 

 
*

0

missing

g t

  
 
    

(9) 

 

5. Vector-on-Function Regression Model 

The remaining task is to develop a vector-on-function regression model for the structured data 

set in Eq. (9), which takes the form 

  
*

, 0,1,2, ,g

i reg i iF t i n    ξ  (10) 

where, regF  is the function-to-vector map that need to be estimated, i  is the error term. 

 Nonparametric regression in reproducing kernel Hilbert space (RKHS) provides a general 

nonlinear regression framework for various types of data (e.g., real numbers, vectors, functions, 

etc.). The RKHS-based vector-on-function regression model can be developed in a similar way as 

the general RKHS-based function-on-function regression model proposed by Lian [8]. In the 

RKHS framework, the regression function regF  is solved by the following penalized 

minimization problem 

 
*

2

HH
1 2

min
reg

n
g

i reg i reg
F

i

F F 




  ξ  (11) 

where, 
2

 is the two-norm of vectors, 
H

 is the norm defined in the reproducing kernel 

Hilbert space (for detailed discussion, readers are referred to [8]), 0   is the smoothing 

parameter. According to the representer theorem, the solution of the above minimization problem 

takes the form 

   
* * *

1

ˆ = ,
n

g g g

reg i i j j

j

F K  


 β  (12) 

where,  
1

n

j j
β are vector coefficients with the same dimension as  

1

n

j j
ξ ,  ,K    is the 

functional kernel, commonly used kernel is the Gaussian kernel 

 
   

* *

* *

2

2
, exp

2

g g

i jg g

i j

d
K

    
 



 
 

  
 
 


 (13) 

From Eq. (12), it can be seen, undetermined coefficients of the solution to the minimization 

problem in Eq. (11) are  
1

n

j j
β , where jβ  is a row vector takes the form 

1 2 1m m

j j j j R      β  , where m  is the dimension of the response row vector 
1 m

i R ξ . 



 
1

n

j j
β can be represented by a matrix 

T
T T T

1 2

n m

n R    B β β β  (14) 

Then the equivalent form of the minimization problem in Eq. (11) is 

      T Tmin tr tr  
B

Y AB Y AB ABB  (15) 

where 
T

T T T

1 2= n m

n R    Y ξ ξ ξ  and   
* *

,g g n n

i jK R   A . The analytical solution of 

B  in minimization problem in Eq. (15) is  

   
1

vec( ) m m mn mn vec


     B I A I Y  (16) 

It can be seen the size of the matrix  m m I A  is mn mn , where m  is the dimension of the 

feature vector of  
*f

i t , i.e., 
1 2 m

i i i i     ξ   (see Eq. (8)), n  is number of training 

functional samples, i.e.,   
*

1

n
g

i
i

t


. The treatment of dimension reduction for   
*

1

n
f

i
i

t


 by 

the FPCA technique (see Eq. (8)) is very meaningful. If  
*f

i t is represented by corresponding 

values on regular grid  1 2, , , Tt t t  on  0,1  as that used in the function-on-function 

regression model proposed by Lian [8], in general, dense grids are need to characterize a complex 

continuous function in consideration of the integral calculation in the inverse LQD transformation; 

such a approach will cost a huge amount of memory for formulating the matrix  m m I A ; if 

the number of training functional samples are considerable large, an approach without dimension 

reduction may even lead to an insufficient memory errors and application failures. Additionally, 

predicting a response in lower dimension can help to improve accuracy. Therefore, in a practical 

engineering application, combining the FPCA-based dimension reduction technique with the 

vector-on-function regression model is more preferable than directly use the general RKHS-based 

function-on-function regression model in the problem of missing distribution imputation. 

 

6. Missing Distribution Imputation 

With the aforementioned vector-on-function regression model, the missing feature vector 0ξ  

can be estimated by 

   
* * *

0 0 0

1

ˆ ˆ = ,
n

g g g

reg j j

j

F K  


 ξ β  (17) 

Then the missing representation of the PDF  *

0f x  in the Hilbert space can be estimated by 

     
*

*0 0

1

ˆ
f

m
f j

j

j

t t t


   


   (18) 

The PDF  *

0f x can be subsequently estimated by applying the inverse LQD transformation to

 
*

0
ˆ f t . The target distribution  0f x  can finally be imputed after eliminating the effect of the 

added uniform distribution by the warping function-based PDF estimation technique, see Eq. (5), 

where the auxiliary PDF  h x  can be set to be the PDF  0g x .  

 



7. Conclusions 

A new approach based on LQD transformation, FPCA and functional regression technique is 

proposed for missing distribution imputation. The integration in the inverse LQD transformation 

may introduce significant errors for some distributions, a pretreatment by adding a PDF of 

uniform distribution is proposed to address this problem, the newly developed warping 

function-based density estimation technique is proposed to recover the original PDF from a PDF 

mixed by the uniform distribution. The dimension reduction of response functions is very 

meaningful in memory saving and accuracy improvement. The proposed distribution imputation 

approach has good potential in providing more reliable distribution models for copula-based 

missing time series imputation. 
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