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Preface 

              -2_0        -2_q   -1_-q          -1_0        -1_q    0_-q          0_0         0_q    1_-q        1_0        1_q    2_-q         2_0 

|─────────|─────────|─────────|─────────|────────|────────|────────|────────| 

 

Let RQ be the set of all q-reals and let S = {a_b │(a_b ϵ RQ) ˄ (a = 0)}, then, for any a_b ϵ RQ ─ S, (a_b)1/2 has four distinct 

roots: 

1. a1/2_[- a1/2 + (a + b)1/2]; 

2. a1/2_[- a1/2 - (a + b)1/2]; 

3. - a1/2_[a1/2 + (a + b)1/2]; 

4. - a1/2_[a1/2 - (a + b)1/2]. 

Let R be the set of standard real numbers and let RQ
R = {a_b │(a_b ϵ RQ) ˄ (b = 0)}, then there is a ring isomorphism on R 

onto RQ
R defined by f(a) = a_0, for all a ϵ R, yet RQ properly contains RQ

R, hence, for any a_0 ϵ RQ
R ─ {0_0}, (a_0)1/2 has 

four distinct roots: 

1. a1/2_0; 

2. a1/2_- 2a1/2; 

3. - a1/2_0; 

4. - a1/2_2a1/2. 

Let S = {a_b│(a_b ϵ ZQ
-) ˄ (0 < b) ˄ (│a│< b)}, let T = {a_b│(a_b ϵ ZQ

-) ˄ (0 < b) ˄ (│a│= b)}, let V = {a_b│(a_b ϵ ZQ
+) ˄ (b < 0) 

˄ (a < │b│)}, let W = {a_b│(a_b ϵ ZQ
+) ˄ (b < 0) ˄ (a = │b│)}, let X = {a_b│(a_b ϵ ZQ

-) ˄ (a = 0)}, and let Y = {a_b│(a_b ϵ ZQ
+) ˄ 

(a = 0)}, then: 

1. Multiplication takes S x X to X; 

2. Multiplication takes V x Y to X; 

3. Multiplication takes (T U W) x (X U Y) to {0_0}. 

In other words, in the Q-Universe there does not exist a q-naturally lattice complete ordered field (Definition 5.1.20) and 

there does exist non-zero q-integers (and q-reals in general) which, when multiplied together, yield the zero q-number, 

0_0. The q-natural lattice completion does, however, conform to an analog of the Archimedean Property, although it 

doesn’t seem very useful for proving theorems, at least not in any way we have discovered.  
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The Q-Universe: A Set Theoretic Construction 

By Wes Hansen  © Creative Commons – Attribution  

Abstract. In an earlier paper, “Q-Naturals: A Counter-Example to Tennenbaum’s Theorem,” we developed a set of non-

standard naturals called q-naturals and demonstrated a counter-example to Tennenbaum’s Theorem. In this paper we 

extend the q-naturals to the Q-Universe and explore the properties of the various subsets along the way. In the process of 

this development, we realize that the standard Universe and the Q-Universe are simply the zeroth-order and first-order 

Universes, respectively, in a countable subsumption hierarchy of recursive Universes; there exist countably many counter-

examples to Tennenbaum’s Theorem. 

 

1. Introduction.  Inspired by a blog post, “Computing the Uncomputable,”[JB] by John Baez, and the subsequent 

commentary, we developed a novel set of numbers we call q-naturals. In the resulting paper, “Q-Naturals: A Counter-

Example to Tennenbaum’s Theorem,”[WH] we directed attention to the possibility of extending the q-naturals to the q-

integers, the q-integers to the q-rationals, the q-rationals to the q-reals, and the q-reals to the q-complex; in the current 

work we undertake this endeavor and explore some of the properties of the various q-numbers along the way. We 

adhere rather closely to the format demonstrated by Clayton Dodge in his book, “Numbers and Mathematics,”[CD] and 

utilize a number of results contained therein, together with results from, “Introduction to Set Theory,”[HJ] by Karel 

Hrbracek and Thomas Jech, many of which appeared in the earlier work. 

The Q-Universe distinguishes itself early on with the construction of the q-integers. Due to the definitions of addition 

and subtraction on the q-naturals, when we extend the q-naturals into the negative we also extend the q-components 

into the negative – i.e. for any q-integer a_b, the standard component “a” can be either positive or negative and the q-

component “b” can also be either positive or negative. This, of course, carries through to the q-reals and we end up with 

what amounts to a copy of Euclidean two-space embedded in the q-reals; this has interesting implications as indicated 

by the preface. Also indicated by the preface, we see that, in actuality, the q-components of the q-reals must be allowed 

to take complex values, hence, there is, in essence, a copy of R x C embedded in the q-reals. This, of course, would seem 

to re-introduce the historical difficulties associated with the imaginary numbers in that, in the present context, they 

cannot be interpreted as rotations in the plane.  

An additional work we found helpful is the excellent paper by Lothar Sebastian Krapp, “Constructing the Real Numbers: 

A Set Theoretical Approach.”[LK] Motivated by the existence of non-standard models, there is implicit in [LK] the 

question, “What makes a complete ordered field truly complete?” Krapp answers this question formally by stating that 

an ordered field is complete relative to some completeness axiom. Intuitively, he suggests, in a rather compelling way, 

that it is completeness, or, more precisely, degree of completeness, which separates standard models from non-

standard ones: non-standard models are complete to a higher degree in that they introduce new elements to a 

fundamentally complete field. Krapp doesn’t make it explicit but implicit in his paper, in section four, are three 

philosophical propositions: 

Proposition 1. A standard model is complete iff transfinite concepts are required for the introduction of 

additional elements. 

 Proposition 2. A model is standard iff its completion is. 

 Proposition 3. A model is non-standard iff it assumes the transfinite. 

These seem rather reasonable propositions and we will, of course, have more to say about them in the closing remarks.  

In the present work we include ω in our notations but this is utilized solely as a limit ordinal in our development of 

foundations and should not be mistaken as assuming the transfinite; the use of this limit ordinal is constrained to q-
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components and essentially acts as a place-holder allowing the consistent definition of von Neumann ordinals in the 

present context.  

 

Notation. We use the standard notation together with: 

  @ | a one-place non-logical symbol called the hyperloop 

  ω | a constant symbol representing the largest natural number 

  IH | a hyper-inductive set 

  IQ | a q-inductive set 

  NQ | the set of all q-naturals 

  ZQ | the set of all q-integers 

  QQ | the set of all q-rationals 

  RQ | the set of all q-reals 

  CQ | the set of all q-complex 

Additionally, due to our use of Dedekind cuts to develop RQ, to mitigate against confusion we designate regular 

subtraction with “-“ and set difference with “−“. Then, for any q-number a_b, the additive inverse of a_b can be 

represented, depending on set membership, by an equivalence class or Dedekind cut; it can be represented in general in 

three equivalent ways:  

1. - 1_0 * a_b; 

2. - (a_b); 

3. - a_- b. 

In general, there is no identity between - a_b and - (a_b).   

 

Acknowledgments. We would like to express sincere gratitude to Dr. Dave Morris, Department of Mathematics 

and Computer Science, University of Lethbridge, Lethbridge, Alberta, Canada, for pointing out an error in our earlier 

paper, and to His Holiness the Dalai Lama, for radiating the four immeasurables from his boundless heart, Om Mani 

Padme Hum. This work is dedicated, in memoriam, to Richard Dedekind and John Bell. 

 

2. Q-Naturals. The q-naturals were defined and shown to exist in reference [WH]. For convenience, we 

reproduce those definitions and arguments here and use those definitions and arguments to demonstrate a number of 

properties exhibited by the q-naturals. 

 

2.1. Definitions. We define our mathematical entities using standard terminology: 

Definition 2.1.01. A set is reflexive if X = {X}; a reflexive set is called a hyperset (reference [BE], Chapter 3). 

Definition 2.1.02. A one-place operation, @, when applied to any set X, generates a reflexive set; this operation, 

called a hyperloop, can be applied recursively. 
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Definition 2.1.03. Let X be an arbitrary von Neumann ordinal, then @nX designates the recursive application of 

@ to X “n” times, where n ϵ N; specifically, @0X, the zeroth-order application, is identical to no application, i.e. @0X = X. 

Definition 2.1.04. Hypersets have two distinct successor functions; let @nX be an arbitrary hyperset, then S(@nX) 

= @(@nX) = @(n + 1)X, while @nS(X) = @n(X U {X}) = @n(X + 1).  

Definition2.1.05. ɸ = 0_0, @ɸ = 0_1, @2ɸ = 0_2, … , @(ω – 2)ɸ = 0_(ω – 2), @(ω – 1)ɸ = 0_(ω – 1), @ωɸ = 0_ω, 

{@ωɸ} = 1_0, @{@ωɸ} = 1_1, @2{@ωɸ} = 1_2, … , @(ω – 2){@ωɸ} = 1_(ω – 2), @(ω – 1){@ωɸ} = 1_(ω – 1), @ω{@ωɸ} = 1_ω, … 

, {@ωɸ, {@ωɸ}} = 2_0, @{@ωɸ, {@ωɸ}} = 2_1, @2{@ωɸ, {@ωɸ}} = 2_2, … 

Definition2.1.06. ɸ and any number @ωX are examples of base elements; any number @nX, where n < ω, is an 

example of a hyper-element; for example, ɸ is the only base element of @ωɸ and for any m ϵ NQ, m > @ωɸ, m = @k{0_ω, 

1_ω, … , n_ω}, where n is some standard von Neumann ordinal, and every x_ω is a base element of m, while every 

@p{0_ω, 1_ω, … , n_ω}, p ϵ [0, k], is a hyper-element of m. 

Definition 2.1.07. A set, IH, is hyper-inductive if: 

1. ɸ ϵ IH; 

2. if X ϵ IH, then S(X) ϵ IH; 

3. if X ϵ IH, then @X ϵ IH; 

4. if @X ϵ IH, then S(@X) ϵ IH. 

Definition 2.1.08. Consistent with Definition 2.1.05, a q-natural number is an ordered pair of natural numbers, 

(a, b), such that (a, b) = a_b. 

Definition 2.1.09. Consistent with Definition 2.1.04, any q-natural number, a_b, has two distinct successor 

functions which can be applied independently or in conjunction; specifically, S(a)_b = (a U {a})_b = (a + 1)_b and a_S(b) = 

a_(b U {b}) = a_(b + 1) (reference [HJ], Chapter 3, page 52).  

Definition 2.1.10. A set, IQ, is q-inductive if: 

1. 0_0 ϵ IQ; 

2. if a_b ϵ IQ, then, S(a)_b ϵ IQ; 

3. if a_b ϵ IQ, then, a_S(b) ϵ IQ.  

Definition 2.1.11. The set of all q-natural numbers is the set 

NQ = { x | x ϵ IQ for every q-inductive set IQ} 

Definition 2.1.12. The relation “<” (strict order) on NQ is defined by: 

for all a_b, c_d ϵ NQ, a_b < c_d  iff (a < c) ˅ [(a = c) ˄ (b < d)], where <(a, b) is the natural order and <(a_b, 

c_d) is the q-natural or lexicographic order.  

Definition 2.1.13. The operation “+” (addition) on NQ is defined by: 

for all a_b, c_d ϵ NQ, a_b + c_d = (a + c)_(b + d), where +(a, c) is as defined on the set of natural numbers. 

Definition 2.1.14. The operation “*” (multiplication) on NQ is defined by: 

for all a_b, c_d ϵ NQ, a_b * c_d = (a_b * c)_(a_b * d) 

                = (a * c)_(b * c)_(a * d)_(b * d) 
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                = (a * c)_(b * c) + (a * d) + (b * d), 

where *(a,c) and +(b, d) are both as defined on the set of natural numbers.   

Definition 2.1.15. The operation “-“ (subtraction) on NQ is defined by: 

     for all k_p, m_q, n_r ϵ NQ, (k_p - m_q = n_r) iff (k_p = n_r + m_q). 

Definition 2.1.16. The operation “÷“ (division) on NQ is defined by: 

     for all k_p, m_q, n_r ϵ NQ, m_q ≠ 0_0, (k_p ÷ m_q = n_r) iff (k_p = n_r * m_q). 

Definition 2.1.17. Let k_p, m_q, n_r ϵ NQ be arbitrary but such that k_p = m_q * n_r, then we write m_q| k_p and 

say that m_q divides k_p, m_q is a factor of k_p, or k_p is a multiple of m_q. If k_p ≠ m_q * n_r, then we are entitled to 

state the negation of all of the above. 

Definition 2.1.18. For all a_b ϵ NQ, k ϵ N, [(a_b)0 = 1_0] ˄ [(a_b)1 = a_b] ˄ [(a_b)k + 1 = (a_b)k * a_b]. 

 

2.2.Arguments. We demonstrate our arguments using the standard methods and terminology of mathematical 

logic and ZFC/AFA or generalizations thereof. Specific to the current work, we generalize the Principle of Induction to the 

Principle of Q-Induction, we reproduce certain arguments, verbatim, from reference [HJ], and utilize results from 

references [HJ] and [CD]. 

Theorem 2.2.01. The Axiom of Anti-Foundation implies that there exists a unique reflexive set. 

Proof. This theorem is reproduced verbatim from [HJ] (Chapter 14, page 263) and the proof can be found 

therein, as desired. □ 

Theorem 2.2.02. A hyper-inductive set, IH, defined by Definition 2.1.07, exists. 

Proof. Let I be an arbitrary set satisfying properties “1” and “2” of Definition 2.1.07, then I is an inductive set 

and, by the Axiom of Infinity, I exists. Let K be a family of intervals, [n, n + 1), such that n ϵ I and [n, n + 1) satisfies 

properties “3” and “4” of Definition 2.1.07. Let [n, n + 1) be an arbitrary element of K, then, by the Axiom of Infinity and 

Theorem 2.2.01, [n, n + 1) exists. Since [n, n + 1) was arbitrary, every [n, n + 1) ϵ K exists, hence, K exists. Finally, by the 

Axiom of Union, UK = IH exists, as desired. □  

Theorem 2.2.03. For any hyper-inductive set, IH, and any X ϵ IH, X can be represented as an ordered pair of natural 

numbers, (a, b), such that (a, b) = a_b. 

Proof. This follows immediately from Definition 2.1.03, 2.1.04, 2.1.05, and the properties of natural numbers, 

(reference [HJ], Chapter3), as desired. □ 

Theorem 2.2.04. A q-inductive set, IQ, defined by Definition 2.1.10, exists. 

 Proof. This is a direct consequence of a number of facts about the set of natural numbers,N: 

1. N exists and is inductive (reference [HJ], Chapter 3, page 41); 

2. By the Axiom of Power Set, the power set of any set  exists; 

3. By the definition of ordered pair and the definition of Cartesian product, N x N exists; 

together with Definition 2.1.08 and 2.1.09, as desired. □  
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Theorem 2.2.05.  The set, NQ, defined by Definition 2.1.11 exists and is q-inductive. 

Proof. Let X be the family of all q-inductive sets IQ, then, by the Axiom of Union, the set UX exists and, by 

Definition 2.1.10, UX is q-inductive. By Definition 2.1.11, UX contains NQ, hence, NQ exists and is q-inductive, as desired. 

□ 

Theorem 2.2.06. (The Principle of Q-Induction) Let P(x) be a property and assume that: 

1. P(0_0) is true; 

2. for all n_k ϵ NQ, P(n_k) → (P[(n + 1)_k ] ˄ P[n_(k + 1)]). 

Then P holds for all q-natural numbers n_k. 

Proof. By Definition 2.1.09 and 2.1.10, “1” and “2” above define a q-inductive set IQ. By Definition 2.1.11, that 

set, IQ, contains NQ, as desired. □ 

Lemma 2.2.07. For all a_b ϵ NQ, a, b ϵ N. 

Proof. This follows immediately from Definition 2.1.10, Theorem 2.2.05, and the fact that N is inductive 

(reference [HJ], Chapter 3, page 41), as desired. □ 

Theorem 2.2.08. There is a unique function, +:NQ x NQ → NQ, such that: 

1. +(m_p, 0_0) = m_p, for all m_p ϵ NQ; 

2. +(m_p, n_q + 1_0) = +(m_p, n_q) + 1_0, for all m_p, n_q ϵ NQ. 

Proof. In the parametric version of the Recursion Theorem (reference [HJ], Chapter 3, page 51), let a:NQ → NQ be 

the identity function, and let g:NQ x NQ x NQ → NQ be defined by g(k_p, m_q, n_r)   = m_q + 1_0, for all k_p, m_q, n_r  ϵ 

NQ. Then, by the Recursion Theorem, there exists a unique function, f:NQ x NQ → NQ, such that: 

1. f(k_p, 0_0) = a(k_p) = k_p, for all k_p ϵ NQ; 

2. f(k_p, m_q + 1_0) = g(k_p, f(k_p, m_q), m_q) = f(k_p, m_q) + 1_0, for all k_p, m_q ϵ NQ. 

Let + = f, as desired. □ 

Theorem 2.2.09. There is a unique function, *:NQ x NQ → NQ, such that: 

1. *(m_p, 0_0) = 0_0, for all m_p ϵ NQ; 

2. *(m_p, n_q + 1_0) = *(m_p, n_q) + m_p, for all m_p, n_q ϵ NQ.   

Proof. In the parametric version of the Recursion Theorem (reference [HJ], Chapter 3, page 51), let a:NQ → NQ be 

the constant function defined by a(m_p) = 0_0, for all m_p ϵ NQ, and let g:NQ x NQ x NQ → NQ be defined by g(k_p, m_q, 

n_r) = m_q + n_r, for all k_p, m_q, n_r ϵ NQ. Then, by the Recursion Theorem, there exists a unique function, f: NQ x NQ → 

NQ, such that: 

1. f(k_p, 0_0) = a(k_p) = 0_0, , for all k_p ϵ NQ; 

2. f(k_p, m_q + 1_0) = g(k_p, f(k_p, m_q), m_q) = f(k_p, m_q) + m_q, for all k_p, m_q ϵ NQ. 

Let * = f, as desired. □ 

Theorem 2.2.10. NQ is closed under the arithmetical operations “+” (addition) and “*” (multiplication). 
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Proof. This is a immediate consequence of Definition 2.1.13 and 2.1.14, Lemma 2.2.07, and Theorem 2.2.08 and 

2.2.09, together with the fact that N is closed under addition and multiplication (reference [HJ], Chapter 4, page 108), as 

desired. □ 

Theorem 2.2.11. For all a_b, c_d ϵ NQ, a_b + c_d = c_d + a_b. 

Proof. By Definition 2.1.13 and Lemma 2.2.07: 

   a_b + c_d = (a + c)_(b + d); 

        = (c + a)_(d + b); 

        = c_d + a_b. 

Therefore, addition on NQ is commutative, as desired. □ 

Theorem 2.2.12. For all a_b, c_d ϵ NQ, a_b * c_d = c_d * a_b. 

Proof. By Definition 2.1.14 and Lemma 2.2.07: 

  a_b * c_d = (a * c)_(b * c + a * d + b * d); 

       = (a * c)_(a * d + b * c + b * d); 

       = (c * a)_(d * a + c * b + d * b); 

       = c_d * a_b. 

Therefore, multiplication on NQ is commutative, as desired. □ 

Theorem 2.2.13. For all k_p, m_q, n_r ϵ NQ, (k_p + m_q) + n_r = k_p + (m_q + n_r). 

Proof. By Definition 2.1.13 and Lemma 2.2.07: 

  (k_p + m_q) + n_r = (k + m)_(p + q) + n_r; 

        = [(k + m) + n]_[(p + q) + r]; 

         = [k +(m + n)]_[p + (q + r)]; 

        = k_p + (m + n)_(q + r); 

        = k_p + (m_q + n_r). 

Therefore, addition on NQ is associative, as desired. □ 

 Theorem 2.2.14. For all k_p, m_q, n_r ϵ NQ, (k_p * m_q) * n_r = k_p * (m_q * n_r). 

 Proof. By Definition 2.2.14 and Lemma 2.2.07: 

(k_p * m_q) * n_r = [(k * m)_(p * m + k * q + p * q)] * n_r;  

     = [(k * m) * n]_ [(p * m + k * q + p * q) *n + (k * m) * r + (p * m + k * q + p * q) * r]; 

= [k * (m * n)]_[(p * m) * n + (k * q) * n + (p * q) *n + (k * m) * r + (p * m) * r + (k * q) * r + (p * q) * r]; 

= [k * (m * n)]_[p *( m * n) + k * (q * n) + p * (q *n) + k * (m * r) + p * (m * r) + k * (q * r) + p * (q * r)]; 

= [k * (m * n)]_ [p *( m * n) + k * (q * n) + k * (m * r) + k * (q * r) + p * (q *n) + p * (m * r) + p * (q * r)]; 
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    = [k * (m * n)]_[p *( m * n) + k * (q * n + m * r + q * r) + p * (q *n + m * r + q * r)]; 

    = k_p * [(m * n)_(q * n + m * r + q * r)]; 

    = k_p * (m_q * n_r). 

Therefore, multiplication on NQ is associative, as desired. □ 

Theorem 2.2.15. For all k_p, m_q, n_r ϵ NQ, k_p * (m_q + n_r) = (k_p * m_q) + (k_p * n_r). 

