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Technical Note 

Abstract 

In this research Technical Note the author has presented a novel method of finding a Generalized 

Similarity Measure between two Vectors or Matrices or Higher Dimensional Data of different sizes. 

Theory 

Considering two different vectors of different sizes namely  

xmA1  and xnB1 , we first find the Proximity Matrix between elements of the given vectors wherein 

the Proximity Matrix is given by 
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d indicates the distance measured in some metric (default = Eucleadean)  
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We then find the Norm Of AP  as AA PP  . For the Euclidean case, it is given by 
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. Also, nm  . Similarly, we compute the Norm of BP  as BB PP 
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. We then find the ratio 
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We also find We now consider a fictitious Vector 
xnBA

1
, i.e., Vector A in the basis of Vector B, 

colloquially speaking. Let this be  nnB cccccA
xn 1321 ..

1  . Now, for this, vector, we 

find the Proximity Matrix 
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 and now assert that 
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 . This gives us n

number of equations from which we can solve for elements of 
xnBA

1
. Now, we can find distance 

between 
xnBA

1
 and xnB1  and can also consequently find the Similarity co-efficient between them. 

We can also, repeat this procedure using the normalized values of the vectors xmA1  and xnB1 . The 

motivation to cook this kind of procedure is that Norms are usually invariant under Dimension 

Upgrading or/ and Downgrading Transformations {Hadamard Theorem}. In the same fashion as 

detailed above, we can repeat this procedure for Matrices or Higher Dimensional Data of differing 

sizes. 
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