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ABSTRACT. Let V be an asymptotically cylindrical Kéhler manifold with asymptotic
cross-section ©. Let Eg be a stable Higgs bundle over ®, and E a Higgs bundle over
V' which is asymptotic to Ep. In this paper, using the continuity method of Uhlenbeck
and Yau, we prove that there exists an asymptotically translation-invariant Hermitian
projectively Hermitian Yang-Mills metric on F.

1. INTRODUCTION

The Yang-Mills theory plays an important role for holomorphic vector bundles over a
compact Kahler manifold. The relation between the existence of Hermitian Yang-Mills
metrics and stable holomorphic vector bundles over compact Kahler manifolds is by now
well understood, due to the work of Narasimhan-Seshadri [27], Donaldson [9], Siu [32],
Uhlenbeck-Yau [31] and others. On the other hand, it was quite fruitful to consider the
correspondences for vector bundles with some additional structures like Higgs field, which
was initiated by Hitchin [I3]. Such bundles have a rich structure and play an important
role in many areas including gauge theory, Kahler and hyper-Kéahler geometry, group
representations, and nonabelian Hodge theory. Hitchin proved that a Higgs bundle on a
compact Riemann surface admits a Hermitian Yang-Mills metric if and only if it is Higgs
poly-stable. Later, Simpson [30] proved an analogue of the Donaldson-Uhlenbeck-Yau
theorem for the Higgs bundle over higer dimensional Kahler manifolds, influenced by the
work of Hitchin. In the compact case, the Higgs version of Donaldson-Uhlenbeck-Yau has
been extensively studied, see references [11, 2, [3] 6], [7], [14] [18] 19] 24].

There are noncompact version of the theorem of Donaldson-Uhlenbeck-Yau, but it is
not general enough to cover all cases, see references [4], 12 [16, 17, 25 26, 28, 29| B0, [33].
In a very recent paper, Jacob and Walpuski [I6] proved that if £ is a reflexive sheaf over
an asymptotically cylindrical Kahler manifold, which is asymptotic to a stable holomor-
phic vector bundle, then it admits an asymptotically translation-invariant projectively
Hermitian Yang-Mills metric. Our aim is to generalize this result to Higgs bundles.
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Let (X,w) be a compact Kéhler manifold, and E a holomorphic vector bundle over X.
The stability of holomorphic vector bundles, in the sense of Mumford-Takemoto, was a
well established concept in algebraic geometry. A holomorphic vector bundle FE is called
stable (semi-stable), if for every coherent sub-sheaf E’ < FE of lower rank, one has

, deg F' deg F
HiE) = rank B/ (<) = rank £’
where pu(E") is called the slope of E'.

A holomorphic bundle (E,dz) coupled with a Higgs field ¢ € Q'Y(End(F)) which
satisfies O = 0 and ¢A¢ = 0 will be called by a Higgs bundle. A Higgs bundle (E, g, @)
is called stable (semi-stable) if the usual stability condition u(E’) < u(E)(<)holds for all
proper ¢-invariant sub-sheaves. A Hermitian metric H in Higgs bundle (E, 0, ¢) is said
to be projectively Hermitian Yang-Mills (PHYM) if the curvature F 4 of the Hitchin-
Simpson connection Dy 4 = Dy + ¢ + ¢*# satisfies

tr(\/ _1AwFH,¢)
rank F

where Dy is the Chern connection induced by H, and ¢*# is the adjoint of ¢ with respect
to the metric H.

idg =0,

KH = \/__1AwFH7¢ —

Theorem 1.1. Let V' be an asymptotically cylindrical Kahler manifold with asymptotic
cross-section ©. Let Fo be a stable Higgs bundle over ©, and E a Higgs bundle over
V' which is asymptotic to Eo. Then there exists an asymptotically translation-invariant
projectively Hermitian Yang-Mills metric on E.

Remark 1.2. A PHYM metric H on E is Hermitian Yang-Mills (HYM) if and only
if V—1AwFuy is constant. Every asymptotically translation-invariant Higgs line bundle
over the asymptotically cylindrical Kdahler manifold has an HYM metric; however, this
metric will typically not be asymptotically translation invariant. This is a consequence of

Proposition [2.6,

2. PRELIMINARIES

Definition 2.1. Let (D, g0, Jo) be a compact Kdhler manifold. A Kdihler manifold
(V,g,J) is called asymptotically cylindrical with asymptotic cross-section (D, ge,Jn) if

there exists a constant oy > 0, a compact subset K C V and a diffeomorphism m :
VAK — (1,00) x ST x ® such that

|Vk(7T*g - goo>‘ + ’Vk(ﬂ'*J — Joo)} — 0(675‘/[),
for all k € N, with

-1
Goo = dI*> & dO* & gs, Jooz(? 0 )@J@.
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Here (1,0) are the canonical coordinates on (0,00) x S*. Moreover, we assume that the
map V\K — (0,00) x S is holomorphic.