Proof. By Definition 2.2.13 and 2.2.14 and Lemma 2.2.07: 

k_p * (m_q + n_r) = k_p * (m + n)_(q + r); 

      = [k * (m + n)]_[p * (m + n) + k * (q + r) + p * (q + r)]; 

      = (k * m + k * n)_[p * m + (p * n + k * q) + (k * r + p * q) + p * r]; 

      = (k * m + k * n)_[p * m + k * q + (p * n + p * q) + k * r + p * r]; 

      = (k * m + k * n)_[p * m + k * q + (p * q + p * n) + k * r + p * r]; 

      = [(k * m) + (k * n)]_[(p * m +  k * q + p * q) + (p * n + k * r + p * r)]; 

      = [(k * m)_(p * m +  k * q + p * q)] + [(k * n)_(p * n + k * r + p * r)]; 

      = (k_p * m_q) + (k_p * n_r). 

Therefore, multiplication is left distributive over addition, as desired. □ 

 Theorem 2.2.16. For all k_p, m_q, n_r ϵ NQ, (m_q + n_r) * k_p = (m_q * k_p) + (n_r * k_p).  

 Proof. By Definition 2.1.13 and 2.1.14 and Lemma 2.2.07: 

(m_q + n_r) * k_p = (m + n)_(q + r) * k_p; 

      = [(m + n) * k]_[(q + r) * k + (m + n) * p + (q + r) * p]; 

      = (m * k + n * k)_[q * k + (r * k + m * p) + (n * p + q * p) + r * p]; 

      = (m * k + n * k)_(q * k + m * p + (r * k + q * p) + n * p + r * p); 

      = (m * k + n * k)_(q * k + m * p + (q * p + r * k) + n * p + r * p);  

      = [(m * k) + (n * k)]_[(q * k +  m * p + q * p) + (r * k + n * p + r * p)]; 

      = [(m * k)_(q * k +  m * p + q * p)] + [(n * k)_(r * k + n * p + r * p)]; 

      = (m_q * k_p) + (n_r * k_p). 

Therefore, multiplication is right distributive over addition, as desired. □ 

 Corollary 2.2.17. For all k_p, m_q, n_r , o_s ϵ NQ,(k_p + m_q) * (n_r + o_s) = (k_p * n_r + k_p * o_s) + (m_q * n_r + 

m_q * o_s). 

 Proof. By Theorem 2.2.11, 2.2.13, 2.2.15, and 2.2.16: 

(k_p + m_q) * (n_r + o_s) = (k_p + m_q) * n_r + (k_p + m_q) * o_s; 

                   = (k_p * n_r + m_q * n_r) + (k_p * o_s + m_q * o_s); 
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                   = k_p * n_r + [m_q * n_r + (k_p * o_s + m_q * o_s)]; 

                   = k_p * n_r + [(m_q * n_r + k_p * o_s) + m_q * o_s]; 

                   = k_p * n_r + [(k_p * o_s + m_q * n_r) + m_q * o_s];  

                   = k_p * n_r + [k_p * o_s + (m_q * n_r + m_q * o_s)]; 

                   = (k_p * n_r + k_p * o_s) + (m_q * n_r + m_q * o_s), as desired. □ 

 Theorem 2.2.18 For all a_b ϵ NQ, a_b * 1_0 = a_b. 

 Proof.  By Definition 2.1.14 and Lemma 2.2.07: 

  a_b * 1_0 = (a * 1)_(b * 1 + a * 0 + b * 0); 

       = a_b.  

Therefore, 1_0 is a multiplicative identity for NQ, as desired. □ 

 Corollary 2.2.19. For all a_b, c_d ϵ NQ, (a_b * c_d = a_b) → (c_d = 1_0). 

 Proof. This is an immediate consequence of Theorem 2.2.18 and the fact that “1” is the unique multiplicative 

identity on N (reference [HJ], Chapter 4, page 110) and that n * 0 = 0 for all n ϵ N (reference [HJ], Chapter 4, page 54). 

Therefore, 1_0 is unique, as desired. □ 

 Corollary 2.2.20. For all k_p, m_q, n_r ϵ NQ, (k_p + m_q = k_p + n_r) iff (m_q = n_r). 

 Proof. Suppose k_p + m_q = k_p + n_r, then, by Definition 2.1.13, (k + m)_(p + q) = (k + n)_(p + r), hence, (k + m = 

k + n) ˄ (p + q = P + r). But then, by Lemma 2.2.07, (m = n) ˄ (q = r) (reference [CD], Chapter 4, page 109), hence, m_q = 

n_r. Therefore, (k_p + m_q = k_p + n_r) → (m_q = n_r). 

Suppose m_q = n_r, then, by Definition 2.1.13 and Lemma 2.2.07, k_p + m_q = (k + m)_(p + q) = (k + n)_(p + r) = k_p + 

n_r (reference [CD], Chapter 4, page 109). Therefore, (m_q = n_r) → (k_p + m_q = k_p + n_r).  

Therefore, (k_p + m_q = k_p + n_r) iff (m_q = n_r), as desired. □ 

 Corollary 2.2.21. For all k_p, m_q, n_r ϵ NQ, (k_p * m_q = k_p * n_r) iff (m_q = n_r). 

 Proof. Suppose k_p * m_q = k_p * n_r, then, by Definition 2.1.14, (k * m)_(p * m + k * q + p * q) =   (k * n)_(p * n 

+ k * r + p * r), hence, (k * m = k * n) ˄ [(p * m + k * q + p * q) = (p * n + k * r + p * r)]. But then, by Lemma 2.2.07, (m = n) 

˄ (q = r) (reference [CD], Chapter 4, pages 109, 110, 116, and 117), hence, m_q = n_r. Therefore, (k_p * m_q = k_p * n_r) 

→ (m_q = n_r).  

Suppose m_q = n_r, then, by Definition 2.1.14 and Lemma 2.2.07, k_p * m_q = (k *m)_(p * m + k *q + p * q) =                  

(k * n)_ (p * n + k * r + p * r) = k_p * n_r (reference [CD], Chapter 4, pages 109, 110, 116, and 117). Therefore,             

(m_q = n_r) → (k_p * m_q = k_p * n_r). 

Therefore, (k_p * m_q = k_p * n_r) iff (m_q = n_r), as desired. □ 

Theorem 2.2.22. (N, <) is a linearly ordered set. 

Proof. This theorem is reproduced verbatim from reference [HJ] (Chapter 3, page 43) and the proof can be found 

therein, as desired. □ 

Lemma 2.2.23. For all a_b, c_d ϵ NQ: 

1. 0_0 ≤ c_d; 
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2. [a_b < c_(d + 1)] iff (a_b ≤ c_d). 

Proof. The proof is in two parts: 

1) We proceed by q-induction. Let P(x_y) be the property, “0_0 ≤ x_y,” then: 

P(0_0). 0_0 = 0_0, hence, 0_0 ≤ 0_0. 

Suppose P(n_k) is true, then (0_0 < n_k) ˅ (0_0 = n_k) and: 

P[(n + 1)_k] ˄ P[n_(k + 1)]. In both cases, by Lemma 2.2.07 and Theorem 2.2.22, [0_0 < (n + 1)_k] ˄ [0_0 < n_(k + 

1)]. 

Therefore, P(n_k) → (P[(n + 1)_k] ˄ P[n_(k + 1)]) and, by the Principle of Q-Induction, for all n_k ϵ NQ, 0_0 ≤ n_k, 

as desired. □  

2) Suppose a_b < c_(d  + 1), then, by Definition 2.1.12, a < c ˅ [a = c ˄ b < (d +1)]. If a < c, then, by Definition 2.1.12 

again, a_b < c_d; otherwise, if (a = c) ˄ [b < (d +1)], then, by Lemma 2.2.07 and Theorem 2.2.22, a_b ≤ c_d.  

 In both cases a_b ≤ c_d, hence, [a_b < c_(d + 1)] → (a_b ≤ c_d). 

Suppose a_b ≤ c_d, then, by Definition 2.1.12, {(a < c) ˅ [(a = c) ˄ (b < d)]} ˅ [(a = c) ˄ (b = d)] and three cases 

arise: 

Case 1. Suppose a < c, then, by Definition 2.1.12, a_b < c_( d + 1). 

Case 2. Suppose (a = c) ˄ (b < d), then, by Lemma 2.2.07 and Theorem 2.2.22, a_b < c_( d + 1). 

Case 3. Suppose (a = c) ˄ (b = d), then , by Lemma 2.2.07 and Theorem 2.2.22, a_b < c_( d + 1).   

 In all three cases a_b < c_( d + 1), hence, (a_b ≤ c_d) → [a_b < c_(d + 1)].  

Therefore, [a_b < c_(d + 1)] iff (a_b ≤ c_d), as desired. □ 

Theorem 2.2.24. (NQ, <) is a linearly ordered set. 

Proof. The proof is in three parts: 

1) Transitivity. Let k_p, m_q, n_r ϵ NQ be arbitrary but such that (k_p < m_q) ˄ (m_q < n_r). Then, by Definition 

2.1.12, {(k < m) ˅ [(k = m) ˄ (p < q)]} ˄ {(m < n) ˅ [(m = n) ˄ (q < r)]} and four cases arise: 

Case 1. Suppose (k < m) ˄ (m < n), then, by Lemma 2.2.07 and Theorem 2.2.22, k < n, and, by Definition 2.1.12 

again, k_p < n_r. 

Case 2. Suppose (k < m) ˄ (m = n) ˄ (q < r), then, by Lemma 2.2.07 and Theorem 2.2.22, k < n, and, by Definition 

2.1.12 again, k_p < n_r. 

Case 3. Suppose (k = m) ˄ (p < q) ˄ (m < n), then, by Lemma 2.2.07 and Theorem 2.2.22, k < n,  and, by Definition 

2.1.12 again, k_p < n_r. 

Case 4. Suppose (k = m) ˄ (p < q) ˄ (m = n) ˄ (q < r), then, by Lemma 2.2.07 and Theorem 2.2.22, k = n ˄ p < r, 

and, by Definition 2.1.12 again, k_p < n_r. 

In all four cases, k_p < n_r, hence, [(k_p < m_q) ˄ (m_q < n_r)] → (k_p < n_r). 

2) Asymmetry. Let k_p, m_q ϵ NQ be arbitrary and suppose, for contradiction, that (k_p < m_q) ˄ (m_q < k_p), then, 

by transitivity, k_p < k_p, contradicting Definition 2.1.12. 
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3) Linearity. We proceed by q-induction. Let P(x_y) be the property, “for all m_p ϵ NQ,  (m_p < x_y)  ˅ (m_p = x_y)  ˅ 

(x_y < m_p),” then: 

P(0.0). This is an immediate consequence of Lemma 2.2.23. 

Suppose P(n_k) is true, then for all m_p ϵ NQ, (m_p < n_k) ˅ (m_p = n_k) ˅ (n_k < m_p) and: 

P[(n + 1)_k] ˄ P[n_(k + 1)]. There are three cases to consider: 

Case 1. Suppose m_p < n_k, then, by Definition 2.1.12, Lemma 2.2.07, and Theorem 2.2.08, [n_k < (n + 1)_k] ˄ 

[n_k < n_(k + 1)], hence, by transitivity, [m_p < (n + 1)_k] ˄ [m_p < n_(k + 1)]. 

Case 2. Suppose m_p = n_k, then, by Definition 2.1.12, Lemma 2.2.07, and Theorem 2.2.08, [m_p < (n + 1)_k] ˄ 

[m_p < n_(k + 1)]. 

Case 3. Suppose n_k < m_p, then, by Definition 2.1.12, (n < m) ˅ [(n = m) ˄ (k < p)] and two cases arise: 

Case 3.a. Suppose n < m, then, by Lemma 2.2.07 and Theorem 2.2.22, {[(n + 1) < m] ˅ [(n + 1) = m]} ˄ {[(k 

+ 1) < p] ˅ [(k + 1) = p] ˅ [p < (k + 1)]} and four cases arise: 

Case 3.a.1. Suppose (n + 1) < m, then, by Definition 2.1.12, Lemma 2.2.07, and Theorem 2.2.22, 

[(n + 1)_k < m_p] ˄ [n_(k + 1) < m_p].  

Case 3.a.2. Suppose [(n + 1) = m] ˄ [(k + 1) < p], then, by Definition 2.1.12, Lemma 2.2.07, and 

Theorem 2.2.08, [(n + 1)_k < m_p] ˄ [n_(k + 1) < m_p].  

Case 3.a.3. Suppose [(n + 1) = m] ˄ [(k + 1) = p], then, by Definition 2.1.12, Lemma 2.2.07, and 

Theorem 2.2.22, [(n + 1)_k < m_p] ˄ [n_(k + 1) < m_p].   

Case 3.a.4. Suppose [(n + 1) = m] ˄ [p < (k + 1)], then, by Definition 2.1.12, Lemma 2.2.07, and 

Theorem 2.2.22, [m_p ≤ (n + 1)_k] ˄ [n_(k + 1) < m_p]. 

In all four cases, {[(n + 1)_k < m_p] ˄ [n_(k + 1) < m_p]} ˅ {[m_p ≤ (n + 1)_k] ˄ [n_(k + 1) < m_p]} , 

hence, (n < m) → {[(n + 1)_k < m_p] ˅ [(n + 1)_k = m_p] ˅ [m_p < (n + 1)_k]} ˄ {[n_(k + 1) < m_p] ˅ [n_(k 

+ 1) = m_p] ˅ [m_p < n_(k + 1)]}. 

Case 3.b. Suppose (n = m) ˄ (k < p), then, by Lemma 2.2.07 and Theorem 2.2.22, [m < (n + 1)] ˄ [(k + 1) ≤ 

p], and, by Definition 2.1.12, [m_p < (n + 1)_k] ˄ {[n_(k + 1) < m_p] ˅ [n_(k + 1) = m_p]}.  

In both cases, {[(n + 1)_k < m_p] ˅ [(n + 1)_k = m_p] ˅ [m_p < (n + 1)_k]} ˄ {[n_(k + 1) < m_p] ˅ [n_(k + 1) 

= m_p] ˅ [m_p < n_(k + 1)]}, hence, (n_k < m_p) → {[(n + 1)_k < m_p] ˅ [(n + 1)_k = m_p] ˅ [m_p < (n + 1)_k)]} ˄ 

{[n_(k + 1) < m_p] ˅ [n_(k + 1) = m_p] ˅ [m_p < n_(k + 1)]}. 

Therefore, P(n_k) → (P[(n + 1)_k] ˄ P[n_(k + 1)]) and, by the Principle of Q-Induction, linearity. 

Therefore, (NQ, <) is a linearly ordered set, as desired. □  

Theorem 2.2.25. (NQ, <) is a well-ordered set. 

Proof. This is an immediate consequence of Lemma 2.2.07, Theorem 2.2.22, and Lemma 2.2.23, as desired. □  

Theorem 2.2.26. (NQ, <) is isomorphic to ω2. 

Proof. Let Y = {Si│ i ϵ N} = ran S for some index function S, where each Si is the set of natural numbers. Then ω2 = 

{ ai│(ai ϵ Si ϵ Y) ˄ [for all i,j,a,b ϵ N, (ai < bj) iff [(i < j) ˅ [(i = j) ˄ (a < b)]]} (reference [CD], Chapter 13, page 470) and there is 

an obvious isomorphism, f:ω2 → (NQ, <), defined by f(ai) = i_a, as desired. □ 
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Theorem 2.2.27. For all k_p, m_q, n_r , o_s ϵ NQ,(k_p < m_q) iff [(k_p + n_r) < (m_q + n_r)]. 

 Proof. Suppose k_p < m_q, then, by Definition 2.1.12, (k < m) ˅ [(k = m) ˄ (p < q)]. Suppose k < m, then (k + n) < 

(m + n) (reference [CD], Chapter 4, page 113) and, by Definition 2.1.13, (k_p + n_r) < (m_q + n_r). Otherwise, suppose (k 

= m) ˄ (p < q), then, by Lemma 2.2.07, [(k + n) = (m + n)] ˄ [(p + r) < (q + r)] (reference [CD], Chapter 4, page 113) and, by 

Definition 2.1.13, (k_p + n_r) < (m_q + n_r). Therefore, (k_p < m_q) → [(k_p + n_r) < (m_q + n_r)].  

Suppose (k_p + n_r) < (m_q + n_r), then, by Definition 2.1.13, (k + n)_(p + r)  < (m + n)_(q + r) and, by Definition 2.1.12, 

[(k + n) < (m + n)] ˅ {[(k + n) = (m + n)] ˄ [(p + r) < (q + r)]}. Suppose (k + n) < (m + n), then, by Lemma 2.2.07, k < m 

(reference [CD], Chapter 4, page 114) and, by Definition 2.1.12, k_p < m_q. Otherwise, suppose [(k + n) = (m + n)] ˄ [(p + 

r) < (q + r)], then, by Lemma 2.2.07, (m = n) ˄ (p < q) (reference [CD], Chapter 4, page 114) and, by Definition 2.1.12, k_p 

< m_q. Therefore, [(k_p + n_r) < (m_q + n_r)] → (k_p < m_q). 

Therefore, (k_p < m_q) iff [(k_p + n_r) < (m_q + n_r)], as desired. □ 

 Theorem 2.2.28. For all k_p, m_q, n_r, o_s ϵ NQ, [(k_p < m_q) ˄ (n_r < o_s)] → [(k_p + n_r) < (m_q + o_s)].  

 Proof. Suppose that (k_p < m_q) ˄ (n_r < o_s), then, by Definition 2.1.12, {(k < m) ˅ [(k = m) ˄ (p < q)]} ˄ {[(n < o) 

˅ [(n = o) ˄ (r < s)]] and four cases arise: 

 Case 1. Suppose (k < m) ˄ (n < o), then, by Lemma 2.2.07, (k + n) < (m + o) (reference [CD], Chapter 4, page 114) 

and, by Definition 2.1.13, (k_p + n_r) < (m_q + o_s). 

 Case 2. Suppose (k < m) ˄ (n = o) ˄ (r < s), then, by Lemma 2.2.07, (k + n) < (m + n) = (m + o) (reference [CD], 

Chapter 4, page113) and, by Definition 2.1.13, (k_p + n_r) < (m_q + o_s).    

 Case 3. Suppose (k = m) ˄ (p < q) ˄ (n < o), then, by Lemma 2.2.07, (k + n) < (k + o) = (m + o) (reference [CD], 

Chapter 4, page 113) and, by Definition 2.1.13, (k_p + n_r) < (m_q + o_s). 

 Case 4. Suppose (k = m) ˄ (p < q) ˄ (n = o) ˄ (r < s), then, by Lemma 2.2.07, [(k + n) = (m + o)] ˄ [(p + r) < (q + s)] 

(reference [CD], Chapter 4, page 114) and, by Definition 2.1.13, (k_p + n_r) < (m_q + o_s). 

In all four cases, (k_p + n_r) < (m_q + o_s). 

Therefore, [(k_p < m_q) ˄ (n_r < o_s)] → [(k_p + n_r) < (m_q + o_s)], as desired.□ 

Theorem 2.2.29. For all k_p, m_q, n_r  ϵ NQ, (k_p < m_q) iff [(k_p * n_r) < (m_q * n_r)].  

Proof. Suppose k_p < m_q, then, by Definition 2.1.12, (k < m) ˅ [(k = m) ˄ (p < q)]. Suppose k < m, then, by 

Lemma 2.2.07, (k * n) < (m * n) (reference [CD], Chapter 4, page 114) and, by Definition 2.1.14, (k_p * n_r) < (m_q * n_r). 

Otherwise, suppose (k = m) ˄ (p < q), then, by Lemma 2.2.07, (k * n = m * n) ˄ (k * r = m * r) ˄ (p * n < q * n) ˄ (p * r < q * 

r) (reference [CD], Chapter 4, page 114) and, by Definition 2.1.14, (k_p * n_r) < (m_q * n_r). Therefore, (k_p < m_q) → 

[(k_p * n_r) < (m_q * n_r)]. 

Suppose (k.p * n.r) < (m.q * n.r), then, by Definition 2.1.14, (k * n)_(p * n + k * r + p * r) < (m * n)_(q * n + m * r + q * r) 

and, by Definition 2.1.12, (k * n < m * n) ˅ {(k * n = m * n) ˄ [(p * n  + k * r + p * r) < (q * n + m * r + q * r)]}. Suppose k * n 

< m * n, then, by Lemma 2.2.07, k < m (reference [CD], Chapter 4, page 115) and, by Definition 2.1.12, k_p < m_q. 

Otherwise, suppose (k * n = m * n) ˄ [(p * n  + k * r + p * r) < (q * n + m * r + q * r)], then, by Lemma 2.2.07, (k = m) ˄ (k * 

r = m * r) (reference [CD], Chapter 4, page 110) and [p * (n + r)] + k * r = [p * (n + r)] + m * r < [q * (n + r)] + m * r, hence, 

(k = m) ˄ (p < q) (reference [CD], Chapter 4, pages 114 and 115) and, by Definition 2.1.12, k_p < m_q. Therefore, [(k_p * 

n_r) < (m_q * n_r)] → (k_p < m_q).  

