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Technical Note
Abstract

In this research Technical Note the author has presented a novel method of finding a Generalized
Similarity Measure between two Vectors or Matrices or Higher Dimensional Data of different sizes.

Theory

Considering two different vectors of different sizes namely

A, and B, , we first find the Proximity Matrix between elements of the given vectors wherein

the Proximity Matrix is given by
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d indicates the distance measured in some metric (default = Eucleadean)
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We then find the Norm Of P, as ”PA-PA”. For the Euclidean case, it is given by

”PA . PA” = ii P(i, j) P(i, j) Also, m < n. Similarly, we compute the Norm of Py as ”PB Py ”

=1 i=1

. For the Euclidean case, it is given by ”PB Py ” = iz": P(i, j) P(i, j)

=1 i=1

We then find the ratio k1 = M .
ATA

2

n"-—n

Actually, we can note that there are only Ny = number of possibly distinct values of

m?—m

Proximity Matrix elements in P; and similarly, there are only N, = number of possibly

distinct values of Proximity Matrix elements in PA .

f P,
Similarly, we find some more ratio’s kNB—l = M

f(NB—l)(PA)
of the Matrix P, . And so is f(NBfl)(PA). Note that f(stl) is the same in f(Nafl)(PB) and f(NBfl)(PA)

where f(NBfl)(PB) is some Scalar Function

. We now consider a fictitious Vector AB1xn , 1.e., Vector A in the basis of Vector B, colloquially

speaking. Let this be Alen Z[C1 c, C . . C, Cn]. Now, for this, vector, we find the
f(NB—l)(PB)

Proximity Matrix P and now assert that K = . This gives us N, number of
P81 yn Ng-1 B
fiuo(As,,)

equations from which we can solve for elements of AB1 . Now, we can find distance between AB1
xn xn

and B

1 and can also consequently find the Similarity co-efficient between them. We can also,

repeat this procedure using the normalized values of the vectors A, and B, . In the same fashion

as detailed above, we can repeat this procedure for Matrices or Higher Dimensional Data of differing

sizes.
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