In what follows, we suppose an asymptotically cylindrical Kahler manifold V' with
asymptotic cross-section ® has been fixed. By slight abuse of notation we denote by
[:V —[0,00) a smooth extension of [ o7 : V\K — (1,00) such that [ <1 on K. Given
L > 1, we define the truncated manifold

Vi, = 17([0, L)).
Given z = (L,0) € (1,00) x St we set
9. =7 '{L,0} x D).
Definition 2.2. Let (Eg, 0o, ¢o) be a Higgs bundle over ® and (E, 0, ¢) a Higgs bundle
over V. We say that E is asymptotic to Eg if there exists a bundle isomorphism 7 : E —
E., covering m and a constant 6g > 0 such that
|Vk(7_r*5 - 500)’ = O(ei(yEl)? ’Vk(ﬁ*¢ - ¢00)| = O<€75El)

for all k € N. Here (Es,0s0, 0o0) is the pullback of (Eg,dp,¢n) to (1,00) x S x D;

moreover, we have chosen an auziliary Hermitian metric on Egp and pulled it back to E.
We say that (E,0,¢) is asymptotically translation-invariant if it is asymptotic to some
Higgs bundle over 2.

Definition 2.3. Let (E,0,¢) be a Higgs bundle over V asymptotic to (Eg,Jp, ¢o). Let
Hy be a Hermitian metric on En. We say that a Hermitian metric H on E is asymptotic
to Hg if there exist a constant éy > 0 such that

}Vk log(H'm. H)| = O(e~0mh

for all k € N. Here Hy, is the pullback of Ho to Es. We say that H is asymptotically
translation-invariant if it is asymptotic to some Hermitian metric Hy.

Let (E, 0, ¢) be a Higgs bundle over V' and H a Hermitian metric on . Then we get
an operator dy so that Dy = 0 + Oy is the metric connection on E, and we can define

@™ by
{pu, v} = (u, ¢ v)p.
Set
Dy =0y +¢*, D"=0+ ¢,
and then
Dy =Dy + D"
We have the following Kéhler identities [30]
V=1IA, D" = (D), V=1[A, D] = —(D")".

Then we have the Weitzenbock formulas

* 1 *
(D) Dy = §(DH,¢DH,¢ + [Ku.)),
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1
(D//)*D// — §(D;[7¢DH,¢> — [KH, ])

Definition 2.4. A differential operator A : T'(Ey) — I'(Ey) on sections of tensor bundles
on V' is called asymptotically translation-invariant if there is a translation-invariant oper-
ator Ass on sections of the corresponding bundles on D x S* x R; such that the difference
between the coefficients of A and A goes to zero in C*° uniformly as t goes to infinity.

Even if A is elliptic, we can not expect A to induce a Fredholm operator on ordinary
Holder or Sobolev spaces since V' is noncompact. To fix this, it is helpful to introduce
Holder norms with exponential weights.

Definition 2.5. For k € Nya € (0,1) and 0 € R, define
G5 = {f € C* || f || gre< 00},

with

I lggmi=l ™ flgee,
and set

CE(V) =) C5 (V).

keN

Similarly, we define Cy*(V,/—1su(E, H)) and C3°(V,/—1su(E, H)). Here /—1su(E, H)
denotes the traceless endomorphisms of E and such endomorphisms are self-adjoint with
respect to H.

Proposition 2.6 ([I6, Proposition 2.7]). For 0 < 6§ <o 1, the linear map Cy™>*(V) @
R — CP(V) defined by
(f, A) — Af — AAT]

18 an isomorphism.

Proposition 2.7. If (Ep, 0o, ¢p) is stable and |(5| < 1, the linear operator Dy D, 4 :
CY2(V, v/ =Tsu(E, H)) — Cy*(V,v/—1su(E, H)) is Fredholm of index zero.