Therefore, (k_p < m_q) iff [(k_p * n_r) < (m_q * n_r)], as desired. □ 

 Theorem 2.2.30. For all k_p, m_q, n_r, o_s ϵ NQ, [(k_p < m_q) ˄ (n_r < o_s)] → (k_p * n_r < m_q * o_s).  
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 Proof. Suppose (k_p < m_q) ˄ (n_r < o_s), then, by Definition 2.1.12, {(k < m) ˅ [(k = m) ˄ (p < q)]} ˄ {(n < o) ˅ [(n 

= o) ˄ (r < s)]} and four cases arise: 

 Case 1. Suppose (k < m) ˄ (n < o), then, by Lemma 2.2.07, k * n < m * o (reference [CD], Chapter 4, page 115) 

and, by Definition 2.1.14, k_p * n_r < m_q * o_s. 

 Case 2. Suppose (k < m) ˄ (n = o) ˄ (r < s), then, by Lemma 2.2.07, k * n < m * n = m * o and, by Definition 2.1.14,       

k_p * n_r < m_q * o_s. 

 Case 3. Suppose (k = m) ˄ (p < q) ˄ (n < o), then, by Lemma 2.2.07, k * n < k * o = m * o and, by Definition 2.1.14,       

k_p * n_r < m_q * o_s. 

 Case 4. Suppose (k = m) ˄ (p < q) ˄ (n = o) ˄ (r < s), then, by Lemma 2.2.07, (k * n = k * o = m * o) ˄ (p * n = p * o 

= q * o) ˄ (p * r < q * s) (reference [CD], Chapter 4, pages 114 and 115), hence, (k * n = m * o) ˄ [(p * n + k * r + p * r) < (q 

* o + m * s + q * s) (reference [CD], Chapter 4, page 114) and, by Definition 2.1.14, k_p * n_r < m_q * o_s. 

In all four cases, k_p * n_r < m_q * o_s. 

Therefore, [(k_p < m_q) ˄ (n_r < o_s)] → (k_p * n_r < m_q * o_s), as desired. □ 

 Theorem 2.2.31. For all k_p, m_q, n_r, o_s ϵ NQ, [(k_p + m_q < n_r + o_s) ˄ (k_p ≥ n_r)] → (m_q < o_s). 

 Proof. Suppose (k_p + m_q < n_r + o_s) ˄ (k_p ≥ n_r), then, by Definition 2.1.12 and 2.1.13, {(k + m < n + o) ˅ [(k 

+ m = n + o) ˄ (p + q < r + s)]} ˄ {[k > n ˅ (k = n ˄ p > r) ˅ (k = n ˄ p = r)]} and six cases arise: 

 Case 1. Suppose (k + m < n + o) ˄ (k > n), then, by Lemma 2.2.07, m < o (reference [CD], chapter 4, page 115) 

and, by Definition 2.1.12, m_q < o_s. 

 Case 2. Suppose (k + m < n + o) ˄ (k = n) ˄ (p > r), then, by Lemma 2.2.07, m < o (reference [CD], chapter 4, page 

115) and, by Definition 2.1.12, m_q < o_s. 

 Case 3. Suppose (k + m < n + o) ˄ (k = n) ˄ (p = r), then, by Lemma 2.2.07, m < o (reference [CD], chapter 4, page 

115) and, by Definition 2.1.12, m_q < o_s. 

 Case 4. Suppose (k + m = n + o) ˄ (p + q < r + s) ˄ (k > n), then, by Lemma 2.2.07, (n + m < n + o) ˄ (m < o) 

(reference [CD], Chapter 4, page 114), hence, by Definition 2.1.12, m_q < o_s. 

 Case 5. Suppose (k + m = n + o) ˄ (p + q < r + s) ˄ (k = n) ˄ (p > r), then, by Lemma 2.2.07, (m = o) ˄ (r + q < r + s) ˄ 

(q < s) (reference [CD], Chapter 4, page 113), hence, by Definition 2.1.12, m_q < o_s. 

 Case 6. Suppose (k + m = n + o) ˄ (p + q < r + s) ˄ (k = n) ˄ (p = r), then (m = o) ˄ (r + q < r + s) ˄ (q < s) (reference 

[CD], Chapter 4, page 113), hence, by Definition 2.1.12, m_q < o_s. 

 In all six cases, m_q < o_s. 

Therefore, [(k_p + m_q < n_r + o_s) ˄ (k_p ≥ n_r)] → (m_q < o_s), as desired. □ 

 Theorem 2.2.32. For all k_p, m_q, n_r, o_s ϵ NQ, [(k_p * m_q < n_r * o_s) ˄ (k_p ≥ n_r)] → (m_q < o_s).  

 Proof. Suppose (k_p * m_q < n_r * o_s) ˄ (k_p ≥ n_r), then, by Definition 2.1.12 and 2.1.14, {(k * m < n * o) ˅ [(k 

* m = n * o) ˄ [(p * m + k * q + p * q) <  (r * o + n * s + r * s)]} ˄ {(k > n) ˅ [(k = n) ˄ (p > r)] ˅ [(k = n) ˄ (p = r)]} and six 

cases arise: 

 Case 1. Suppose (k * m < n * o) ˄ (k > n), then, by Lemma 2.2.07, m < o (reference [CD], chapter 4, page 115) 

and, by Definition 2.1.12, m_q < o_s. 
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 Case 2. Suppose (k * m < n * o) ˄ (k = n) ˄ (p > r), then, by Lemma 2.2.07, m < o (reference [CD], chapter 4, page 

115) and, by Definition 2.1.12, m_q < o_s. 

 Case 3. Suppose (k * m < n * o) ˄ (k = n) ˄ (p = r), then, by Lemma 2.2.07, m < o (reference [CD], chapter 4, page 

115) and, by Definition 2.1.12, m_q < o_s. 

 Case 4. Suppose (k * m = n * o) ˄ [(p * m + k * q + p * q) < (r * o + n * s + r * s)] ˄ (k > n), then, by Lemma 2.2.07, 

(n * m < k * m = n * o) (reference [CD], Chapter 4, page 114), hence, m < o (reference [CD], Chapter 4, page 115) and, by 

Definition 2.1.12, m_q < o_s. 

 Case 5. Suppose (k * m = n * o) ˄ [(p * m + k * q + p * q) < (r * o + n * s + r * s)] ˄ (k = n) ˄ (p > r), then, by Lemma 

2.2.07, (m = o) ˄ [(r *m + n * q + r * q) < (r * o + n * s + r * s)] (reference [CD], Chapter 4, pages 110,  114, and 115), 

hence, by commutativity and associativitiy of addition on N (reference [CD], Chapter 4, page 138), q * (n + r) + r * m = q * 

(n + r) + r * o < s * (n + r) + r * o, hence, q * (n + r) < s * (n + r) and q < s (reference [CD], Chapter 4, pages 114 and 115). 

Then (m = o) ˄ (q < s) and, by Definition 2.1.12, m_q < o_s. 

 Case 6. Suppose (k * m = n * o) ˄ [(p * m + k * q + p * q) < (r * o + n * s + r * s)] ˄ (k = n) ˄ (p = r), then, by Lemma 

2.2.07, (m = o) ˄ [(r *m + n * q + r * q) <(r * o + n * s + r * s)] (reference [CD], Chapter 4, pages 110,  114, and 115), 

hence, by commutativity and associativitiy of addition on N (reference [CD], Chapter 4, page 138), q * (n + r) + r * m = q * 

(n + r) + r * o < s * (n + r) + r * o, hence, q * (n + r) < s * (n + r) and q < s (reference [CD], Chapter 4, pages 114 and 115). 

Then (m = o) ˄ (q < s) and, by Definition 2.1.12, m_q < o_s. 

 In all six cases, m_q < o_s. 

Therefore, [(k_p * m_q < n_r * o_s) ˄ (k_p ≥ n_r)] → (m_q < o_s), as desired. □ 

 Theorem 2.2.33. For all a_b, c_d, x_y ϵ NQ, (a_b + x_y ≤ c_d) → (a_b < c_d). 

 Proof. Suppose a_b + x_y < c_d, then, by Definition 2.1.12 and 2.1.13, (a + x < c) ˅ [(a + x = c) ˄ (b + y < d)] and 

two cases arise: 

 Case 1. Suppose a + x < c, then, by Lemma 2.2.07, a < c (reference [CD], Chapter 4, page 115) and, by Defintion 

2.1.12, a_b < c_d. 

 Case 2. Suppose (a + x = c) ˄ (b + y < d), then, by Lemma 2.2.07, if x = 0, then (a = c) ˄ (b < d) (reference [CD], 

Chapter 4, page115) and, by Definition 2.1.12, a.b < c.d. Otherwise, if x ≠ 0, then a < c (reference [CD], Chapter 4, 

page113) and, by Definition 2.1.12, a_b < c_d.  

 In both cases, a_b < c_d.  

Therefore, (a_b + x_y < c_d) → (a_b < c_d).   

Suppose a_b + x_y = c_d, then, by Definition 2.1.13, (a + x = c) ˄ (b + y = d), hence, by Lemma 2.2.07, a < c (reference 

[CD], Chapter 4, page113) and, by Definition 2.1.12, a_b < c_d. 

Therefore, (a_b + x_y = c_d) → (a_b < c_d).  

Therefore, (a_b + x_y ≤ c_d) → (a_b < c_d), as desired. □ 

 Theorem 2.2.34. NQ is not closed under the operation “ -“ (subtraction) of Definition 2.1.15. 

 Proof. Let a_b ϵ NQ – {0_0} be arbitrary, then, by Definition 2.1.13 and 2.1.17, (0_0 - a_b = c_d) iff [0_0 = c_d + 

a_b = (c + a)_(d + b)]. Suppose, for contradiction, that 0_0 = (c + a)_(d + b), then 0 = c + a and, by Lemma 2.2.07 and the 

definition of “<” (strict order) on N – {0} (reference [CD], Chapter 4, page 113), c < 0, hence, by Definition 2.1.12, c_d < 

0_0, contradicting Lemma 2.2.23. Therefore, NQ is not closed under subtraction, as desired. □ 
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 Theorem 2.2.35. For all a_b, c_d ϵ NQ, (a_b - c_d ϵ NQ) → [(a_b - c_d) + c_d = a_b]. 

 Proof. Suppose a_b - c_d ϵ NQ, then, by Definition 2.1.15, there exists some x_y ϵ NQ such that a_b - c_d = x_y 

and a_b = x_y + c_d. But then, by substitution, a_b = (a_b - c_d) + c_d, as desired. □ 

 Theorem 2.2.36. For all a_b, c_d, k_p ϵ NQ, (a_b - c_d ϵ NQ) → [k_p * (a_b - c_d) = k_p *a_b - k_p * c_d]. 

 Proof. Suppose a_b - c_d ϵ NQ, then, by Definition 2.1.15, there exists some x_y ϵ NQ such that a_b - c_d = x_y 

and a_b = x_y + c_d. But then, by Theorem 2.2.15, k_p * (a_b - c_d) = k_p * x_y and k_p * a_b = k_p * (x_y + c_d) = k_p * 

x_y + k_p * c_d. By Definition 2.1.17 again, k_p * a_b - k_p * c_d = k_p * x_y, hence, by substitution, k_p * (a_b - c_d) = 

k_p * a_b - k_p * c_d.  

Therefore, multiplication is left distributive over subtraction, as desired. □ 

 Theorem 2.2.37. For all a_b, c_d, k_p ϵ NQ, (a_b - c_d ϵ NQ) → [(a_b - c_d) * k_p = a_b * k_p - c_d * k_p]. 

 Proof. Suppose a_b - c_d ϵ NQ, then, by Definition 2.1.15, there exists some x_y ϵ NQ such that a_b - c_d = x_y 

and a_b = x_y + c_d. But then, by Theorem 2.2.16, (a_b - c_d) * k_p = x_y * k_p and a_b * k_p = (x_y + c_d) * k_p = x_y * 

k_p + c_d * k_p. By Definition 2.1.15 again, a_b * k_p - c_d * k_p = x_y * k_p, hence, by substitution, (a_b - c_d) * k_p = 

a_b * k_p - c_d * k_p.  

Therefore, multiplication is right distributive over subtraction, as desired. □ 

 Theorem 2.2.38. For all a_b, c_d ϵ NQ, (a_b - c_d ϵ NQ)iff [(c ≤ a) ˄ (d ≤ b)]. 

 Proof. Suppose a_b - c_d ϵ NQ, then, by Definition 2.1.15, there exists some x_y ϵ NQ such that a_b - c_d = x_y 

and a_b = x_y + c_d and, by Definition 2.1.13, a_b = (x + c)_(y + d). By Lemma 2.2.07 and Theorem 2.2.22, (0 ≤ x) ˄ (0 ≤ y) 

and four cases arise: 

 Case 1. Suppose (0 < x) ˄ (0 < y), then, by the definition of “<” (strict order) on N (reference [CD], Chapter 4, 

page 113), (c < a) ˄ (d < b). 

 Case 2. Suppose (0 < x) ˄ (0 = y), then, by the definition of “<” (strict order) on N (reference [CD], Chapter 4, 

page 113), (c < a) ˄ (d = b). 

 Case 3. Suppose (0 = x) ˄ (0 < y), then, by the definition of “<” (strict order) on N (reference [CD], Chapter 4, 

page 113), (c = a) ˄ (d < b). 

 Case 4. Suppose (0 = x) ˄ (0 = y), then (c = a) ˄ (d = b). 

 In all four cases, (c ≤ a) ˄ (d ≤ b). 

Therefore, (a_b - c_d ϵ NQ) → [(c ≤ a) ˄ (d ≤ b)]. 

Suppose (c ≤ a) ˄ (d ≤ b), then four cases arise: 

 Case 1. Suppose (c < a) ˄ (d < b), then, by Lemma 2.2.07 and the definition of “<” (strict order) on N (reference 

[CD], Chapter 4, page 113), there exists x,y ϵ N such that [a = (x + c)] ˄ [b = (y + d)] and, by Definition 2.1.13 and 2.1.15, 

a_b - c_d ϵ NQ. 

Case 2. Suppose (c < a) ˄ (d = b), then, by Lemma 2.2.07 and the definition of “<” (strict order) on N (reference 

[CD], Chapter 4, page 113), there exists x,y ϵ N, y = 0, such that [a = (x + c)] ˄ [b = (0 + d)] and, by Definition 2.1.13 and 

2.1.15, a_b - c_d ϵ NQ. 
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Case 3. Suppose (c = a) ˄ (d < b), then, by Lemma 2.2.07 and the definition of “<” (strict order) on N (reference 

[CD], Chapter 4, page 113), there exists x,y ϵ N, x = 0, such that [a = (0 + c)] ˄ [b = (y + d)] and, by Definition 2.1.13 and 

2.1.15, a_b - c_d ϵ NQ. 

Case 4. Suppose (c = a) ˄ (d = b), then a_b = c_d and, by Definition 2.1.10, 2.1.13, and 2.1.15 and Theorem 

2.2.05, a_b - c_d = 0_0 ϵ NQ. 

In all four cases, a_b - c_d ϵ NQ. 

Therefore, [(c ≤ a) ˄ (d ≤ b)] → (a_b - c_d ϵ NQ).   

Therefore, (a_b - c_d ϵ NQ) iff [(c ≤ a) ˄ (d ≤ b)], as desired. □ 

 Theorem 2.2.39. NQ is not closed under the operation “÷” (division) of Definition 2.1.16. 

 Proof. Let a_b, c_d ϵ NQ – {0_0} be arbitrary and suppose c_d|a_b, then, by Definition 2.1.16, there exists x_y ϵ 

NQ such that a_b = x_y * c_d = (x * c)_(y * c + x * d + y * d). Then [a = (x * c)] ˄ [b = (y * c + x * d + y * d)], hence, (c = a ÷ 

x) ˄ (d = {[b - (y * c)] ÷ (x + y)}). By Lemma 2.2.07, (a ÷ x), {[b - (y * c)] ÷ (x + y)} ϵ N, which is not closed under subtraction 

nor division (reference [CD], Chapter 4, pages 116 thru 118), hence, NQ is not closed under division, as desired. □ 

 Theorem 2.2.40. For all a_b, c_d ϵ NQ, c_d ≠ 0_0, (a_b ÷ c_d ϵ NQ) → [(a_b ÷ c_d) * c_d = a_b = (a_b * c_d) ÷ c_d]. 

 Proof. Suppose a_b ÷ c_d ϵ NQ, then, by Definition 2.1.16, there exists x_y ϵ NQ such that (a_b ÷ c_d = x_y) ˄ (a_b 

= x_y * c_d) and, by substitution, a_b = (a_b ÷ c_d) * c_d. Furthermore, suppose, for contradiction, that a_b ≠ (a_b * 

c_d) ÷ c_d, then, by Definition 2.1.16, a_b * c_d ≠ a_b * c_d, a contradiction. Therefore, (a_b ÷ c_d) * c_d = a_b = (a_b * 

c_d) ÷ c_d, as desired. □ 

 Theorem 2.2.41. For all a_b, c_d, m_q ϵ NQ, m_q ≠ 0_0, [(a_b ÷ m_q ϵ NQ) ˄ (c_d ÷ m_q ϵ NQ)] → [(a_b + c_d)  ÷ 

m_q = (a_b ÷ m_q) + (c_d ÷ m_q)]. 

Proof. Suppose (a_b ÷ m_q ϵ NQ) ˄ (c_d ÷ m_q ϵ NQ), then, by Definition 2.2.16, there exists e_f, g_h ϵ NQ such 

that (a_b ÷ m_q = e_f) ˄ (a_b = e_f * m_q) ˄ (c_d ÷ m_q = g_h) ˄ (c_d = g_h * m_q), and, by Theorem 2.2.16 and 2.2.40 

and Definition 2.1.16 again: 

  (a_b + c_d) ÷ m_q = (e_f * m_q + g_h * m_q) ÷ m_q; 

        = [(e_f + g_h) * m_q] ÷ m_q; 

        = e_f + g_h; 

        = (a_b ÷ m_q) + (c_d ÷ m_q).  

Therefore, division is right distributive over addition, as desired. □ 

 Theorem 2.2.42. For all k_p, m_q, n_r ϵ NQ, m_q, n_r ≠ 0_0, {[(k_p ÷ m_q) ϵ NQ] ˄ [(k_p ÷ n_r) ϵ NQ] ˄ [[k_p ÷ 

(m_q + n_r)] ϵ NQ]} → [k_p ÷ (m_q + n_r) ≠ (k_p ÷ m_q) + (k_p ÷ n_r)]. 

 Proof. Suppose [(k_p ÷ m_q) ϵ NQ] ˄ [(k_p ÷ n_r) ϵ NQ] ˄ {[k_p ÷ (m_q + n_r)] ϵ NQ} and suppose, for 

contradiction, that k_p ÷ (m_q + n_r) = (k_p ÷ m_q) + (k_p ÷ n_r). Then, by Definition 2.1.16 and Theorem 2.2.15, 2.2.16, 

and 2.2.40: 

  k_p = [(k_p ÷ m_q) + (k_p ÷ n_r)] * (m_q + n_r); 

         = [(k_p ÷ m_q) * (m_q + n_r)] + [(k_p ÷ n_r) * (m_q + n_r)]; 

         = [(k_p ÷ m_q) * m_q] + [(k_p ÷ m_q) * n_r] + [(k_p ÷ n_r) * m_q] + [(k_p ÷ n_r) * n_r]; 
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         = k_p + [(k_p ÷ m_q) * n_r] + [(k_p ÷ n_r) * m_q] + k_p, a contradiction. 

Therefore, division is not left distributive over addition, as desired. □ 

 Theorem 2.2.43. For all k_p, m_q, n_r ϵ NQ, m_q ≠ 0_0, {[(k_p ÷ m_q) ϵ NQ] ˄ [(n_r ÷ m_q) ϵ NQ] ˄ [(k_p - n_r) ϵ 

NQ]} → [(k_p - n_r) ÷ m_q = (k_p ÷ m_q) - (n_r ÷ m_q)]. 

 Proof. Suppose [(k_p ÷ m_q) ϵ NQ] ˄ [(n_r ÷ m_q) ϵ NQ] ˄ [(k_p - n_r) ϵ NQ], then, by Definition 2.1.16, there 

exists a_b, c_d ϵ NQ such that (k_p ÷ m_q = a_b) ˄ (k_p = a_b * m_q) ˄ (n_r ÷ m_q = c_d) ˄ (n_r = c_d * m_q) and, by 

Theorem 2.2.40 and 2.2.41 and Definition 2.1.16 again: 

  (k_p - n_r) ÷ m_q = (a_b * m_q - c_d * m_q) ÷ m_q; 

                  = [(a_b - c_d) * m_q] ÷ m_q; 

    = a_b - c_d; 

    = (k_p ÷ m_q) - (n_r ÷ m_q). 

Therefore, division is right distributive over subtraction, as desired. □ 

 Lemma 2.2.44. For all a_b, c_d, m_q, n_r ϵ NQ, [(a_b * m_q = c_d * n_r) ˄ (n_r < m_q)] → (a_b < c_d). 

