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Technical Note 

Abstract 

In this research Technical Note the author has presented a novel method to find the Optimal 

Number ‘K’ in the K-Means Algorithm. 

Theory 

Definition of a Cluster based on Connectivity 

We define a Cluster as follows: 

A Cluster is a collection of Points (or objects) wherein they are scattered (their property is 
distributed) in such a fashion that, for a specified distance (measured in appropriate Metric of 
concern using appropriate Norm of concern) every point of this cluster has at least one neighbouring 
point also belonging to this cluster located within  

(i) this specified distance* [1] 
(ii) a certain small neighbourhood of this this specified distance, measured from the 

aforementioned point of concern. 

 

Proximity Matrix 

Given M number of points MtoiRx N

i 1,  , each belonging to 
NR , we find the Proximity 

Matrix P  for each ( M  number of) point with each of all other ( M  Number of points) points, 

inclusive of itself. The Proximity can be found using Euclidean distance or using the concept stated 

in [1].  
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We now arrange the elements of the Proximity Matrix in Descending Order as a Set 
1S  of at most 
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M  elements, as the Proximity Matrix is Symmetric and all its diagonal elements 

are equal to zero. 

We now plot this Set 
1S  w.r.t to the x-axis of whole numbers. In this plot, there would be at most 
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of Clusters, wherein we can find the points belonging to this Cluster by noting the indices of the 

operands responsible for the Proximity Differences in the Proximity Matrix. At this juncture, we 

can segregate almost similar Levels as one Level thus reducing the Number of Levels. The Final 

Number of levels gotten can be called as the Number ‘K ’. Finally, we can find the points belonging 

to these K  Clusters by noting the indices of the operands responsible for the Proximity Differences 

in the Proximity Matrix. 

Higher Order Clusters 

For this Set 
1S , we again find the Proximity Matrix and similarly repeat the procedure again and 

find another Set 
2S  which has 
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M  number of Clusters, wherein we can find the points belonging to this 

Cluster by noting the indices of the operands responsible for the Proximity Differences in the 

Proximity Matrix. At this juncture, we can segregate almost similar Levels as one Level thus 

reducing the Number of Levels. The Final Number of levels gotten can be called as the Number ‘

1K ’. Finally, we can find the points belonging to these 1K  Clusters by noting the indices of the 

operands responsible for the Proximity Differences in the Proximity Matrix. 

We keep repeating this procedure again and again until 
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M  where L  is such 

that 1 LL SS  within an error of a small neighbourhood. At this level, we can have at most 
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MM
M  number of Clusters. At this juncture, we can segregate almost similar 

Levels as one Level thus reducing the Number of Levels. The Final Number of levels gotten can be 

called as the Number ‘ LK ’. Finally, we can find the points belonging to these LK  Clusters by noting 

the indices of the operands responsible for the Proximity Differences in the Proximity Matrix. 
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