Proof. Since (Eg,0p,¢p) is stable, there is a PHYM metric Hy on Ep. The linear
operator Dy ,Dp, ¢ is asymptotic to the translation-invariant linear operator
_al2 - 802 + D?Ig,qﬁgDH@@@

acting on the sections of v/—1su(Ey, Hw ), where Dy 4 is the Hitchin-Simspon connec-
tion on Fyp associated to the metric Hg. Since Hgp is PHYM, the Weitzenbock formulas
imply

1 * * *

§DH@,¢©DH’}3’¢© = (DII‘I@) Dl[t[@ - (D%@) D%@

If 0 € Spec{ Dy 4, Dy .65}, then there exists nonzero section s such that

*

H@,qb@DH@@@S =0,

IThroughout this paper, we denote A = d*d.
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equivalently,
Dy 5 =0,
which together with the stability of Eg gives s = 0.
Consequently, the spectrum of —d3 + Diry 60 Do 6o is contained in [Ap, 00), for some
Ap > 0.
We say that 0 € R is a critical weight of =07 — 05 + Dj;_ 4. Dy e if thereis a 7 € C
with
Im7=9

and a non-zero section of £ polynomial in [, say u, such that
(_al2 - ag + DE©7¢®DH©7¢®)(€\/:TZU) = 0.

We can expand u in eigen-sections of —95+D7;_ , Duy 5. Therefore if the above equation
has a solution, we can find a non-zero real polynomial in [, say p(l), and a non-zero section
u with

(=05 + Ditg g0 Diin 60 )1 = Au
for some A € [Ap, 00) such that

(=0F = 05 + Dty g0 Drtn.sa) (¢ p(l)u) = 0.

Then
(2.1) (72 + N)p(l) — 2v/=17p' (1) + p" (1) = 0.
Considering the leading order term in [,

4+ A=0,

which means
§==+V.
This implies the Fredholm property for |(5 | < v Ao by [15, Proposition 2.4].
On the other hand, D3, Dpyy ¢, 1s formally self-adjoint and 0 is not a critical weight,
then the index is zero [20, Theorem 7.4]. O

3. THE DONALDSON FUNCTIONAL

Let (X, g, J) be a compact Kéhler manifold and E a Higgs bundle over X. Given metric
Hy and s € C*(X,v/—1su(FE, Hy)), the value of Donaldson functional at (Hy, Hpe®) is
[30]

M(Hy, Hye?) ::/ tr(S\/—_lAFHO,@ + (¥ (s)(D"s), D"s)y,,

where

oy) {<x —y) e (-0 = 1) Tty

T =1y.
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The above integral is equivalent to

M(Hy, Hpe?) / / s, Ad(e? ) K g eus Ydvolydu.

More details can be found in a recent paper |
Proposition 3.1 ([10, Lemma 24], [30, Proposmon 5.3]). If Hy is PHYM, then
sl —1 S M(Ho, Hoe®).
Proposition 3.2 ([30, Proposition 5.1]). We have
M(Hy, Hy) = M(Hy, Hy) + M(H;, Hs).

4. THE UHLENBECK-YAU CONTINUITY METHOD

We will use the continuity method initiated by Uhlenbeck-Yau [31] (see also Liibke and
Teleman’s books [21], 22]).
At first, we fix some

0<d< min{év, 5E7 \/ )\9}

and will shortly construct a background Hermitian metric Hy on E which is asymptotically
translation-invariant and satisfies
Ky, € C5°(V,V—1su(E, Hy)).
Given such an H, we define a map
£: O (V,V/—=1su(E, Hy)) x [0,1] — C*(V, vV ~1su(E, Hy))
by
£(s,t) = Ad(e2)Kpyes + ts.
Set
I:={te0,1]: £(s,t) =0 for some s e C5°(V,vV/—1su(E, Hy))}
By Simpson’s theorem, there exists a PHYM metric Hy on E5. One can easily construct
a Hermitian metric H_; asymptotic to Hp which satisfies
k:=Kpg , € CF(V,V—1su(E, H 1)).
The Hermitian metric Hy := H_;e" is asymptotic to Hy and
£(—k,1) =Ad(e 2)Ky_, 4 — k= 0.

Then 1 € [.

Then we need to show that I((0,1] is open and [ is closed; hence, I = [0, 1]. Since
£(s,0) = 0 precisely means that H = Hye® satisfies the PHYM equation, this will prove
Theorem 1.1.

To prove [ is closed, the first step is to show that || s ||co is bounded by a constant
depending only on Hy. Then by an argument of Bando and Siu [5], || s ||c+ is bounded
by a constant depending only on Hy and k. The second step is a decay estimate. And
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we will omit the second one since it is very similar to [16]. Then the closedness is an
immediate consequence of Arzela-Ascoli.

5. LINEARISING OF THE PERTURBED EQUATION

One can extend £(s,t) to a smooth map
£ 02V, =1su(E, Hy)) x [0,1] = C3*(V,v/=1su(E, Hy)).