 Proof. Suppose (a_b * m_q = c_d * n_r) ˄ (n_r < m_q), then, by Definition 2.1.12 and 2.1.14, {(n < m) ˅ [(n = m) ˄ 

(r < q)]} ˄ (a *m = c *n) ˄ [(b * m + a * q + b * q) = (d * n + c * r + d * r)] and two cases arise: 

 Case 1. Suppose n < m, then, by Lemma 2.2.07 and the definition of “<” (strict order) on N (reference [CD], 

Chapter 4, page 113), there exists x ϵ N such that n + x = m. Then, by substitution and additive closure on N (reference 

[CD], Chapter 4, page 108), a * n + a * x = c * n, hence, a * n < c * n and a < c (reference [CD], Chapter 4, page 115). But 

then, by Definition 2.1.12, a_b < c_d. 

 Case 2. Suppose (n = m) ˄ (r < q), then, by Lemma 2.2.07 and the definition of “<” (strict order) on N (reference 

[CD], Chapter 4, page 113), there exists x ϵ N such that r + x = q. Clearly a = c and, by substitution and commutativity and 

distributivity on N (reference [CD], Chapter 4, page 113): 

  d *n + c *r + d * r = d * n + d * r + c * r; 

       = d * (m + r) + a * r; 

       = b * m + [a * (r + x) + b * (r + x)]; 

       = b * m + b * (r + x) + a * (r + x); 

       = b * m + b * r + (b * x + a * r) + a * x; 

       = b * (m + r) + a * r + (b * x + a * x); 

       = b * (m + r) + a * r + (b + a) * x. 

Hence, (a = c) ˄ (b < d) (reference [CD], Chapter 4, pages 113 – 115) and, by Definition 2.1.12, a_b < c_d. 

 In both case, a_b < c_d. 

Therefore, [(a_b * m_q = c_d * n_r) ˄ (n_r < m_q)] → (a_b < c_d), as desired. □ 

 Theorem 2.2.44. For all k_p, m_q, n_r ϵ NQ, (m_q, n_r ≠ 0_0) ˄ (m_q ≠ n_r), {[(k_p ÷ m_q) ϵ NQ] ˄ [(k_p ÷ n_r) ϵ 

NQ] ˄ [(m_q - n_r) ϵ NQ] ˄ [k_p ÷ (m_q - n_r) ϵ NQ]} → [k_p ÷ (m_q - n_r) ≠ (k_p ÷ m_q) - (k_p ÷ n_r)]. 
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 Proof. Suppose [(k_p ÷ m_q) ϵ NQ] ˄ [(k_p ÷ n_r) ϵ NQ] ˄ [(m_q - n_r) ϵ NQ] ˄ [k_p ÷ (m_q - n_r) ϵ NQ], then, by 

Definition 2.1.16, there exists a_b, c_d, e_f  ϵ NQ such that (k_p ÷ m_q = a_b) ˄ (k_p = a_b * m_q) ˄ (k_p ÷ n_r = c_d) ˄ 

(k_p = c_d * n_r) ˄ [k_p ÷ (m_q - n_r) = e_f] ˄ [k_p = e_f * (m_q - n_r)]. Suppose, for contradiction, that e_f = a_b - c_d, 

then, since [(m_q - n_r) ϵ NQ] ˄ [k_p ÷ (m_q - n_r) ϵ NQ], by Definition 2.1.16 and Theorem 2.2.38, (n < m) ˄ (r < q) and, 

by Lemma 2.2.24, a_b < c_d. But then, by Definition 2.1.12, (a < c) ˅ [(a = c) ˄ (b <d)], contradicting Theorem 2.2.38 in 

both cases. Therefore, k_p ÷ (m_q - n_r) ≠ (k_p ÷ m_q) - (k_p ÷ n_r) and division is not left distributive over subtraction, 

as desired. □ 

Theorem 2.2.45. For all a_b ϵ NQ, a_b ÷ 1_0 = a_b. 

 Proof. This is an immediate consequence of Definition 2.1.16 and Theorem 2.2.18, therefore, 1_0 is a right 

identity for division, as desired. □ 

 Theorem 2.2.46. For all a_b ϵ NQ, (a_b ≠ 0_0) ˄ (a_b ≠ 1_0), 1_0 ÷ a_b ≠ a_b. 

 Proof. Suppose, for contradiction, that 1_0 ÷ a_b = a_b, then, by Definition 2.1.16 and 2.1.14, 1_0 = a_b * a_b = 

(a * a)_(2 * a * b + b * b), hence, a = 1 and b = 0 (reference [CD], Chapter 3, page 52, and Chapter 5, page 163), a 

contradiction. Therefore, 1_0 is not a left identity for division, as desired. □ 

 Theorem 2.2.47. For all a_b ϵ NQ, a_b ≠ 0_0, a_b ÷ a_b = 1_0. 

 Proof. This is an immediate consequence of Definition 2.1.16 and Theorem 2.2.12 and 2.2.18; therefore, each q-

natural number is its own inverse under division, as desired. □ 

 Theorem 2.2.48. For all a_b ϵ NQ, b ≠ 0, a_b has a q-prime factor, p_0, iff “a” and “b” share the prime factor p. 

 Proof. Suppose a_b has a q-prime factor, then, by Definition 2.1.14, 2.1.16 and 2.1.17, there is some m_q, p_0 ϵ 

NQ, p prime, such that a_b = m_q * p_0 = (m * p)_(q * p + m * 0 + q * 0) = (m * p)_(q * p) and p is a factor of both a and 

b. 

Suppose “a” and “b” share a prime factor p, then there exist m, q ϵ N such that (m * p = a) ˄ (q * p = b). But then, by 

Lemma 2.2.07, a_b = (m * p)_(q * p) = (m * p)_(q * p + m * 0 + q * 0), hence, by Definition 2.1.16, a_b ÷ p_0 = m_q and 

a_b has a q-prime factor. 

Therefore, a_b has a q-prime factor iff “a” and “b” share a prime factor, as desired. □ 

 Theorem 2.2.49. For all n ϵ N, a_b ϵ NQ, (a_b)n is defined. 

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b)x is defined,” then: 

P(0). By Definition 2.1.18, (a_b)0 = 1_0. 

Suppose P(n) is true, then (a_b)n is defined and: 

P(n + 1). By Definition 2.1.14 and 2.1.18, (a_b)(n + 1) = (a_b)n * a_b and, by Theorem 2.2.10, (a_b)(n + 1) is defined. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all n ϵ N, a_b ϵ NQ, 

(a_b)n is defined, as desired. □ 

 Theorem 2.2.50. For all n ϵ N, (1_0)n = 1_0. 

 Proof. We proceed by induction on n. Let P(x) be the property, “(1_0)x = 1_0,” then: 

P(0). By Definition 2.1.18, (1_0)0 = 1_0. 

Suppose P(n) is true, then (1_0)n = 1_0 and: 
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P(n + 1). By Definition 2.1.18 and Theorem 2.2.18, (1_0)(n + 1) = (1_0)n * 1_0 = 1_0 * 1_0 = 1_0. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all n ϵ N, (1_0)n = 

1_0, as desired. □ 

 Theorem 2.2.51. For all n ϵ N, a_b, c_d ϵ NQ, (a_b * c_d)n = (a_b)n * (c_d)n.  

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b * c_d)x = (a_b)x * (c_d)x,” then: 

P(0). By Definition 2.1.18 and Theorem 2.2.18, (a_b * c_d)0 = 1_0 = 1_0 * 1_0 = (a_b)0 * (c_d)0. 

Suppose P(n) is true, then (a_b * c_d)n = (a_b)n * (c_d)n and: 

P(n + 1). By Definition 2.1.18 and Theorem 2.2.12 and 2.2.14: 

 (a_b * c_d)(n + 1) = (a_b * c_d)n * (a_b * c_d); 

                = (a_b)n * (c_d)n * (a_b * c_d); 

                = (a_b)n * [(c_d)n * a_b] * c_d; 

                = (a_b)n * [a_b * (c_d)n] * c_d; 

                = [(a_b)n * a_b] * [(c_d)n * c_d]; 

                = (a_b)(n + 1) * (c_d)(n + 1). 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all n ϵ N, a_b, c_d ϵ 

NQ, (a_b * c_d)n = (a_b)n * (c_d)n, as desired. □ 

 Theorem 2.2.52. For all m, n ϵ N, a_b ϵ NQ, (a_b)m * (a_b)n = (a_b)(m + n). 

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b)m * (a_b)x = (a_b)(m + x),” then: 

P(0). By Definition 2.1.18 and Theorem 2.2.18, (a_b)m * (a_b)0 = (a_b)m * 1_0 = (a_b)m = (a_b)(m + 0). 

Suppose P(n) is true, then (a_b)m * (a_b)n = (a_b)(m + n) and: 

P(n + 1). By Definition 2.1.18 and Theorem 2.2.14:  

 (a_b)m * (a_b)(n + 1) = (a_b)m * [(a_b)n * a_b]; 

       = [(a_b)m * (a_b)n] * a_b; 

       = (a_b)(m + n) * a_b; 

       = (a_b)[(m + n) + 1]; 

       = (a_b)[m + (n + 1)]. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all m, n ϵ N, a_b ϵ 

NQ, (a_b)m * (a_b)n = (a_b)(m + n), as desired. □ 

 Theorem 2.2.53. For all m, n ϵ N, a_b ϵ NQ, [(a_b)m]n = (a_b)(m * n).  

 Proof. We proceed by induction on n. Let P(x) be the property, “[(a_b)m]x = (a_b)(m * x),” then: 

P(0). By Definition 2.1.18, [(a_b)m]0 = 1_0 = (a_b)0 = (a_b)(m * 0). 

Suppose P(n) is true, then [(a_b)m]n = (a_b)(m * n) and: 
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P(n + 1). By Definition 2.1.18 and Theorem 2.2.52: 

 [(a_b)m](n + 1) = [(a_b)m]n * (a_b)m; 

          = (a_b)(m * n) * (a_b)m; 

          = (a_b)[(m * n) + m]; 

          = (a_b)[m * (n + 1)]. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all m, n ϵ N, a_b ϵ 

NQ, [(a_b)m]n = (a_b)(m * n), as desired. □ 

 Theorem 2.2.54. NQ is countable. 

 Proof. By Theorem 2.2.26 (reference [CD], Chapter 13, page 472), as desired. □ 

 Theorem 2.2.55. NQ has no greatest element. 

 Proof. By Definition 2.1.10 and Theorem 2.2.05, as desired. □ 

  

3. Q-Integers. We develop the q-integers as equivalence classes of ordered pairs of q-naturals, where, for all 

(a_b, c_d) ϵ NQ x NQ, (a_b, c_d) is to be considered equivalent to a_b - c_d. Here, - (a_b, c_d) is as defined by Definition 

2.1.15 but we extend subtraction to allow a_b < 0_0; in doing so, we also extend the q-components into the negative, 

since, by Definition 2.1.13 and 2.1.16, (0_0 - a_b = x_y) iff [x_y + a_b = (x + a)_(y + b) = 0_0], hence, (x = 0 - a) ˄ (y = 0 - b).   

  

3.1. Definitions. We define our mathematical entities using standard terminology. 

Definition 3.1.01. Let ZQ’ = NQ x NQ = { (a_b, c_d) | a_b, c_d ϵ NQ}. 

Definition 3.1.02. The relation E on ZQ’ is defined by: 

for all (k_p, m_q), (n_r, o_s) ϵ NQ, [(k_p, m_q) E (n_r, o_s)] iff [(k_p + o_s) = (m_q + n_r)]. 

Definition 3.1.03. The operation “+” (addition) on ZQ’ is defined by: 

  for all (k_p, m_q), (n_r, o_s) ϵ NQ, + [(k_p, m_q), (n_r, o_s)] = [(k_p + n_r), (m_q + o_s)]. 

Definition 3.1.04. The operation “*” (multiplication) on ZQ’ is defined by: 

  for all (k_p, m_q), (n_r, o_s) ϵ NQ,* [(k_p, m_q), (n_r, o_s)] = [(k_p * n_r + m_q * o_s), (k_p * o_s + m_q * 

n_r)] 

Definition 3.1.05. Let (a_b, c_d) ϵ ZQ’ be arbitrary, then the equivalence class of (a_b, c_d) modulo E, [(a_b, 

c_d)]E, which is subject to Definition 3.1.03 and 3.1.04, will be called q-integers and the set of all such q-integers will be 

designated ZQ. 

Definition 3.1.06. Let [(k_p, m_q)]E, [(n_r, o_s)]E ϵ ZQ be arbitrary, then: 

  +{[(k_p, m_q)]E, [(n_r, o_s)]E} = [{(k_p + n_r), (m_q + o_s)}]E; and, 

  *{[(k_p, m_q)]E, [(n_r, o_s)]E} = [(k_p * n_r + m_q * o_s), (k_p * o_s + m_q * n_r)]E. 

Definition 3.1.07. The “zero” q-integer, 0_0, is the equivalence class [(a_b, a_b)]E ϵ ZQ. 
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Definition 3.1.08. Let [(a_b, c_d)]E ϵ ZQ be arbitrary, then [(a_b, c_d)]E will be called “negative” if a_b < c_d and 

[(a_b, c_d)]E will be called “positive” if a_b > c.d; the set of all positive q-integers will be designated ZQ
+ and the set of all 

negative q-integers by ZQ
-. 

Definition 3.1.09. Positive q-integers are of the form, [(k_p + m_q), k_p}]E, and will be signified by m_q. 

Definition 3.1.10. Let [(a_b, c_d)]E ϵ ZQ be arbitrary, then the “additive inverse” of [(a_b, c_d)]E is signified by         

- [(a_b, c_d)]E = [(c_d, a_b)]E. 

Definition 3.1.11. The operation “-“ (subtraction) on ZQ is defined by: 

for all [(k_p, m_q)]E, [(n_r, o_s)]E ϵ ZQ, (- {[(k_p, m_q)]E, [(n_r, o_s)]E} = [(a_b, c_d)]E) iff ([(k_p, m_q)]E = + 

{[(n_r, o_s)]E, [(a_b, c_d)]E}). 

Definition 3.1.12. Let [(k_p, m_q)]E, [(n_r, o_s)]E ϵ ZQ be arbitrary, then the operation “÷“ (division) on ZQ is 

defined by: 

for all [(a_b, c_d)]E, [(k_p, m_q)]E, [(n_r, o_s)]E ϵ ZQ, ÷ {[(k_p, m_q]E, [(n_r, o_s)]E} = [(a_b, c_d)]E iff [(k_p, 

m_q)]E = *{[(n_r, o_s)]E, [(a_b, c_d)]E}, where [(n.r, o.s)]E ≠ 0_0. 

 Definition 3.1.13. The relation “<” (stict order) on ZQ is defined by: 

for all [(k_p, m_q)]E, [(n_r, o_s)]E ϵ ZQ, < {[(k_p, m_q)]E, [(n_r, o_s)]E} iff there exists [(a_b, c_d)]E ϵ ZQ
+ 

such that +{{[(k_p, m_q)]E, [(a_b, c_d)]E} = [(n_r, o_s)]E. 

Definition 3.1.14. The operation “| |“ (absolute value) on ZQ is defined by: 

for all [(k_p, m_q)]E, [(n_r, o_s)]E ϵ ZQ, |[(k_p, m_q)]E| = [(k_p, m_q)]E, if 0_0 ≤ [(k_p, m_q)]E; 

                                             = - [(k_p, m_q)]E = [(m_q, k_p)]E, otherwise. 

 Definition 3.1.15. For all a_b ϵ ZQ, k ϵ N, [(a_b)0 = 1_0] ˄ [(a_b)1 = a_b] ˄ [(a_b)k + 1 = (a_b)k * a_b]. 

  

3.2. Arguments. We demonstrate our arguments using the standard methods and terminology of mathematical 

logic and ZFC/AFA or generalizations thereof. Specific to the current work, we generalize the Principle of Induction to the 

Principle of Q-Induction and we utilize results from reference [HJ] and [CD].  

Theorem 3.2.01. The set ZQ
’ of Definition 3.1.01 exists. 

Proof. By Theorem 2.2.05, NQ exists, hence, by the Axiom of Power Set, the definition of ordered pair, and the 

definition of Cartesian product, NQ x NQ = ZQ
’ exists, as desired. □ 

Theorem 3.2.02. The relation E on ZQ, from Definition 3.1.02, is an equivalence relation. 

Proof. The proof is in three parts: 

1) Reflexivity. Let (a_b, c_d) ϵ ZQ’ be arbitrary, then, by Theorem 2.2.11, a_b + c_d = c_d + a_b, hence, by Definition 

3.1.02, (a_b, c_d) E (a_b, c_d). 

2) Symmetry. Let (k_p, m_q), (n_r, o_s) ϵ ZQ’ be arbitrary but such that (k_p, m_q) E (n_r, o_s), then, by Definition 

3.1.02, k_p + o_s = m_q + n_r and, by Theorem 2.2.11, n_r + m_q = o_s + k_p, hence, by Definition 3.1.02 again, 

(n_r, o_s) E (k_p, m_q).  

3) Transitivity. Let (k_p, m_q), (n_r, o_s), (v_t, w_u) ϵ ZQ’ be arbitrary but such that [(k_p, m_q) E (n_r, o_s)] ˄ [(n_r, 

o_s) E (v_t, w_u)], then, by Definition 3.1.02, (k_p + o_s = m_q + n_r) ˄ (n_r + w_u = o_s + v_t). By Theorem 
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2.2.33 and 2.2.38, k_p = (m_q + n_r) - o_s ϵ NQ and w_u = (o_s + v_t) - n_r ϵ NQ and, by Theorem 2.2.13 and 

2.2.35: 

k_p + w_u = [(m_q + n_r) - o_s] + [(o_s + v_t) - n_r]; 

      = {[(m_q + n_r) - o_s] + o_s} + v_t - n_r; 

      = (m_q + n_r) + v_t - n_r; 

      = m_q + (n_r + v_t) - n_r; 

      = m_q + (v_t + n_r) - n_r; 

      = m_q + v_t. 

 Hence, (k_p, m_q) E (v_t, w_u) and E is transitive. 

Therefore, E is an equivalence relation on ZQ’, as desired. □ 

 Theorem 3.2.03. For all k_p, m_q, n_r ϵ NQ, (k_p, m_q) E [(k_p + n_r), (m_q + n_r)]. 

 Proof. By Theorem 2.2.11 and 2.2.13: 

  k_p + (m_q + n_r) = (k_p + m_q) + n_r; 

        = (m_q + k_p) + n_r; 

        = m_q + (k_p + n_r). 

Therefore, by Definition 3.1.02, (k_p, m_q) E [(k_p + n_r), (m_q + n_r)], as desired. □ 

 Theorem 3.2.04. Addition on ZQ
’, as defined by Definition 3.1.03, is well-defined relative to the relation E of 

Definition 3.2.02. 

 Proof. Let (a_b, c_d), (e_f, g_h), (k_p, m_q), (n_r, o_s) ϵ ZQ’ be arbitrary but such that [(a_b, c_d) E (e_f, g_h)] ˄ 

[(k_p, m_q) E (n_r, o_s)], then, by Definition 3.1.02, [(a_b + g_h) = (c_d + e_f)] ˄ [(k_p + o_s) = (m_q + n_r)]. Then, by 

Definition 3.1.03, {(a_b, c_d) + (k_p, m_q) = [(a_b + k_p), (c_d + m_q)]} ˄ {(e_f, g_h) + (n_r, o_s) = [(e_f + n_r), (g_h + 

o_s)]} and, by Theorem 2.2.11 and 2.2.13: 

 (a_b + k_p) + (g_h + o_s) = [(a_b + k_p) + g_h] + o_s; 

      = [a_b + (k_p + g_h)] + o_s; 

      = [a_b + (g_h + k_p)] + o_s; 

      = [(a_b + g_h) + k_p] + o_s; 

      = (a_b + g_h) + (k_p + o_s); 

      = (c_d + e_f) + (m_q + n_r); 

      = [(c_d + e_f) + m_q] + n_r; 

      = [c_d + (e_f + m_q)] + n_r; 

      = [c_d + (m_q + e_f)] + n_r; 

      = [(c_d + m_q) + e_f] + n_r; 

      = (c_d + m_q) + (e_f + n_r). 

Therefore, by Definition 3.1.02, addition is well-defined relative to E, as desired. □ 
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 Theorem 3.2.05. Multiplication on ZQ

’, as defined by Definition 3.1.04, is well-defined relative to the relation E of 

Definition 3.2.02. 

 Proof. Let (a_b, c_d), (e_f, g_h), (k_p, m_q), (n_r, o_s) ϵ ZQ’ be arbitrary but such that [(a_b, c_d) E (e_f, g_h)] ˄ 

[(k_p, m_q) E (n_r, o_s)], then, by Definition 3.1.02, [(a_b + g_h) = (c_d + e_f)] ˄ [(k_p + o_s) = (m_q + n_r)]. Then, by 

Definition 3.2.04, {(a_b, c_d) * (k_p, m_q) = [(a_b * k_p + c_d * m_q), (a_b * m_q + c_d * k_p)]} ˄ {(e_f, g_h) * (n_r, o_s) 

= [(e_f * n_r + g_h * o_s), (e_f * o_s + g_h * n_r)]} and, letting A = (a_b * k_p + c_d * m_q) + (e_f * o_s + g_h * n_r) and B 

= (g_h * k_p + e_f * m_q + e_f * k_p + g_h * m_q), by Definition 2.1.16 and Theorem 2.2.11, 2.2.13, 2.2.15, and 2.2.16:  

A = (A + B) – B; 

   = {[(a_b * k_p + c_d * m_q) + (e_f * o_s + g_h * n_r)] + (g_h * k_p + e_f * m_q + e_f * k_p + g_h * m_q)} - B;  

   = {[a_b * k_p + (c_d * m_q + e_f * o_s + g_h * n_r) + g_h * k_p] + (e_f * m_q + e_f * k_p + g_h * m_q)} - B;  

   = {[a_b * k_p + g_h * k_p + (c_d * m_q + e_f * o_s + g_h * n_r)] + (e_f * m_q + e_f * k_p + g_h * m_q)} - B;  

   = {[(a_b * k_p + g_h * k_p) + c_d * m_q + (e_f * o_s + g_h * n_r) + e_f * m_q] + (e_f * k_p + g_h * m_q)} - B;  

   = {[(a_b * k_p + g_h * k_p) + c_d * m_q + e_f * m_q + (e_f * o_s + g_h * n_r)] + (e_f * k_p + g_h * m_q)} - B; 

   = {(a_b * k_p + g_h * k_p) + (c_d * m_q + e_f * m_q) + (e_f * o_s + (g_h * n_r + e_f * k_p) + g_h * m_q)} - B; 

   = {(a_b * k_p + g_h * k_p) + (c_d * m_q + e_f * m_q) + (e_f * o_s + (e_f * k_p + g_h * n_r) + g_h * m_q)} - B; 

   = {(a_b * k_p + g_h * k_p) + (c_d * m_q + e_f * m_q) + (e_f * o_s + e_f * k_p) + (g_h * n_r + g_h * m_q)} - B; 

   = {(a_b * k_p + g_h * k_p) + (c_d * m_q + e_f * m_q) + (e_f * k_p + e_f * o_s) + (g_h * m_q + g_h * n_r)} - B; 

   = {(a_b + g_h) * k_p + (c_d + e_f) * m_q + e_f * (k_p + o_s) + g_h * (m_q + n_r)} - B; 

   = {(c_d + e_f) * k_p + (a_b + g_h) * m_q + e_f *(m_q + n_r) + g_h * (k_p + o_s)} - B; 

   = {(c_d * k_p + e_f * k_p) + (a_b * m_q + g_h * m_q) + (e_f *m_q + e_f * n_r) + (g_h * k_p + g_h * o_s)} - B; 

   = {c_d * k_p + (e_f * k_p + a_b * m_q) + g_h * m_q + (e_f * n_r + e_f *m_q) + (g_h * o_s + g_h * k_p)} - B; 

   = {(c_d * k_p + a_b * m_q) + e_f * k_p + (g_h * m_q + e_f * n_r) + (e_f *m_q + g_h * o_s) + g_h * k_p} - B; 

   = {(a_b * m_q + c_d * k_p) + (e_f * n_r + g_h * m_q) + e_f * k_p + (g_h * o_s + e_f *m_q) + g_h * k_p} - B; 

   = {(a_b * m_q + c_d * k_p + e_f * n_r) + (g_h * m_q + e_f * k_p) + g_h * o_s + (e_f *m_q + g_h * k_p)} - B; 

   = {(a_b * m_q + c_d * k_p + e_f * n_r + g_h * o_s) + (e_f * k_p + g_h * m_q) + (g_h * k_p + e_f *m_q)} - B; 

   = {(a_b * m_q + c_d * k_p + e_f * n_r + g_h * o_s) + (g_h * k_p + e_f *m_q) + (e_f * k_p + g_h * m_q)} - B; 

   = (a_b * m_q + c_d * k_p) + (e_f * n_r + g_h * o_s). 

Therefore, by Definition 3.1.02, multiplication is well-defined relative to E, as desired. □ 

 Theorem 3.2.06. The set of all q-integers, ZQ, is closed under the arithmetical operations “+“ (addition) and “*“ 

(multiplication).  

 Proof. This is an immediate consequence of Definition 3.1.01, 3.1.05 and 3.1.06 and Theorem 2.2.10, as desired. 

□ 

 Theorem 3.2.07. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ ZQ, [(a_b, c_d)]E + [(e_f, g_h)]E = [(e_f, g_h)]E + [(a_b, c_d)]E. 
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 Proof. By Definition 3.1.06 and Theorem 2.2.11: 

  [(a_b, c_d)]E + [(e_f, g_h)]E = [(a_b + e_f), (c_d + g_h)]E; 

           = [(e_f + a_b), (g_h + c_d)]E; 

          = [(e_f, g_h)]E + [(a_b, c_d)]E. 

Therefore, addition on ZQ is commutative, as desired. □ 

 Theorem 3.2.08. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ ZQ, [(a_b, c_d)]E * [(e_f, g_h)]E = [(e_f, g_h)]E * [(a_b, c_d)]E.  

 Proof. By Definition 3.1.06 and Theorem 2.2.11 and 2.2.12: 

  [(a_b, c_d)]E * [(e_f, g_h)]E = [(a_b * e_f + c_d * g_h), (a_b * g_h + c_d * e_f)]E; 

              = [(e_f * a_b + g_h * c_d), (g_h * a_b + e_f * c_d)]E; 

          = [(e_f * a_b + g_h * c_d), (e_f * c_d + g_h * a_b)]E; 

          = [(e_f, g_h)]E * [(a_b, c_d)]E.  

Therefore, multiplication on ZQ is commutative, as desired. □ 

 Theorem 3.2.09. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ ZQ, {[(a_b, c_d)]E + [(e_f, g_h)]E} + [(k_l, m_n)]E = 

[(a_b, c_d)]E + {[(e_f, g_h)]E + [(k_l, m_n)]E}. 

 Proof. By Definition 3.1.06 and Theorem 2.2.11: 

  {[(a_b, c_d)]E + [(e_f, g_h)]E} + [(k_l, m_n)]E = [{(a_b + e_f), (c_d + g_h)}]E + [(k_l, m_n)]E; 

            = [{[(a_b + e_f) + k_l], [(c_d + g_h) + m_n]}]E; 

            = [{[a_b + (e_f + k_l)], [c_d + (g_h + m_n)]}]E; 

            = [(a_b, c_d)]E + [{(e_f + k_l), (g_h + m_n)}]E; 

            = [(a_b, c_d)]E + {[(e_f, g_h)]E + [(k_l, m_n)]E}. 

Therefore, addition on ZQ is associative, as desired. □ 

 Theorem 3.2.10. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ ZQ, {[(a_b, c_d)]E * [(e_f, g_h)]E} * [(k_l, m_n)]E = 

[(a_b, c_d)]E * {[(e_f, g_h)]E * [(k_l, m_n)]E}. 

 Proof. Letting A = {[(a_b, c_d)]E * [(e_f, g_h)]E} * [(k_l, m_n)]E, by Definition 3.1.06 and Theorem 2.2.11, 2.2.12, 

2.2.15, and 2.2.16: 

A = [(a_b * e_f + c_d * g_h), (a_b * g_h + c_d * e_f)]E * [(k_l, m_n)]E; 

= [{[(a_b * e_f + c_d * g_h) * k_l + (a_b * g_h + c_d * e_f) * m_n], [(a_b * e_f + c_d * g_h) * m_n + (a_b * g_h + c_d *                      

e_f) * k_l]}]E; 

= [{(a_b * e_f * k_l + [(c_d * g_h * k_l) + (a_b * g_h * m_n + c_d * e_f * m_n)]), [(a_b * e_f * m_n + c_d * g_h * m_n) + 

(a_b * g_h * k_l + c_d * e_f * k_l)]}]E;  

= [{(a_b * e_f * k_l + a_b * g_h * m_n + c_d * e_f * m_n + c_d * g_h * k_l), [c_d * g_h * m_n + (a_b * e_f * m_n + c_d * 

e_f * k_l) + a_b * g_h * k_l)]}]E;  
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= [{(a_b * e_f * k_l + a_b * g_h * m_n + c_d * e_f * m_n + c_d * g_h * k_l), (c_d * e_f * k_l + c_d * g_h * m_n + a_b * 

e_f * m_n + a_b * g_h * k_l)}]E; 

= [{[a_b * (e_f * k_l + g_h * m_n) + c_d * (e_f * m_n + g_h * k_l)], [c_d * (e_f * k_l + g_h * m_n) + a_b * (e_f * m_n + 

g_h * k_l)]}]E; 

   = [(a_b, c_d)]E * [{(e_f * k_l + g_h * m_n), (e_f * m_n + g_h * k_l)}]E; 

   = [(a_b, c_d)]E * {[(e_f, g_h)]E * [(k_l, m_n)]E}. 

Therefore, multiplication on ZQ is associative, as desired. □ 

 Theorem 3.2.11. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ ZQ, [(a_b, c_d)]E * {[(e_f, g_h)]E} + [(k_l, m_n)]E} 

= [(a_b, c_d)]E * [(e_f, g_h)]E + [(a_b, c_d)]E * [(k_l, m_n)]E. 

 Proof. Letting A = [(a_b, c_d)]E * {[(e_f, g_h)]E} + [(k_l, m_n)]E}, by Definition 3.1.06 and Theorem 2.2.11 and 

2.2.15: 

A = [(a_b, c_d)]E * [{(e_f + k_l), (g_h + m_n)}]E; 

    = [{[a_b * (e_f + k_l) + c_d * (g_h + m_n)], [a_b * (g_h + m_n) + c_d * (e_f + k_l)]}]E; 

    = [(a_b * e_f + a_b * k_l + c_d * g_h + c_d * m_n), (a_b * g_h + a_b * m_n + c_d * e_f + c_d * k_l)]E;  

    = [{[(a_b * e_f + c_d * g_h) + (a_b * k_l + c_d * m_n)], [(a_b * g_h + c_d * e_f) + (a_b * m_n + c_d * k_l)]}]E;  

    = [(a_b * e_f + c_d * g_h), (a_b * g_h + c_d * e_f)]E + [(a_b * k_l + c_d * m_n), (a_b * m_n + c_d * k_l)]E;  

    = [(a_b, c_d)]E * [(e_f, g_h)]E + [(a_b, c_d)]E * [(k_l, m_n)]E. 

Therefore, multiplication is left distributive over addition on ZQ, as desired. □ 

 Theorem 3.2.12. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ ZQ, {[(e_f, g_h)]E} + [(k_l, m_n)]E} * [(a_b, c_d)]E 

= [(e_f, g_h)]E * [(a_b, c_d)]E + [(k_l, m_n)]E * [(a_b, c_d)]E. 

 Proof. Letting A = {[(e_f, g_h)]E} + [(k_l, m_n)]E} * [(a_b, c_d)]E, by Definition 3.1.06 and Theorem 2.2.11 and 

2.2.16: 

A = [{(e_f + k_l), (g_h + m_n)}]E * [(a_b, c_d)]E; 

    = [{[(e_f + k_l) * a_b + (g_h + m_n) * c_d], [(g_h + m_n) * a_b + (e_f + k_l) * c_d]}]E; 

= [{(e_f * a_b + (k_l * a_b + g_h * c_d) + m_n * c_d), (g_h * a_b + m_n * a_b + e_f * c_d + k_l * c_d)}]E; 

 = [{(e_f * a_b + (g_h * c_d + k_l * a_b) + m_n * c_d), (e_f * c_d + (k_l * c_d  + g_h * a_b) + m_n * a_b)}]E; 

= [{(e_f * a_b + g_h * c_d + k_l * a_b + m_n * c_d), (e_f * c_d + g_h * a_b + k_l * c_d + m_n * a_b}}]E; 

    = [{[(e_f * a_b + g_h * c_d) + (k_l * a_b + m_n * c_d)], [(e_f * c_d + g_h * a_b) + (k_l * c_d + m_n * a_b)]}]E;  

    = [{(e_f * a_b + g_h * c_d), (e_f * c_d + g_h * a_b)}]E + [{(k_l * a_b + m_n * c_d), (k_l * c_d + m_n * a_b)}]E;  

    = [(e_f, g_h)]E * [(a_b, c_d)]E + [(k_l, m_n)]E * [(a_b, c_d)]E. 

Therefore, multiplication is right distributive over addition, as desired. □ 

 Theorem 3.2.13. For all [(c_d, e_f)]E ϵ ZQ, [(c_d, e_f)]E + [(a_b, a_b)]E = [(c_d, e_f)]E. 
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 Proof. This is an immediate consequence of Definition 3.1.01, 3.1.05, 3.1.06 and 3.1.07 and Theorem 3.2.03, 

hence, the zero q-integer, 0_0, is an additive identity for ZQ, as desired. □ 

 Corollary 3.2.14. For all [(c_d, e_f)]E, [(v_w, x_y)]E ϵ ZQ, {[(c_d, e_f)]E + [(v_w, x_y)]E = [(c_d, e_f)]E} → {[(v_w, 

x_y)]E = [(a_b, a_b)]E}. 

 Proof. Suppose [(c_d, e_f)]E + [(v_w, x_y)]E = [(c_d, e_f)]E, then, by Definition 3.1.01, 3.1.05, and 3.1.06, (c_d, e_f) 

E {(c_d + v_w), (e_f + x_y)} and, by Definition 3.1.02, c_d + (e_f + x_y) = e_f + (c_d + v_w). But then, by Theorem 2.2.11 

and 2.2.13, (c_d + e_f) + x_y = (c_d + e_f) + v_w and, by Corollary 2.2.20, x_y = v_w. Therefore, the additivie identity for 

ZQ, is unique, as desired. □ 

 Theorem 3.2.15. For all [(c_d, e_f)]E ϵ ZQ, [(c_d, e_f)]E * [(a_b, a_b)]E = [(a_b, a_b)]E. 

 Proof. By Definition 3.1.06: 

  [(c_d, e_f)]E * [(a_b, a_b)]E = [{(c_d * a_b + e_f * a_b), (c_d * a_b + e_f * a_b)}]E; 

          = [(a_b, a_b)]E. 

Therefore, [(c_d, e_f)]E * [(a_b, a_b)]E = [(a_b, a_b)]E, as desired. □ 

 Theorem 3.2.16. For all [(a_b, c_d)]E ϵ ZQ, [(a_b, c_d)]E * [{(m_q + 1_0), m_q}]E = [(a_b, c_d)]E. 

 Proof. By Theorem 2.2.11 and 2.2.13, for all a_b, c_d, m_q ϵ NQ: 

 (a_b * m_q + a_b + c_d * m_q) + c_d = (a_b * m_q + c_d * m_q + a_b) + c_d; 

              = a_b * m_q + c_d * m_q + (a_b + c_d); 

              = a_b * m_q + c_d * m_q + (c_d + a_b); 

              = (a_b * m_q + c_d * m_q + c_d) + a_b. 

By Definition 3.1.06 and Theorem 2.2.15 and 2.2.18: 

 [(a_b, c_d)]E * [{(m_q + 1_0), m_q}]E = [{[a_b * (m_q + 1_0) + c_d * m_q], [a_b * m_q + c_d * (m_q + 1_0)]}]E; 

             = [(a_b * m_q + a_b + c_d * m_q), (a_b * m_q + c_d * m_q + c_d)]E. 

Hence, by Definition 3.1.02, [(a_b * m_q + a_b + c_d * m_q), (a_b * m_q + c_d * m_q + c_d)]E = [(a_b, c_d)]E. 

Therefore, the unity q-integer, 1_0, is a multiplicative identity for ZQ, as desired. □ 

 Corollary 3.2.17. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ ZQ, {[(a_b, c_d)]E * [(e_f, g_h)]E = [(a_b, c_d)]E} → {[(e_f, 

g_h)]E = [{(m_q + 1_0), m_q}]E}. 

 Proof. Suppose [(a_b, c_d)]E * [(e_f, g_h)]E = [(a_b, c_d)]E and suppose, for contradiction, that e_f ≠ (g_h + 1_0), 

then, by Definition 3.1.02 and 3.1.06, a_b * e_f + c_d * g_h + c_d = a_b * g_h + c_d * e_f + a_b and, by Theorem 2.2.11, 

2.2.13, 2.2.15, and 2.2.18: 

a_b * e_f + c_d * g_h + c_d ≠ a_b * (g_h + 1_0) + c_d * g_h + c_d; 

         ≠ a_b * g_h + a_b + c_d * g_h + c_d; 

         ≠ a_b * g_h + [a_b + (c_d * g_h + c_d)]; 

         ≠ a_b * g_h + [(c_d * g_h + c_d) + a_b]; 

                                                 ≠ a_b * g_h + [c_d * (g_h + 1_0) + a_b]; 
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        ≠ a_b * g_h + c_d * e_f + a_b, a contradiction. 

Therefore, the multiplicative identity for ZQ, 1_0, is unique, as desired. □ 

 Theorem 3.2.18. For all [(a_b, c_d)]E ϵ ZQ, [(a_b, c_d)]E + [(c_d, a_b)]E = 0_0.    

 Proof. By Definition 3.1.06 and 3.1.07 and Theorem 2.2.11:         

  [(a_b, c_d)]E + [(c_d, a_b)]E = [{(a_b + c_d), (c_d + a_b)}]E; 

           = [{(a_b + c_d), (a_b + c_d)}]E; 

           = 0_0, as desired. □ 

 Theorem 3.2.19. For all [(a_b, c_d)]E ϵ ZQ, [{m_q, (m_q + 1_0)}]E * [(a_b, c_d)]E = [( c_d, a_b)]E. 

 Proof. Letting A = [{m_q, (m_q + 1_0)}]E * [(a_b, c_d)]E, by Definition 3.1.06 and Theorem 2.2.10, 2.2.11, 2.2.13, 

2.2.16, and 3.2.03: 

  A = [{[m_q * a_b + (m_q + 1_0) * c_d], [m_q * c_d + (m_q + 1_0) * a_b]}]E; 

      = [{(m_q * a_b + m_q * c_d + c_d), (m_q * c_d + m_q  * a_b + a_b)}]E; 

      = [{[(m_q * a_b + m_q * c_d) + c_d], [(m_q * a_b + m_q  * c_d) + a_b]}]E; 

      = [{[c_d  + (m_q * a_b + m_q * c_d)], [a_b  + (m_q * a_b + m_q  * c_d)]}]E; 

      = [( c_d, a_b)]E, as desired. □ 

 Theorem 3.2.20. For all (a_b, c_d) ϵ ZQ
’, {(a_b, c_d) ϵ [(e_f, g_h)]E} → {[(a_b < c_d) iff (e_f < g_h)] ˄ [(a_b = c_d) iff 

(e_f = g_h)] ˄ [(a_b > c_d) iff (e_f > g_h)]}.  

 Proof. Suppose (a_b, c_d) ϵ [(e_f, g_h)]E, then, by Definition 3.1.05, (a_b, c_d) E (e_f, g_h) and, by Definition 

3.1.02, a_b + g_h = e_f + c_d and the proof is in three parts: 

1)  Suppose a_b < c_d, then, by Definition 2.1.12, (a < c) ˅ [(a = c) ˄ (b < d)] and two cases arise: 

Case 1. Suppose a < c, then, by Lemma 2.2.07, there exists x ϵ N such that a + x = c (reference [CD], 

Chapter 4, page 113) and x = c - a. Then, by Definition 2.1.13, a + g = e + c and g = e + (c - a) = e + x, hence, e < g 

and, by Definition 2.1.12, e_f < g_h. 

Case 2. Suppose (a = c) ˄ (b < d), then, by Lemma 2.2.07, there exists x ϵ N such that b + x = d (reference 

[CD], Chapter 4, page 113) and x = d - b. Then, by Definition 2.1.13, (a + g = e + c) ˄ (b + h = f + d), hence, (g = e) ˄ 

[h = f + (d - b) = f + x]. But then, (e = g) ˄ (f < h) and, by Definition 2.1.12, e_f < g_h. 

   In both cases, e_f < g_h. 

  Therefore, (a_b < c_d) → (e_f < g_h). 

 Suppose e_f < g_h, then, by Definition 2.1.12, (e < g) ˅ [(e = g) ˄ (f < h)] and two cases arise: 

Case 1. Suppose e < g, then, by Lemma 2.2.07, there exists x ϵ N such that e + x = g (reference [CD], 

Chapter 4, page 113) and x = g - e. Then, by Definition 2.1.13, a + g = e + c and c = a + (g - e) = a + x, hence, a < c 

and, by Definition 2.1.12, a_b < c_d. 

Case 2. Suppose (e = g) ˄ (f < h), then, by Lemma 2.2.07, there exists x ϵ N such that f + x = h (reference 

[CD], Chapter 4, page 113) and x = h - f. Then, by Definition 2.1.13, (a + g = e + c) ˄ (b + h = f + d), hence, (a = c) ˄ 

[d = b + (h - f) = b + x]. But then, (a = c) ˄ (b < d) and, by Definition 2.1.12, a_b < c_d. 
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   In both cases, a_b < c_d. 

  Therefore, (e_f < g_h) → (a_b < c_d). 