The fact that 7()(0,1] is an immediate consequence of the following two propositions
and the implicit function theorem for Banach spaces.

Proposition 5.1. If (s,t) € C;*(V,v/—1su(E, Hy)) x [0,1] is a solution of £(s,t) = 0,
then s € C°(V,/—1su(E, Hy)).

Proof. Fix a Hermitian metric Hy. Set
H:= Hye* and D, = €Dy = e3 o Dy go e 3.
We set
R(s) == Ad(e2) Kppes.
Since Dy s = Dy, + e *Dy; e®, we have
D :=¢%o Dy o€ 2
=e20(Dy, +e "Dy e’)oe 2

= Dly, +e 2(Djye?)

1 S
where T(s) € End(gl(E)) is given by
e?ds — id
T(s) = —.
(s) o
On the other hand,
D' :=c¢ioD"oe 3 =D"— lT(f)D"s,
2 "2
which means
~ ~ 1 s 1. s
D,=D ~Y(—=)D% s — =Y(=)D"s.
o = Dot 5X(=5)Pis = 51D
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Then by the Kéhler identities as well as the Weitzenbock formulas we have

S

R(s) = (3 — 2cosh(ads)) Ky, + 1(T(2

4
v—1 S v—=1 S
+ TA(D”T(—§) AN D}{(JS) — TA<D/HOT(§) AN D”S)

e
4

here we heavily used

)+ Y (=5)) D3y Do

S
2

S

A(Y (=5

) Dl s A T(%)D”s + T(%)D”s A T(—g)pg,os),

trv/ —1AFES = trv/ _1AFH0,¢>-

Hence the equation £(s,t) = 0 is equivalent to

1
(§D?10,¢DHO,¢ +t)s + B(Dpyps @ Dpys) = C(Kny),

where B and C' are linear with coefficients depending on s, but not on its derivatives.

The result now follows from a standard elliptic bootstrapping procedure.
O

Proposition 5.2. If (s,t) € C2*(V,v/—1su(E, Hy)) x (0,1] is a solution of £(s,t) =0,
then the linearisation
g

L., :=
ot ds

(s,1) : C3*(V,v/—1su(E, Hy)) — Cy*(V,v/—1su(E, Hy))
18 tnvertible.

Proof. If o, satisfies
et = e*Ad(e”2)e ™,
then
d
dt|t:0
here we used dgexp(y) = (T(z)y)e® = e*(T(—x)y).
Using the above fact, we have

o = Ad(e2)Y(—s)3,

d Y Lo s H —s S\ A _s S\ ay 8.y s
a\t:oDS:§(e 2Dy, (e2Ad(e 2)T(?S)—(Ad(@ 2)T(§)s)e 2Dy e?)
1 / _s S\ A _s . s _s S\ .
= S (Di (Ad(e ) T()3) + [e5 Dige, Ad(e5)T(2)d]
1~ s
= §D;Ad(e*§)T(§)§.
Similarly,
L Y, Eary

dt =0 ® 2 2
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Therefore,
4 JTIAR, = VTIAD (i D,)
dt jt=0 Dstis = dtj=o °
- iﬁ;‘ﬁs(id + Ad(e—%w(g)g
1 . _s S\~
— 7 [A(s), (id = Ad(e72))Y(5)3].

To see that § takes values in /—1su(E, Hy), observe that one can identify the tangent
space of \/—1su(E, Hy) as itself. Hence, one can easily verify that

d
’/_1AF1~75+t§) =0,

tr(—
1r<di§|1t:0

which means

d
R(s+18) = —  V-IAFj_ .

dt |t=0 dt t=0

Hence the linear operator Ly, is given by

1~ ~ s d,
Lyt = 7DiD,(id+ Ad(eﬁ)T(g))é + t(a4

Since s € C>*(V,v/—1su(E, Hy)), the linear operator L, can be joined to

1 *
EDH0,¢DHO7¢ + t
by a path of bounded linear operators which are asymptotic to

1
2
The argument in the proof of Proposition shows that this is a path of Fredholm

operators. Therefore, the index of L,; vanishes. To see that L, has trivial kernel and
thus is invertible, observe that

/V (L8, (id+Ad(e‘%))T(g)§) > 9t /

\%

(1— Ad(aé)mg) +id)s.

~12
S| .

More details about Fredholm theory can be found in the Appendix A in [23].