Therefore, (a_b < c_d) iff (e_f < g_h). 

2)  Suppose a_b = c_d, then a_b + g_h = a_b + e_f and, by Theorem 2.2.20, e_f = g_h, hence, (a_b = c_d) → (e_f 

= g_h). Suppose e_f = g_h, then a_b + e_f = c_d + e_f and, by Theorem 2.2.20, a_b = c_d, hence,                 

(e_f = g_h) → (a_b = c_d). Therefore, (a_b = c_d) iff (e_f = g_h). 

3)  Suppose c_d < a_b, then, by Definition 2.1.12, (c < a) ˅ [(c  = a) ˄ (d < b)] and two cases arise: 

Case 1. Suppose c < a, then, by Lemma 2.2.07, there exists x ϵ N such that c + x = a (reference [CD], 

Chapter 4, page 113) and x = a - c. Then, by Definition 2.1.13, a + g = e + c and e = g + (a - c) = g + x, hence, g < e 

and, by Definition 2.1.12, g_h < e_f. 

Case 2. Suppose (c = a) ˄ (d < b), then, by Lemma 2.2.07, there exists x ϵ N such that d + x = b (reference 

[CD], Chapter 4, page 113) and x = b - d. Then, by Definition 2.1.13, (a + g = e + c) ˄ (b + h = f + d), hence, (e = g) ˄ 

[f = h + (b - d) = h + x]. But then, (g = e) ˄ (h < f) and, by Definition 2.1.12, g_h < e_f. 

   In both cases, g_h < e_f. 

  Therefore, (c_d < a_b) → (g_h < e_f). 

 Suppose g_h < e_f, then, by Definition 2.1.12, (g < e) ˅ [(g = e) ˄ (h < f)] and two cases arise: 

Case 1. Suppose g < e, then, by Lemma 2.2.07, there exists x ϵ N such that g + x = e (reference [CD], 

Chapter 4, page 113) and x = e - g. Then, by Definition 2.1.13, a + g = e + c and a = c + (e - g) = c + x, hence, c < a 

and, by Definition 2.1.12, c_d < a_b. 

Case 2. Suppose (g = e) ˄ (h < f), then, by Lemma 2.2.07, there exists x ϵ N such that h + x = f (reference 

[CD], Chapter 4, page 113) and x = f - h. Then, by Definition 2.1.13, (a + g = e + c) ˄ (b + h = f + d), hence, (c = a) ˄ 

[b = d + (f - h) = d + x]. But then, (c = a) ˄ (d < b) and, by Definition 2.1.12, c_d < a_b. 

   In both cases, c_d < a_b. 

  Therefore, (g_h < e_f) → (c_d < a_b). 

Therefore, (c_d < a_b) iff (g_h < e_f). 

Therefore, {(a_b, c_d) ϵ [(e_f, g_h)]E} → {[(a_b < c_d) iff (e_f < g_h)] ˄ [(a_b = c_d) iff (e_f = g_h)] ˄ [(a_b > c_d) iff (e_f > 

g_h)]}, as desired. □ 

 Lemma 3.2.21. Let K = {[(a_b, c_d)]E │([(a_b, c_d)]E ϵ ZQ
+) ˄ (d ≤ b)}, then, for all [(a_b, c_d)]E ϵ K, there exists a 

unique x_y ϵ NQ such that, for any m_q ϵ NQ, [(a_b, c_d)]E = [{(m_q +  x_y), m_q}]E. 

 Proof. By Definition 2.1.12 and 3.1.08, there are three cases to consider: 

 Case 1. Suppose (c < a) ˄ (d < b), then, by Lemma 2.2.07, there exists x,y ϵ N such that (c + x = a) ˄ (d + y = b) 

(reference [CD], Chapter 4, page 113), hence, by Definition 2.1.13, a_b = c_d + x_y. Then, by Theorem 2.2.11 and 2.2.13 

and Corollary 2.2.20: 

  a_b + m_q = (c_d + x_y) + m_q; 

        = c_d + (x_y + m_q); 

        = c_d + (m_q  + x_y). 
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 Hence, by Definition 3.1.02, (a_b, c_d) E [(m_q + x_y), m_q]. 

 Case 2. Suppose (c < a) ˄ (d = b), then, by Lemma 2.2.07, there exists x ϵ N such that (c + x = a) ˄ (d + 0 = b) 

(reference [CD], Chapter 4, page 113), hence, by Definition 2.1.13, a_b = c_d + x_0. Then, by Theorem 2.2.11 and 2.2.13 

and Corollary 2.2.20: 

  a_b + m_q = (c_d + x_0) + m_q; 

        = c_d + (x_0 + m_q); 

        = c_d + (m_q  + x_0). 

 Hence, by Definition 3.1.02, (a_b, c_d) E [(m_q + x_0), m_q]. 

 Case 3. Suppose (c = a) ˄ (d < b), then, by Lemma 2.2.07, there exists y ϵ N such that (c + 0 = a) ˄ (d + y = b) 

(reference [CD], Chapter 4, page 113), hence, by Definition 2.1.13, a_b = c_d + 0_y. Then, by Theorem 2.2.11 and 2.2.13 

and Corollary 2.2.20: 

  a_b + m_q = (c_d + 0_y) + m_q; 

        = c_d + (0_y + m_q); 

        = c_d + (m_q  + 0_y). 

 Hence, by Definition 3.1.02, (a_b, c_d) E [(m_q + 0_y), m_q]. 

 In all three cases, there exists an x_y ϵ NQ, such that (a_b, c_d) E [(m_q + x_y), m_q]. 

Let s_t ϵ NQ be such that (a_b, c_d) E [(m_q + s_t), m_q], then, by Theorem 3.2.02, [(m_q + s_t), m_q] E [(m_q + x_y), 

m_q] and, by Theorem 2.2.11 and 2.2.13: 

  (m_q + s_t) + m_q = m_q + (m_q + s_t); 

         = (m_q + m_q) + s_t; 

         = m_q + (m_q + x_y); 

         = (m_q + m_q) + x_y. 

Hence, by Corollary 2.2.20, s_t = x_y. 

Therefore, for all [(a_b, c_d)]E ϵ K, there exists a unique x_y ϵ NQ such that, for any m_q ϵ NQ, [(a_b, c_d)]E = [{(m_q +  

x_y), m_q}]E, as desired. □ 

 Theorem 3.2.22. (K U {0_0}, <, +, *) is ring isomorphic to (NQ, <, +, *). 

 Proof. By Lemma 3.2.21, every [(a_b, c_d)]E ϵ K can be represented by [{(m_q +  x_y), m_q}]E, where m_q ϵ NQ is 

arbitrary and x_y is unique. Then there is an obvious isomorphism, f:[K U {0_0}] → NQ, defined by [f(0_0) = 0_0] ˄ 

{[f([(a_b, c_d)]E) = x_y] iff ([(a_b, c_d)]E = [{(m_q +  x_y), m_q}]E)}. Let [(a_b, c_d)]E , [(e_f, g_h)]E ϵ K be arbitrary, then 

there exists unique v_w, x_y ϵ NQ such that, for any k_p, m_q ϵ NQ, [(a_b, c_d)]E = [{(k_p +  v_w), k_p}]E and [(e_f, g_h)]E = 

[{(m_q +  x_y), m_q}]E. Then: 

 Addition. By Definition 3.1.06 and Theorem 2.2.11 and 2.2.13: 

  f([{(k_p + v_w), k_p}]E + [{(m_q + x_y), m_q}]E) = f([{[(k_p + v_w) + (m_q + x_y)], (k_p + m_q)}]E); 

                  = f([{[(k_p + m_q) + (v_w + x_y)], (k_p + m_q)}]E); 
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                  = (v_w + x_y); 

                  = f([{(k_p + v_w), k_p}]E) + f([{(m_q + x_y), m_q}]E). 

 By Theorem 2.2.08 and 3.2.13, this result extends to K U {0_0}. 

 Multiplication. Letting A = f([{(k_p + v_w), k_p}]E * [{(m_q + x_y), m_q}]E), by Definition 3.1.06 and Theorem 

2.2.11, 2.2.13, 2.2.15, and 2.2.16 and Corollary 2.2.17: 

A = f([{[{(k_p + v_w) * (m_q + x_y)} + (k_p * m_q)], [{(k_p + v_w) * m_q} + {k_p * (m_q + x_y)}]}]E); 

= f([{(k_p * m_q + [k_p * x_y + v_w * m_q] + [v_w * x_y + k_p * m_q]), (k_p * m_q + v_w * m_q + k_p * m_q + k_p * 

x_y)}]E); 

= f([{(k_p * m_q + v_w * m_q + [k_p * x_y + k_p * m_q] + v_w * x_y), (k_p * m_q + v_w * m_q + k_p * m_q + k_p * 

x_y)}]E); 

= f([{[(k_p * m_q + v_w * m_q + k_p * m_q + k_p * x_y) + v_w * x_y], (k_p * m_q + v_w * m_q + k_p * m_q + k_p * 

x_y)}]E);  

    = (v_w * x_y); 

    = f([{(k_p + v_w), k_p}]E) * f([{(m_q + x_y), m_q}]E). 

 By Theorem 2.2.09 and 3.2.15, this result extends to K U {0_0}.    

Therefore, (K U {0_0}, <, +, *) is ring isomorphic to (NQ, <, +, *), as desired. □ 

 Corollary 3.2.23. Let L = {[(a_b, c_d)]E │([(a_b, c_d)]E ϵ ZQ
-) ˄ (b ≤ d)}, then, for all [(a_b, c_d)]E ϵ L, there exists a 

unique x_y ϵ NQ such that, for any m_q ϵ NQ, [(a_b, c_d)]E = [{m_q, (m_q +  x_y)}]E. 

 Proof. By Definition 3.1.10, for every [(a_b, c_d)]E ϵ ZQ
-, [(c_d, a_b)]E ϵ ZQ

+ and, by Lemma 3.2.21, [(c_d, a_b)]E = 

[{(m_q +  x_y), m_q}]E for unique x_y ϵ NQ and arbitrary m_q ϵ NQ. Then, by substitution, [(a_b, c_d)]E = [{m_q, (m_q +  

x_y)}]E  ϵ ZQ
- and, by definition, ZQ

- properly contains L, as desired. □ 

 Lemma 3.2.24. Let M = {[(a_b, c_d)]E │([(a_b, c_d)]E ϵ ZQ
+) ˄ (b < d)}, then, for all [(a_b, c_d)]E ϵ K, there exists a 

unique x_y ϵ NQ such that, for any m_q ϵ NQ, [(a_b, c_d)]E = [{(m_q +  x_- y), m_q}]E. 

 Proof. By Definition 2.1.12 and 3.1.08, (c < a) ˄ (b < d) and, by Lemma 2.2.07, there exists x, y ϵ N such that (c + x 

= a) ˄ (b + y = d) ˄ (- y = b - d) (reference [CD], Chapters 4 and 5, pages 113, 158 – 165, and 178), hence, by Definition 

2.1.13, a_b = c_d + x_- y. Then, by Lemma 2.2.07, Theorem 2.2.11 and 2.2.13, Corollary 2.2.20, and reference [CD], 

Chapter 5, pages 162 and 164: 

 a_b + m_q = (c_d + x_- y) + m_q; 

       = c_d + (x_- y + m_q); 

       = c_d + (m_q + x_- y). 

Therefore, by Definition 3.1.02, (a_b, c_d) E [(m_q + x_- y), m_q]. 

Let s_t ϵ NQ be such that (a_b, c_d) E [(m_q + s_- t), m_q], then, by Theorem 3.2.02, [(m_q + s_- t), m_q] E [(m_q + x_- y), 

m_q] and, by Theorem 2.2.11 and 2.2.13: 

  (m_q + s_- t) + m_q = m_q + (m_q + s_- t); 

           = (m_q + m_q) + s_- t; 
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           = m_q + (m_q + x_- y); 

           = (m_q + m_q) + x_- y. 

Hence, by Corollary 2.2.20, s_- t = x_- y. 

Therefore, for all [(a_b, c_d)]E ϵ K, there exists a unique x_y ϵ NQ such that, for any m_q ϵ NQ, [(a_b, c_d)]E = [{(m_q +  x_- 

y), m_q}]E, as desired. □ 

 Corollary 3.2.25. Let O = {[(a_b, c_d)]E │([(a_b, c_d)]E ϵ ZQ
-) ˄ (d < b)}, then, for all [(a_b, c_d)]E ϵ O, there exists a 

unique x_y ϵ NQ such that, for any m_q ϵ NQ, [(a_b, c_d)]E = [{m_q, (m_q +  x_- y)}]E. 

 Proof. By Definition 3.1.10, for every [(a_b, c_d)]E ϵ ZQ
-, [(c_d, a_b)]E ϵ ZQ

+ and, by Lemma 3.2.24, [(c_d, a_b)]E = 

[{(m_q +  x_- y), m_q}]E for unique x_y ϵ NQ and arbitrary m_q ϵ NQ. Then, by substitution, [(a_b, c_d)]E = [{m_q, (m_q +  

x_- y)}]E  ϵ ZQ
- and, by definition, ZQ

- properly contains O, as desired. □ 

 Theorem 3.2.26. (x_y ϵ ZQ) → [(x_- y ϵ ZQ) ˄ (- x_y ϵ ZQ) ˄ (- x_- y ϵ ZQ)]. 

 Proof. This is an immediate consequence of Lemma 3.2.21 and 3.2.24 and Corollary 3.2.23 and 3.2.25, as 

desired. □ 

 Corollary 3.2.27. For all a_b ϵ ZQ, a,b ϵ Z. 

 Proof. By Definition 3.1.01 and 3.1.05, Lemma 2.2.07, and reference [CD], Chapter 5, as desired. □ 

 Lemma 3.2.28. For all a_b, c_d ϵ ZQ, a_b * c_d = (a * c)_(b * c + a * d + b * d).  

 Proof. By Theorem 3.2.22, multiplication defined on ZQ is consistent with multiplication defined on NQ, hence, by 

Definition 2.1.14, Lemma 3.2.21 and 3.2.24, and Corollary 3.2.23 and 3.2.25, a_b * c_d = (a * c)_(b * c + a * d + b * d), as 

desired. □ 

 Theorem 3.2.29. Partition ZQ in the following manner: 

1. A = {a_b | (a_b ϵ ZQ) ˄ (a < 0) ˄ (b < 0)}; 

2. B = {a_b | (a_b ϵ ZQ) ˄ (a < 0) ˄ (0 ≤ b)}; 

3. C = {a_b | (a_b ϵ ZQ) ˄ (a = 0) ˄ (b < 0)}; 

4. D = {a_b | (a_b ϵ ZQ) ˄ (a = 0) ˄ (0 ≤ b)}; 

5. E = {a_b | (a_b ϵ ZQ) ˄ (0 < a) ˄ (b < 0)}; 

6. F = {a_b | (a_b ϵ ZQ) ˄ (0 < a) ˄ (0 ≤ b)}. 

Then we demonstrate the following: 

a. For all a_b, c_d ϵ A, a_b * c_d ϵ F.  

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 < a * c) ˄ [0 < (b * c + a * d + b * d)] and a_b * c_d ϵ F, as desired. □ 

b. For all a_b ϵ A, c_d ϵ B, a_b * c_d ϵ E U F. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 < a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ E U F, as desired. □ 

c. For all a_b ϵ A, c_d ϵ C, a_b * c_d ϵ D. 
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Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [0 < (b * c + a * d + b * d)] and a_b * c_d ϵ D, as desired. □ 

d. For all a_b ϵ A, c_d ϵ D, a_b * c_d ϵ C. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [(b * c + a * d + b * d) < 0] and a_b * c_d ϵ C, as desired. □ 

e. For all a_b ϵ A, c_d ϵ E, a_b * c_d ϵ A U B. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (a * c < 0) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ A U B, as desired. □ 

f. For all a_b ϵ A, c_d ϵ F, a_b * c_d ϵ A. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (a * c < 0) ˄ [(b * c + a * d + b * d) < 0] and a_b * c_d ϵ A, as desired. □ 

g. For all a_b, c_d ϵ B, a_b * c_d ϵ E U F. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 < a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ E U F, as desired. □ 

h. For all a_b ϵ B, c_d ϵ C, a_b * c_d ϵ C U D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ C U D, as desired. □ 

i. For all a_b ϵ B, c_d ϵ D, a_b * c_d ϵ C U D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ C U D, as desired. □ 

j. For all a_b ϵ B, c_d ϵ E, a_b * c_d ϵ A U B. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (a * c < 0) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ A U B, as desired. □ 

k. For all a_b ϵ B, c_d ϵ F, a_b * c_d ϵ A U B. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (a * c < 0) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ A U B, as desired. □ 

l. For all a_b, c_d ϵ C, a_b * c_d ϵ D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [0 < (b * c + a * d + b * d)] and a_b * c_d ϵ D, as desired. □ 

m. For all a_b ϵ C, c_d ϵ D, a_b * c_d ϵ C. 
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Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [(b * c + a * d + b * d) < 0] and a_b * c_d ϵ C, as desired. □ 

n. For all a_b ϵ C, c_d ϵ E, a_b * c_d ϵ C U D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ C U D, as desired. □ 

o. For all a_b ϵ C, c_d ϵ F, a_b * c_d ϵ C. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [(b * c + a * d + b * d) < 0] and a_b * c_d ϵ C, as desired. □ 

p. For all a_b, c_d ϵ D, a_b * c_d ϵ D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [0 < (b * c + a * d + b * d)] and a_b * c_d ϵ D, as desired. □ 

q. For all a_b ϵ D, c_d ϵ E, a_b * c_d ϵ C U D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ C U D, as desired. □ 

r. For all a_b ϵ D, c_d ϵ F, a_b * c_d ϵ D. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 = a * c) ˄ [0 < (b * c + a * d + b * d)] and a_b * c_d ϵ D, as desired. □ 

s. For all a_b, c_d ϵ E, a_b * c_d ϵ E U F. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 < a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ E U F, as desired. □ 

t. For all a_b ϵ E, c_d ϵ F, a_b * c_d ϵ E U F. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 < a * c) ˄ {[(b * c + a * d + b * d) < 0] ˅ [0 < (b * c + a * d + b * d)]} and a_b * 

c_d ϵ E U F, as desired. □ 

u. For all a_b, c_d ϵ F, a_b * c_d ϵ F. 

Proof. By Lemma 3.2.28, a_b * c_d = (a * c)_(b * c + a * d + b * d), hence, by Theorem 3.2.06, Corollary 3.2.27, 

and reference [CD], Chapter 5, (0 < a * c) ˄ [0 < (b * c + a * d + b * d)] and a_b * c_d ϵ F, as desired. □ 

 Lemma 3.2.30. For all a_b, c_d ϵ ZQ, a_b - c_d = a_b + [- (c_d)]. 

 Proof. By Definition 3.1.11 and Theorem 3.2.18, as desired. □ 

 Theorem 3.2.31. ZQ is closed under the operation “-“ (subtraction) of Definition 3.1.11. 

 Proof. By Theorem 3.2.06 and Lemma 3.2.30, as desired. □ 

 Theorem 3.2.32. ZQ is not closed under the operation “÷“ (division) of Definition 3.1.12. 
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 Proof. By Corollary 3.2.27, there exist a_b, c_d ϵ ZQ such that “a” and “c” are both prime and a ≠ c. Suppose, for 

contradiction, that a_b ÷ c_d ϵ ZQ, then, by Definition 3.1.12, there exists x_y ϵ ZQ such that a_b = x_y * c_d and, by 

Lemma 3.2.28, a = x * c. But then [(x = a) ˄ (c = 1)] ˅ [(x = 1) ˄ (c = a)], a contradiction in either case. Therefore, ZQ is not 

closed under division, as desired. □ 

 Corollary 3.2.33. The relation “<” (strict order)on ZQ, as defined by Definition 3.1.13, is well-defined relative to the 

E of Definition 3.1.02. 

 Proof. By Theorem 3.2.20, as desired. □ 

 Lemma 3.2.34. For all a_b, c_d ϵ ZQ, a_b + c_d = (a + c)_(b +d ). 

 Proof. By Theorem 3.2.22, addition defined on ZQ is consistent with addition defined on NQ, hence, by Definition 

2.1.13, Lemma 3.2.21 and 3.2.24, and Corollary 3.2.23 and 3.2.25, a_b + c_d = (a + c)_(b +d ), as desired. □ 

 Theorem 3.2.35. (ZQ, <) is a linearly ordered set. 

 Proof. The proof is in three parts: 

1) Transitivity. Let a_b, c_d, e_f ϵ ZQ be arbitrary but such that a_b < c_d ˄ c_d < e_f. Then, by Definition 3.1.13, 

there exist k_p, m_q ϵ ZQ
+ such that a_b + k_p = c_d ˄ c_d + m_q = e_f, hence, by Theorem 2.2.13, a_b + (k_p 

+ m_q) = e_f and a_b < e_f. 

2) Assymetry. Let k_p, m_q ϵ ZQ be arbitrary and suppose, for contradiction, that k_p < m_q ˄ m_q < k_p, then, 

by transitivity, k_p < k_p, contradicting Definition 3.1.13. 

3) Linearity. Let a_b, c_d ϵ ZQ be arbitrary, then, by Corollary 3.2.27, [(a < c) ˅ (a = c) ˅ (c < a)] ˄ [(b < d) ˅ (b = d) 

˅ (d < b)] (reference [CD], Chapter 5, page 167) and nine cases arise, three of which are redundant, leaving 

six cases to consider: 

 

Case 1. Suppose (a < c) ˄ (b < d), then, by Corollary 3.2.27, there exist x,y ϵ Z+ such that (a + x = c) ˄ (b + y = 

d) (reference [CD], Chapter 5, page 167), hence, by Lemma 3.2.34, a_b + x_y = c_d and, by Definition 3.1.13, 

a_b < c_d. This result reverses in the case (c < a) ˄ (d < b). 

 

Case 2. Suppose (a < c) ˄ (b = d), then, by Corollary 3.2.27, there exist x ϵ Z+ such that (a + x = c) ˄ (b + 0 = d) 

(reference [CD], Chapter 5, pages 163 and 167), hence, by Lemma 3.2.34, a_b + x_0 = c_d and, by Definition 

3.1.13, a_b < c_d. This result reverses in the case (c < a) ˄ (d = b). 

 

Case 3. Suppose (a < c) ˄ (d < b), then, by Corollary 3.2.27, there exist x,y ϵ Z+ such that (a + x = c) ˄ (d + y = 

b) ˄ (d = b - y) (reference [CD], Chapter 5, pages 165 and 167), hence, by Lemma 3.2.34, a_b + x_- y = c_d. By 

Theorem 3.2.26, x_- y ϵ ZQ and, by Definition 3.1.13, a_b < c_d. This result reverses in the case (c < a) ˄ (b < 

d). 

 

Case 4. Suppose (a = c) ˄ (b < d), then, by Corollary 3.2.27, there exist y ϵ Z+ such that (a + 0 = c) ˄ (b + y = d) 

(reference [CD], Chapter 5, pages 163 and 167), hence, by Lemma 3.2.34, a_b + 0_y = c_d and, by Definition 

3.1.13, a_b < c_d.  

 

Case 5. Suppose (a = c) ˄ (b = d), then, a_b = c_d. 

 

Case 6. Suppose (a = c) ˄ (d < b), then, by Corollary 3.2.27, there exist y ϵ Z+ such that (a + 0 = c) ˄ (d + y = b) 

(reference [CD], Chapter 5, pages 163 and 167), hence, by Lemma 3.2.34, c_d + 0_y = a_b and, by Definition 

3.1.13, c_d <  a_b. 
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In  all nine cases, (a_b < c_d) ˅ (a_b = c_d) ˅ (c_d < a_b).  

Therefore, (ZQ, <) is a linearly ordered set, as desired. □ 

 Lemma 3.2.36. For all a_b, c_d ϵ ZQ
+, a_b + c_d ϵ ZQ

+. 

 Proof. Suppose a_b, c_d ϵ ZQ
+ and suppose, for contradiction,  ⌐ (a_b + c_d ϵ ZQ

+), then, by Definition 2.1.12 and 

3.1.08 and Lemma 3.2.34, (a + c < 0) ˅ [(a + c = 0) ˄ (b + d = 0)] ˅ [(a + c = 0) ˄ (b + d < 0)] and three cases arise; 

 Case 1. Suppose a + c < 0, then, by Corollary 3.2.27, (a < 0) ˅ (c < 0) (reference [CD], Chapter 5, pages 163 – 165), 

a contradiction. 

 Case 2. Suppose (a + c = 0) ˄ (b + d = 0), then, by Corollary 3.2.27, a = b =c = d =0 (reference [CD], Chapter 5, 

page 163), a contradiction. 

 Case 3. Suppose (a + c = 0) ˄ (b + d < 0), then, by Corollary 3.2.27, (a = c = 0) ˄ [(b < 0) ˅ (d < 0)] (reference [CD], 

Chapter 5, pages 163 – 165), a contradiction.  

 In all three cases, a contradiction. 

Therefore, a_b + c_d ϵ ZQ
+, as desired. □ 

 Theorem 3.2.37. For all a_b, c_d, e_f ϵ ZQ, (a_b < c_d) iff [(a_b + e_f) < (c_d + e_f)]. 

 Proof. Suppose a_b < c_d, then, by Definition 3.1.13, there exists g_h ϵ ZQ
+ such that a_b + g_h = c_d, hence, by 

Theorem 3.2.07 and 3.2.09: 

  c_d + e_f = (a_b + g_h) + e_f; 

      = a_b + (g_h + e_f); 

      = a_b + (e_f + g_h); 

      = (a_b + e_f) + g_h. 

Therefore, (a_b + e_f) < (c_d + e_f), and (a_b < c_d) → [(a_b + e_f) < (c_d + e_f)]. 

Suppose (a_b + e_f) < (c_d + e_f), then, by Definition 3.1.13, there exists g_h ϵ ZQ
+ such that (a_b + e_f) + g_h = (c_d + 

e_f), hence, by Theorem 3.2.07, 3.2.09, and 3.2.18 and Lemma 3.2.20: 

  (a_b + e_f) + g_h = (c_d + e_f); 

  a_b + (e_f + g_h) = (c_d + e_f); 

              a_b + (g_h + e_f) = (c_d + e_f); 

          a_b + (g_h + e_f) + [- (e_f)] = (c_d + e_f) + [- (e_f)]; 

       (a_b + g_h) + (e_f + [- (e_f)]) = c_d + (e_f + [- (e_f)]); 

            a_b + g_h  = c_d. 

Therefore, by Definition 3.1.13, a_b < c_d and [(a_b + e_f) < (c_d + e_f)] → (a_b < c_d).  

Therefore, (a_b < c_d) iff [(a_b + e_f) < (c_d + e_f)], as desired. □ 

 Theorem 3.2.38. For all a_b, c_d, e_f, g_h ϵ ZQ, [(a_b < c_d) ˄ (e_f < g_h)] → [(a_b + e_f) < (c_d + g_h)]. 
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 Proof. Suppose (a_b < c_d) ˄ (e_f < g_h), then, by Definition 3.1.13, there exist k_p, m_q ϵ ZQ

+ such that (a_b + 

k_p = c_d) ˄ (e_f + m_q = g_h) and, by Theorem 3.2.07 and 3.2.09: 

  c_d + g_h = (a_b + k_p) + (e_f + m_q); 

       = a_b + (k_p + e_f) + m_q; 

       = (a_b + e_f) + (k_p + m_q). 

Therefore, by Definition 3.1.13 and Lemma 3.2.36, (a_b + e_f) < (c_d + g_h), as desired. □ 

 Lemma 3.2.39. For all a_b, c_d ϵ ZQ, (a_b < c_d) iff {(a < c) ˅ [(a = c) ˄ (b < d)]}. 

 Proof. Suppose a_b < c_d, then, by Definition 3.1.13, there exists g_h ϵ ZQ
+ such that a_b + g_h = c_d. By Lemma 

3.2.34, (a + g = c) ˄ (b + h = d) and, by Definition 3.1.08, Theorem 3.2.26, and Corollary 3.2.27, {(0 < g) ˄ [(h < 0) ˅ (h = 0) 

˅ (0 < h)]} ˅ [(g = 0) ˄ (0 < h)] and four cases arise, two of which are redundant, leaving two cases to consider: 

 Case 1. Suppose (0 < g) ˄ (h < 0), then a < c (reference [CD], Chapter 5, page 167). This result remains unchanged 

in the cases [(0 < g) ˄ (h = 0)] and [(0 < g) ˄ (0 < h)]. 

 Case 2. Suppose (g = 0) ˄ (0 < h), then (a = c) ˄ (b < d) (reference [CD], Chapter 5, page 167). 

 In all four cases, (a < c) ˅ [(a = c) ˄ (b < d)].  

Therefore, (a_b < c_d) → {(a < c) ˅ [(a = c) ˄ (b < d)]}. 

Suppose (a < c) ˅ [(a = c) ˄ (b < d)], then there are two cases to consider: 

 Case 1. Suppose a < c, then, by Corollary 3.2.27, (b < d) ˅ (b = d) ˅ (d < b) and three cases arise: 

Case 1.a. Suppose (a < c) ˄ (b < d), then, by Corollary 3.2.27, there exists g, h ϵ Z+ such that (a + g = c) ˄ 

(b + h = d) (reference [CD], Chapter 5, page 167). By Lemma 3.2.34, a_b + g_h = c_d and, by Definition 

2.1.12 and 3.1.08, g_h ϵ ZQ
+, hence, by Definition 3.1.13, a_b < c_d. 

Case 1.b. Suppose (a < c) ˄ (b = d), then, by Corollary 3.2.27, there exists g ϵ Z+ such that (a + g = c) ˄ (b + 

0 = d) (reference [CD], Chapter 5, page 167). By Lemma 3.2.34, a_b + g_0 = c_d and, by Definition 2.1.12 

and 3.1.08, g_0 ϵ ZQ
+, hence, by Definition 3.1.13, a_b < c_d. 

Case 1.c. Suppose (a < c) ˄ (d < b), then, by Corollary 3.2.27, there exists g, h ϵ Z+ such that (a + g = c) ˄ (d 

+ h = b) ˄ (b + (- h) = d) (reference [CD], Chapter 5, page 167). By Lemma 3.2.34, a_b + g_- h = c_d and, 

by Definition 2.1.12 and 3.1.08 and Theorem 3.2.26, g_- h ϵ ZQ
+, hence, by Definition 3.1.13, a_b < c_d. 

In all three cases, a_b < c_d. 

 Therefore, (a < c) → (a_b < c_d). 

 Case 2. Suppose (a = c) ˄ (b < d), then, by Corollary 3.2.27, there exists h ϵ Z+ such that (a + 0 = c) ˄ (b + h = d) 

(reference [CD], Chapter 5, page 167). By Lemma 3.2.34, a_b + 0_h = c_d and, by Definition 2.1.12 and 3.1.08, 0_h ϵ ZQ
+, 

hence, by Definition 3.1.13, a_b < c_d. 

 Therefore, [(a = c) ˄ (b < d)] → (a_b < c_d). 

Therefore, {(a < c) ˅ [(a = c) ˄ (b < d)]} → (a_b < c_d). 

Therefore, (a_b < c_d) iff {(a < c) ˅ [(a = c) ˄ (b < d)]}, as desired. □ 
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 Theorem 3.2.40. Let S = {a_b | (a_b ϵ ZQ

+) ˄ [(a = 0) ˅ (b < 0)]}, then, for all a_b, c_d ϵ ZQ, e_f ϵ ZQ
+ ─ S, (a_b < c_d) 

iff [(a_b * e_f) < (c_d * e_f)]. 

 Proof. Suppose a_b < c_d, then, by Lemma 3.2.39, (a < c) ˅ [(a = c) ˄ (b < d)] and, by Definition 2.1.12 and 3.1.08, 

Theorem 3.2.26, and Corollary 3.2.27, (0 < e) ˄ (0 ≤ f) and two cases arise:  

 Case 1. Suppose (a < c) ˄ (0 < e) ˄ (0 ≤ f), then a * e < c * e (reference [CD], Chapter 5, page 167) and, by Lemma 

3.2.28 and 3.2.29, (a_b * e_f) < (c_d * e_f). 

 Case 2. Suppose (a = c) ˄ (b < d) ˄ (0 < e) ˄ (0 ≤ f), then (a * e = c * e) ˄ [b * (e + f) < d * (e + f)] (reference [CD], 

Chapter 5, page 167) and, by Lemma 3.2.28 and 3.2.29, (a_b * e_f) < (c_d * e_f). 

 In both cases, (a_b * e_f) < (c_d * e_f). 

Therefore, (a_b < c_d) → [(a_b * e_f) < (c_d * e_f)]. 

Suppose (a_b * e_f) < (c_d * e_f), then, by Lemma 3.2.28 and 3.2.29, (a * e < c * e) ˅ {( a * e = c * e) ˄ [(b * e + a * f + b * 

f) < (d * e + c * f + d * f)]} and, by Definition 2.1.12 and 3.1.08, Theorem 3.2.26, and Corollary 3.2.27, (0 < e) ˄ (0 ≤ f) and 

two cases arise:  

 Case 1. Suppose (a * e < c * e) ˄ (0 < e) ˄ (0 ≤ f), then, a < c (reference [CD], Chapter 5, page 168) and, by Lemma 

3.2.39, a_b < c_d. 

 Case 2. Suppose ( a * e = c * e) ˄ [(b * e + a * f + b * f) < (d * e + c * f + d * f)] ˄ (0 < e) ˄ (0 ≤ f), then, (a = c) ˄ (b < 

d) (reference [CD], Chapter 5, pages 162, 167, and 168) and, by Lemma 3.2.39, a_b < c_d. 

 In both cases, a_b < c_d. 

Therefore, [(a_b * e_f) < (c_d * e_f)] → (a_b < c_d). 

Therefore, (a_b < c_d) iff [(a_b * e_f) < (c_d * e_f)], as desired. □ 

 Theorem 3.2.41. Let T = {a_b | (a_b ϵ ZQ
-) ˄ [(a = 0) ˅ (0 < b)]}, then, for all a_b, c_d ϵ ZQ, e_f ϵ ZQ

- ─ T, (a_b < c_d) 

iff [(c_d * e_f) < (a_b * e_f)]. 

 Proof. Suppose a_b < c_d, then, by Lemma 3.2.39, (a < c) ˅ [(a = c) ˄ (b < d)] and, by Definition 2.1.12 and 3.1.08, 

Theorem 3.2.26, and Corollary 3.2.27, (e < 0) ˄ (f ≤ 0) and two cases arise:  

 Case 1. Suppose (a < c) ˄ (e < 0) ˄ (f ≤ 0), then c * e < a * e (reference [CD], Chapter 5, page 167) and, by Lemma 

3.2.28 and 3.2.29, (c_d * e_f) < (a_b * e_f). 

 Case 2. Suppose (a = c) ˄ (b < d) ˄ (e < 0) ˄ (f ≤ 0), then (c * e = a * e) ˄ [d * (e + f) < b * (e + f)] (reference [CD], 

Chapter 5, page 167) and, by Lemma 3.2.28 and 3.2.29, (c_d * e_f) < (a_b * e_f). 

 In both cases, (c_d * e_f) < (a_b * e_f). 

Therefore, (a_b < c_d) → [(c_d * e_f) < (a_b * e_f)]. 

Suppose (c_d * e_f) < (a_b * e_f), then, by Lemma 3.2.28 and 3.2.29, (c * e < a * e) ˅ {( c * e =  a * e) ˄ [(d * e + c * f + d * 

f) < (b * e + a * f + b * f)]} and, by Definition 2.1.12 and 3.1.08, Theorem 3.2.26, and Corollary 3.2.27, (e < 0) ˄ (f ≤ 0) and 

two cases arise:  

 Case 1. Suppose (c * e < a * e) ˄ (e < 0) ˄ (f ≤ 0), then, a < c (reference [CD], Chapter 5, page 168) and, by Lemma 

3.2.39, a_b < c_d. 
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 Case 2. Suppose (c * e = a * e) ˄ [(d * e + c * f + d * f) < (b * e + a * f + b * f)] ˄ (e < 0) ˄ (f ≤ 0), then, (a = c) ˄ (b < 

d) (reference [CD], Chapter 5, pages 162, 167, and 168) and, by Lemma 3.2.39, a_b < c_d. 

 In both cases, a_b < c_d. 

Therefore, [(c_d * e_f) < (a_b * e_f)] → a_b < c_d. 

Therefore, (a_b < c_d) iff [(c_d * e_f) < (a_b * e_f)], as desired. □ 

 Lemma 3.2.42. For all a_b ϵ ZQ, - 1_0 * a_b = - (a_b) represents the additive inverse of a_b. 

 Proof. By Theorem 3.2.19, Corollary 3.2.23, and Lemma 3.2.28: 

- 1_0 * a_b = (- 1 * a)_(0 * a +(- 1 * b) + 0 * b); 

       = - a_- b. 

Therefore, by Definition 3.1.10, - 1_0 * a_b = - (a_b) represents the additive inverse of a_b, as desired. □ 

 Corollary 3.2.43. For all a_b, c_d ϵ ZQ, - (a_b) * c_d = - (a_b * c_d). 

 Proof. By Theorem 3.2.10 and Lemma 3.2.42: 

  - (a_b) * c_d = (- 1_0 * a_b) * c_d; 

        = - 1_0 * (a_b * c_d); 

        = - (a_b * c_d), as desired. □ 

 Corollary 3.2.44. For all a_b, c_d ϵ ZQ, - (a_b) * - (c_d) = a_b * c_d. 

 Proof. By Theorem 3.2.08, 3.2.10, and 3.2.16, Corollary 3.2.27, and Lemma 3.2.42: 

  - (a_b) * - (c_d) = (- 1_0 * a_b) * (- 1_0 * c_d); 

               = - 1_0 * (a_b * - 1_0) * c_d; 

 = - 1_0 * (- 1_0 * a_b) * c_d; 

 = (- 1_0 * - 1_0) * (a_b * c_d); 

 = 1_0 * (a_b * c_d); 

 = a_b * c_d, as desired. □ 

 Theorem 3.2.45. Partition ZQ in the following manner: 

1. A = {a_b | (a_b ϵ ZQ) ˄ (a < 0) ˄ (b < 0)}; 

2. B = {a_b | (a_b ϵ ZQ) ˄ (a < 0) ˄ (0 ≤ b)}; 

3. C = {a_b | (a_b ϵ ZQ) ˄ (a = 0) ˄ (b < 0)}; 

4. D = {a_b | (a_b ϵ ZQ) ˄ (a = 0) ˄ (0 ≤ b)}; 

5. E = {a_b | (a_b ϵ ZQ) ˄ (0 < a) ˄ (b < 0)}; 

6. F = {a_b | (a_b ϵ ZQ) ˄ (0 < a) ˄ (0 ≤ b)}. 

Thenwe demonstrate the following: 

a. For all a_b,c_d ϵ A, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.44: 
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 |a_b| * |c_d| = - (a_b) * - (c_d); 

              = a_b * c_d; 

              = |a_b * c_d|, as desired. □ 

b. For all a_b ϵ A, c_d ϵ B, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.44: 

 |a_b| * |c_d| = - (a_b) * - (c_d); 

              = a_b * c_d; 

              = |a_b * c_d|, as desired. □ 

c. For all a_b ϵ A, c_d ϵ C, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.44: 

 |a_b| * |c_d| = - (a_b) * - (c_d); 

              = a_b * c_d; 

              = |a_b * c_d|, as desired. □ 

d. For all a_b ϵ A, c_d ϵ D, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

e. For all a_b ϵ A, c_d ϵ E, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

f. For all a_b ϵ A, c_d ϵ F, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

g. For all a_b, c_d ϵ B, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.44: 

 |a_b| * |c_d| = - (a_b) * - (c_d); 
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              = a_b * c_d; 

              = |a_b * c_d|, as desired. □ 

h. For all a_b ϵ B, c_d ϵ C, (|a_b| * |c_d| = |a_b * c_d|) iff (b ≤ |a|). 

Proof. Suppose |a| < b, then, by Corollary 3.2.27, (b * d < 0) ˄ (0 < a * d) (reference [CD], Chapter 5, pages 165 

and 167) and, by Definition 3.1.14 and Lemma 3.2.42: 

 |a_b| * |c_d| = - (a_b) * - (0_d); 

              = - a_- b * 0_- d; 

              = 0_0 + a * d + b * d; 

              = 0_a * d + b * d, hence, |a_b| * |c_d| ϵ C, while: 

 |a_b * c_d| = |a_b * 0_d|; 

          = |0_0 + a * d + b * d |; 

          = |0_a * d + b * d | ϵ D. 

Therefore, by the Law of Contraposition, (|a_b| * |c_d| = |a_b * c_d|) → (b ≤ |a|). 

Suppose b ≤ |a|, then, by Corollary 3.2.27, 0 ≤ d * (a + b) (reference [CD], Chapter 5, pages 165 and 167) and, by 

Definition 3.1.14, Theorem 3.2.29, and Lemma 3.2.42: 

 |a_b| * |c_d| = - (a_b) * - (c_d); 

              = - a_- b * 0_- d; 

              = 0_a * d + b * d; 

              = 0_d * (a + b); 

              = |a_b * c_d|. 

Therefore, (b ≤ |a|) → (|a_b| * |c_d| = |a_b * c_d|). 

Therefore, (|a_b| * |c_d| = |a_b * c_d|) iff (b ≤ |a|), as desired. □ 

i. For all a_b ϵ B, c_d ϵ D, (|a_b| * |c_d| = |a_b * c_d|) iff (b ≤ |a|). 

Proof. Suppose |a| < b, then, by Corollary 3.2.27, (a * d < 0) ˄ (0 < b * d) (reference [CD], Chapter 5, page 167) 

and, by Definition 3.1.14 and Lemma 3.2.42: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - a_- b * 0_d; 

              = 0_0 - a * d - b * d; 

              = 0_- a * d - b * d, hence, |a_b| * |c_d| ϵ C (reference [CD], Chapter 5, pages 167 – 171), 

while: 

 |a_b * c_d| = |a_b * 0_d|; 

          = |0_0 + a * d + b * d |; 
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          = |0_a * d + b * d | ϵ D. 