6. CY-ESTIMATE AND STABILITY

Proposition 6.1. If (s,t) € C°(V,/—1su(E, Hy)) x [0,1] is a solution of £(s,t) = 0,
then
| s l|co< c.
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Proof. We denote by ¢ > 0 a generic constant, which depends only on V, E, and the
reference metric Hy constructed in Section 4. We write x < y for z < cy and = < y for
cly <z <ey.

Fix Ly > 1 and set

N=[ s llpew)  and M:=[s i, -

Step 1. We have
N—-M< Lo+ 1.

First we have
(R(s) — Kpy, s) = (V=1AD"(e"* D}y e*), s)

= (V=1AD"(Y(=5)Dy,s), s)

1A| k +—|\/ —5) Dz 05|,
which together with £(s,t) = 0 gives
(6.1) Als|? + 4t|s|* < —4(Kp,, 5).
Therefore,

Als|* < 4N|Kp, -
From Proposition , one can denote by f € C’(?’a(V) and A > 0 the unique solution to
A(f — Al) = 4| Ky, |-

We can assume that ‘s’ achieves its maximum at xg € Vz,. Applying the maximum

principle to |8‘2 — N(f — Al) on Vi, we have the desired estimate.
Step 2. We have

M SJH KH0€S|©Z HLQ(V\VLO)7

where z = (L,0) € (Ly,00) x S*.
Step 2.1. Suppose g € V\Vy, satisfies |s|(x9) = M, then for all L > I(x,) we have

1
U(z0) = L SN s oy —5 M.

By the maximum principle applied to ‘s|2 — N(f—Al) on VI, we have the desired estimate.
Here we assume that M > 8 || f [[r=\v;,) and N < 2M because otherwise we are already

done.
Step 2.2. There are Ly < Ly < Ly with Ly — L1 < M such that

M2 < / 5]
Vi \Vi,
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By Step 2.1 we have M S| s ||z=(ov,) for 0 < L — l(z9) < M. Having in mind
A‘s|2 < 8M‘KHO|, then by the mean value inequality [11, Theorem 9.20] we have

M< / 5]
Vi+1\VL—1

Summing over L — I(z9) = 1,--- , k (with k =< M) yields the asserted inequality.
Step 2.3. We have
1
| s lz1(o.) —3 S M || Kuyesls, l22(0.) -

Since Lo > 1 and Ey is stable, Eyg_ is stable as well. Denote by Hg. the PHYM metric
on Egp_ inducing the same metric on det(Fyp,) as Hy |o.. Then we can identify Hg_ and
Hy |o, when Ly is sufficiently large, in other words,

log(Hg ! Ho |9.) € C5°(V,V/~1su(E, Hy)).

And by the implicit function theorem, Hg, depends on z smoothly. Then from Proposi-
tion 3.1 and Proposition (3.2 we have

| s z1@.) —1 S M(Ha,, Hoe |o,)
= M<H0 ©z7H0€s ‘©z> +M(HQZ7HO |©z)
= M(Ho |o., Hoe® |p.) + O(e™")

< [ e |+
D

This implies the asserted inequality.

Comparing the lower bounds from Step 2.2 with the upper bounds obtained by inte-
grating Step 2.3 completes the proof of Step 2.

Step 3. We have

|| KHQES|;QZ %Q(V\VLO)SJ @_6L0—|— || Fﬁo ||%2(VLO)’

where F ﬁo denotes the trace-free part.
Step 3.1. We have

2 112
_‘FHO .

: 2 —0L 1 112 . 1
Lh_EEO H KHoeslgz HLZ(VL\VLO)S ce "0 H FHo HL2(VL0) +g££lo /VL ‘FHoeS

If H is a Hermitian metric on a Higgs bundle £ over an n-dimensional compact Kéhler
manifold X with Kéhler form w, then

/ Ga(H) A = / (| ES)? — |Kul?vol
X X
independent on the choice of the metric, where

qi(H) :=2c0(H) —
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with
V-1 1
c(H) = trFpg, Cco(H) = ——2((trFH7¢)2 — tr(Fé¢)).
2T 8T ’
Therefore
2 2 2 2
| Ko, = [ Vi, P+ [ | Fia, = P,
CDZ :Dz DZ
S [ B = B[ e
D
here we used
| Frty — Fryjp, |S €% and | Kpy)p |S e
Step 3.2. We have
. 1 2 112
L11—I>r<>lo v, |FH0€s - }FHo‘ <0.
Using (6.1), £(s,t) =0 and
lim [ (qa(Hoe®) — qu(Ho)) Aw"™? =0,
L—oo Vi
one can easily derive the inequality. 0
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