Therefore, by the Law of Contraposition, (|a_b| * |c_d| = |a_b * c_d|) → (b ≤ |a|). 

Suppose b ≤ |a|, then, by Corollary 3.2.27, (a * d < 0) ˄ (0 < b * d)  (reference [CD], Chapter 5, page 167) and, by 

Definition 3.1.14, Theorem 3.2.29, and Lemma 3.2.42: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - a_- b * 0_d; 

              = 0_- a * d - b * d; 

              = 0_- d * (a + b); 

    `             = - [0_d * (a + b)]; 

              = |a_b * c_d|. 

Therefore, (b ≤ |a|) → (|a_b| * |c_d| = |a_b * c_d|). 

Therefore, (|a_b| * |c_d| = |a_b * c_d|) iff (b ≤ |a|), as desired. □ 

j. For all a_b ϵ B, c_d ϵ E, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

k. For all a_b ϵ B, c_d ϵ F, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

l. For all a_b, c_d ϵ C, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.44: 

 |a_b| * |c_d| = - (a_b) * - (c_d); 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

m. For all a_b ϵ C, c_d ϵ D, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 
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              = |a_b * c_d|, as desired. □ 

n. For all a_b ϵ C, c_d ϵ E, (|a_b| * |c_d| = |a_b * c_d|) iff (|d| ≤ c). 

Proof. Suppose c < |d|, then, by Corollary 3.2.27, (b * c < 0) ˄ (0 < b * d) (reference [CD], Chapter 5, page 167) 

and, by Definition 3.1.14 and Lemma 3.2.42: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = 0_- b * c_d; 

              = 0_- b * c + 0 - b * d; 

              = 0_- b * c - b * d, hence, |a_b| * |c_d| ϵ C (reference [CD], Chapter 5, pages 167 – 171), 

while: 

 |a_b * c_d| = |0_b * c_d|; 

          = |0_b * c + 0 + b * d |; 

          = |0_b * c + b * d | ϵ D. 

Therefore, by the Law of Contraposition, (|a_b| * |c_d| = |a_b * c_d|) → (|d| ≤ c). 

Suppose |d| ≤ c, then, by Corollary 3.2.27, (b * c < 0) ˄ (0 < b * d) (reference [CD], Chapter 5, page 167) and, by 

Definition 3.1.14, Theorem 3.2.29, and Lemma 3.2.42: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = 0_- b * c_d; 

              = 0_- b * c + 0 - b * d; 

              = 0_- b * (c+ d); 

              = - [0_b * (c+ d)]; 

              = |a_b * c_d|. 

Therefore, (|d| ≤ c) → (|a_b| * |c_d| = |a_b * c_d|). 

Therefore, (|a_b| * |c_d| = |a_b * c_d|) iff (|d| ≤ c), as desired. □ 

o. For all a_b ϵ C, c_d ϵ F, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, Theorem 3.2.29, and Corollary 3.2.43: 

 |a_b| * |c_d| = - (a_b) * c_d; 

              = - (a_b * c_d); 

              = |a_b * c_d|, as desired. □ 

p. For all a_b, c_d ϵ D, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, the definition of D, and Theorem 3.2.29, as desired. □ 

q. For all a_b ϵ D, c_d ϵ E, (|a_b| * |c_d| = |a_b * c_d|) iff (|d| ≤ c). 
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Proof. Suppose c < |d|, then, by Corollary 3.2.27, (b * d < 0) ˄ (0 < b * c) (reference [CD], Chapter 5, page 167) 

and, by Definition 3.1.14: 

 |a_b| * |c_d| = a_b * c_d; 

              = 0_b * c_d; 

              = 0_b * c + 0 + b * d; 

              = 0_b * c + b * d, hence, |a_b| * |c_d| ϵ C (reference [CD], Chapter 5, pages 167 – 171), 

while: 

 |a_b * c_d| = |0_b * c_d|; 

          = |0_b * c + 0 + b * d |; 

          = |0_b * c + b * d | ϵ D. 

Therefore, by the Law of Contraposition, (|a_b| * |c_d| = |a_b * c_d|) → (|d| ≤ c). 

Suppose |d| ≤ c, then, by Corollary 3.2.27, (b * d < 0) ˄ (0 < b * c) (reference [CD], Chapter 5, page 167) and, by 

Definition 3.1.14 and Theorem 3.2.29: 

 |a_b| * |c_d| = a_b * c_d; 

              = 0_b * c_d; 

              = 0_b * c + 0 + b * d; 

              = 0_b * (c + d); 

              = |a_b * c_d|. 

Therefore, (|d| ≤ c) → (|a_b| * |c_d| = |a_b * c_d|). 

Therefore, (|a_b| * |c_d| = |a_b * c_d|) iff (|d| ≤ c), as desired. □ 

r. For all a_b ϵ D, c_d ϵ F, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, the definition of D, the definition of F, and Theorem 3.2.29, as desired. □ 

s. For all a_b, c_d ϵ E, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, the definition of E, and Theorem 3.2.29, as desired. □ 

t. For all a_b ϵ E, c_d ϵ F, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, the definition of E, the definition of F, and Theorem 3.2.29, as desired. □ 

u. For all a_b, c_d ϵ F, |a_b| * |c_d| = |a_b * c_d|. 

Proof. By Definition 3.1.14, the definition of F, and Theorem 3.2.29, as desired. □ 

 Lemma 3.2.46. For all x_y ϵ ZQ, |x_y| = |- (x_y)|.  

 Proof. This is an immediate consequence of Definition 3.1.10 and 3.1.14, as desired. □ 

 Theorem 3.2.47. For all a_b, c_d ϵ ZQ, |a_b + c_d| ≤ |a_b| + |c_d|. 
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 Proof. By Definition 3.1.08, Corollary 3.2.23 and 3.2.25, and Theorem 3.2.35, [(a_b ϵ ZQ

-) ˅ (a_b = 0_0) ˅ (a_b ϵ 

ZQ
+)] ˄ [(c_d ϵ ZQ

-) ˅ (c_d = 0_0) ˅ (c_d ϵ ZQ
+)] and nine cases arise, three of which are redundant, leaving six cases to 

consider: 

 Case 1. Suppose (a_b ϵ ZQ
-) ˄ (c_d ϵ ZQ

-), then, by Definition 3.1.14 and Theorem 3.2.24: 

    |a_b + c_d| = - (a_b + c_d); 

             = - [(a + c)_(b +d)]; 

             = - (a + c)_- (b +d); 

             = (- a - c)_(- b - d); 

             = - a_- b + - c_- d; 

             = - (a_b) + [- (c_d)]; 

             = |a_b| + |c_d|. 

 Case 2. Suppose (a_b = 0_0) ˄ (c_d = 0_0), then, by Definition 3.1.14 and Lemma 3.2.34 and 3.2.42: 

    |a_b + c_d| = |0_0 + 0_0|; 

             = |0_0|; 

             = 0_0; 

             = 0_0 + 0_0; 

             = |a_b| + |c_d|. 

 Case 3. Suppose (a_b ϵ ZQ
+) ˄ (c_d ϵ ZQ

+), then, by Definition 3.1.14: 

  |a_b + c_d| = a_b + c_d; 

           = |a_b| + |c_d|. 

 Case 4. Suppose (a_b ϵ ZQ
+) ˄ (c_d = 0_0), then, by Definition 3.1.14 and Theorem 3.2.13: 

    |a_b + c_d| = |a_b + 0_0|; 

             = |a_b|; 

             = a_b; 

             = a_b + 0_0; 

             = |a_b| + |c_d|. 

 This result remains unchanged in the case (a_b = 0_0) ˄ (c_d ϵ ZQ
+).  

 Case 5. Suppose (a_b ϵ ZQ
-) ˄ (c_d = 0_0), then, by Definition 3.1.14, Theorem 3.2.13, and Lemma 3.2.42: 

   |a_b + c_d| = |a_b + 0_0|; 

             = |a_b|; 

             = - (a_b); 
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             = - (a_b) + 0_0; 

             = |a_b| + |c_d|. 

 This result remains unchanged in the case (a_b = 0_0) ˄ (c_d ϵ ZQ
-). 

 Case 6. Suppose (a_b ϵ ZQ
-) ˄ (c_d ϵ ZQ

+), then, by Definition 3.1.14 and Theorem 3.2.30, (|a_b| = - a_b < c_d) ˅ 

(c_d < |a_b| = - a_b) and two cases arise: 

Case 6.a. Suppose |a_b| = - (a_b) < c_d, then, by Definition 3.1.14 and Lemma 3.2.34 and 3.2.42: 

   |a_b + c_d| = a_b + c_d; 

                      < - (a_b) + c_d; 

                         = |a_b| + |c_d|. 

  Case 6.b. Suppose c_d < |a_b| = - (a_b), then, by Definition 3.1.14 and Lemma 3.2.34 and 3.2.42: 

    |a_b + c_d| = - (a_b + c_d); 

                      = - [(a + c)_(b + d)]; 

            = - (a +c)_- (b + d); 

                          < (c - a)_(d - b); 

            = - a_- b + c_d; 

            = - (a_b) + c_d; 

                         = |a_b| + |c_d|. 

  In both cases, |a_b + c_d| < |a_b| + |c_d|. 

 This result remains unchanged in the case (a_b ϵ ZQ
+) ˄ (c_d ϵ ZQ

-). 

 In all six cases, (|a_b + c_d| = |a_b| + |c_d|) ˅ (|a_b + c_d| < |a_b| + |c_d|). 

Therefore, |a_b + c_d| ≤ |a_b| + |c_d|, as desired. □ 

 Theorem 3.2.48. For all a_b, c_d ϵ ZQ, |a_b| - |c_d| ≤ |a_b - c_d|. 

 Proof. By Definition 3.1.11 and Theorem 3.2.21 and 3.2.47: 

  |(a_b - c_d) + c_d| ≤ |a_b - c_d| + |c_d|; 

           |a_b| ≤ |a_b - c_d| + |c_d|; 

                          |a_b| - |c_d| ≤ |a_b - c_d|, as desired. □ 

 Theorem 3.2.49. For all a_b, c_d ϵ ZQ, (0_0 < a_b) → [(|c_d| < a_b) iff (- ( a_b) < c_d < a_b). 

 Proof. Suppose (0_0 < a_b) ˄ (|c_d| < a_b), then, by Theorem 3.2.35, (c_d < 0_0) ˅ (0_0 < c_d) and two cases 

arise:  

Case 1. Suppose c_d < 0_0, then, by Definition 3.1.14, |c_d| = - (c_d) < a_b, hence, by Theorem 3.2.41, 

and Lemma 3.2.42, - (a_b) < c_d.  

Case 2. Suppose 0_0 < c_d, then, by Definition 3.1.14, c_d = |c_d| < a_b. 
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 In both cases, - (a_b) < c_d < a_b. 

Therefore, (|c_d| < a_b) → [- (a_b) < c_d < a_b]. 

Suppose (0_0 < a_b) ˄ [- (a_b) < c_d < a_b], then, by Theorem 3.2.35, (c_d < 0_0) ˅ (0_0 < c_d) and two cases arise:  

Case 1. Suppose c_d < 0_0, then, by Definition 3.1.14, Theorem 3.2.41, and Lemma 3.2.42, - (c_d) = 

|c_d| < - [- (a_b)] = a_b. 

Case 2. Suppose 0_0 < c_d, then, by Definition 3.1.14, |c_d| = c_d < a_b. 

In both cases, |c_d| < a_b. 

Therefore, [- (a_b) < c_d < a_b] → (|c_d| < a_b). 

Therefore, (0_0 < a_b) → {(|c_d| < a_b) iff [-(a_b) < c_d < a_b]}, as desired. □ 

 Theorem 3.2.50. Let S = {a_b | a_b ϵ ZQ} ≠ ɸ be arbitrary but bounded below, then S has a least element.  

 Proof. Suppose S = {a_b | a_b ϵ ZQ} ≠ ɸ is bounded below, then there exists some x_y ϵ ZQ such that, for all a_b ϵ 

S, x_y < a_b and, by Definition 3.1.13, there exists k_p ϵ ZQ
+ such that a_b = x_y + k_p. Let B = {k_p | (k_p ϵ ZQ

+) ˄ (x_y  + 

k_p = a_b, for some a_b ϵ S)}, then, by Theorem 2.2.25 and 3.2.22, B has a least element. Let m_q be that least element, 

then, by Theorem 3.2.37, x_y + m_q is the least element of S, as desired. □ 

 Theorem 3.2.51. For all a_b, c_d ϵ ZQ, c_d ≠ 0_0, there exist unique m_q, r_s ϵ ZQ such that (0_0 ≤ r_s < |c_d|) ˄ 

(a_b = m_q * c_d + r_s).  

 Proof. The proof is in two parts: 

1) Existence. By Theorem 3.2.06, m_q * c_d + r_s = a_b ϵ ZQ and, by Definition 3.1.13 and Theorem 3.2.14, (r_s = 

0_0) ˅ (0_0 < r_s). If r_s = 0_0, then, by Lemma 3.2.44, r_s < |c_d|. Otherwise, let S = {a_b - (k_p * c_d)|(a_b, 

c_d, k_p ϵ ZQ) ˄ [0_0 ≤ a_b - (k_p * c_d)]}, then, by Theorem 3.2.06 and 3.2.26, k_p = - (c_d) * (a_b)2 ϵ ZQ. Then, 

by Theorem 3.2.16 and Lemma 3.2.42, a_b - (k_p * c_d) = a_b - ([- (c_d) * (a_b)2] * c_d) = a_b + (c_d)2 * (a_b)2 

and, by Definition 3.1.08 and 3.1.13 and Theorem 3.2.29, 0_0 ≤ a_b + (a_b)2 ≤ a_b + (c_d)2 * (a_b)2, hence, S ≠ ɸ. 

By Theorem 3.2.50, S has a least element, r_s. Let a_b - (k_p * c_d) = r_s ϵ S and suppose, for contradiction, that 

|c_d| ≤ r_s, then, by Theorem 3.2.35, (c_d < 0_0) ˅ (0_0 < c_d) and two cases arise: 

 

Case 1. Suppose c_d < 0_0 and let k_p = m_q - 1_0, then, by Definition 3.1.14 and Theorem 3.2.09, 

3.2.12, 3.2.16, and Lemma 3.2.30 and 3.2.42, a_b - (k_p * c_d) = a_b - [(m_q - 1_0) * c_d] = (a_b - m_q * 

c_d) - |c_d| = r_s - |c_d| ϵ S. But then, by Defintion 3.1.13, r_s - |c_d| < r_s, a contradiction. 

 

Case 2. Suppose 0_0 < c_d and let k_p = m_q + 1_0, then, by Definition 3.1.14 and Theorem 3.2.09, 

3.2.12, 3.2.16, and Lemma 3.2.30, a_b - (k_p * c_d) = a_b - [(m_q + 1_0) * c_d] = (a_b - m_q * c_d) - 

|c_d| = r_s - |c_d| ϵ S. But then, by Defintion 3.1.13, r_s - |c_d| < r_s, a contradiction. 

 

In both cases, a contradiction, hence, r_s < |c_d|.  

 Therefore, (0_0 ≤ r_s < |c_d|) ˄ (a_b = m_q * c_d + r_s). 

2) Uniqueness. Suppose there exists k_p, m_q, r_t, s_u ϵ ZQ such that k_p * c_d + r_t = m_q * c_d + s_u = a_b, 

where (0_0 ≤ r_t < |c_d|) ˄ (0_0 ≤ s_u < |c_d|). Then, by Definition 3.1.11 and 3.1.14, - |c_d| < s_u - r_t < |c_d| 

and, by Definition 3.1.11 again, Theorem 3.2.12, and Lemma 3.2.30, (k_p - m_q) * c_d = s_u - r_t. But then, by 

Defintion 3.1.12 and Theorem 3.2.31, c_d | (s_u - r_t), hence, since - |c_d| < s_u - r_t < |c_d|, s_u - r_t = k_p - 

m_q = 0_0. Therefore, m_q and r_s are unique.  
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Therefore, there exist unique m_q, r_s ϵ ZQ such that (0_0 ≤ r_s < |c_d|) ˄ (a_b = m_q * c_d + r_s), as desired. □ 

Theorem 3.2.52. For all n ϵ N, a_b ϵ NQ, (a_b)n is defined. 

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b)x is defined,” then: 

P(0). By Definition 3.1.15, (a_b)0 = 1_0. 

Suppose P(n) is true, then (a_b)n is defined and: 

P(n + 1). By Definition 3.1.06 and 3.1.15, (a_b)(n + 1) = (a_b)n * a_b and, by Theorem 3.2.06, (a_b)(n + 1) is defined. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all n ϵ N, a_b ϵ NQ, 

(a_b)n is defined, as desired. □ 

 Lemma 3.2.53. For all a_b ϵ ZQ
-, (a_b)n is negative if n is odd and positive if n is even.  

 Proof. This is an immediate consequence of Definition 3.1.08 and 3.1.15 and Corollary 3.2.43 and 3.2.44, as 

desired. □ 

Theorem 3.2.54. For all n ϵ N, a_b, c_d ϵ ZQ, (a_b * c_d)n = (a_b)n * (c_d)n.  

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b * c_d)x = (a_b)x * (c_d)x,” then: 

P(0). By Definition 3.1.15 and Theorem 3.2.16, (a_b * c_d)0 = 1_0 = 1_0 * 1_0 = (a_b)0 * (c_d)0. 

Suppose P(n) is true, then (a_b * c_d)n = (a_b)n * (c_d)n and: 

P(n + 1). By Definition 3.1.15 and Theorem 3.2.08 and 3.2.10: 

 (a_b * c_d)(n + 1) = (a_b * c_d)n * (a_b * c_d); 

                = (a_b)n * (c_d)n * (a_b * c_d); 

                = (a_b)n * [(c_d)n * a_b] * c_d; 

                = (a_b)n * [a_b * (c_d)n] * c_d; 

                = [(a_b)n * a_b] * [(c_d)n * c_d]; 

                = (a_b)(n + 1) * (c_d)(n + 1). 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all n ϵ N, a_b, c_d ϵ 

NQ, (a_b * c_d)n = (a_b)n * (c_d)n, as desired. □ 

 Theorem 3.2.55. For all m, n ϵ N, a_b ϵ ZQ, (a_b)m * (a_b)n = (a_b)(m + n). 

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b)m * (a_b)x = (a_b)(m + x),” then: 

P(0). By Definition 3.1.15 and Theorem 3.2.16, (a_b)m * (a_b)0 = (a_b)m * 1_0 = (a_b)m = (a_b)(m + 0). 

Suppose P(n) is true, then (a_b)m * (a_b)n = (a_b)(m + n) and: 

P(n + 1). By Definition 3.1.15 and Theorem 3.2.10:  

 (a_b)m * (a_b)(n + 1) = (a_b)m * [(a_b)n * a_b]; 

       = [(a_b)m * (a_b)n] * a_b; 

       = (a_b)(m + n) * a_b; 



47 
 
       = (a_b)[(m + n) + 1]; 

       = (a_b)[m + (n + 1)]. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all m, n ϵ N, a_b ϵ 

NQ, (a_b)m * (a_b)n = (a_b)(m + n), as desired. □ 

 Theorem 3.2.56. For all m, n ϵ N, a_b ϵ ZQ, [(a_b)m]n = (a_b)(m * n).  

 Proof. We proceed by induction on n. Let P(x) be the property, “[(a_b)m]x = (a_b)(m * x),” then: 

P(0). By Definition 3.1.15, [(a_b)m]0 = 1_0 = (a_b)0 = (a_b)(m * 0). 

Suppose P(n) is true, then [(a_b)m]n = (a_b)(m * n) and: 

P(n + 1). By Definition 3.1.15 and Theorem 3.2.55: 

 [(a_b)m](n + 1) = [(a_b)m]n * (a_b)m; 

          = (a_b)(m * n) * (a_b)m; 

          = (a_b)[(m * n) + m]; 

          = (a_b)[m * (n + 1)]. 

Therefore, P(n) → P(n + 1) and, by the Principle of Induction (reference [HJ], Chapter 3, page 42), for all m, n ϵ N, a_b ϵ 

NQ, [(a_b)m]n = (a_b)(m * n), as desired. □ 

 Theorem 3.2.57. Let S be contained in ZQ and such that: 

1. 0_0 ϵ S; 

2. (a_b ϵ S) → {[(a + 1)_b ϵ S] ˄ [a_(b + 1) ϵ S]}; 

3. (a_b ϵ S) → [- (a_b) ϵ S]. 

Then S = ZQ. 

Proof. By Definition 2.1.09 and 2.1.10, “1“ and “2” above define a q-inductive set IQ. By Definition 2.1.11, that 

set, IQ, contains NQ and, by Definition 3.1.05 and 3.1.08 and Theorem 3.2.26, “3” above extends NQ to ZQ, as 

desired. □ 

Theorem 3.2.58. ZQ is countable. 

Proof. By Theorem 2.2.54, NQ x NQ is countable (reference [HJ], Chapter 4, page 75). By Definition 3.1.01 and 

3.1.05, NQ x NQ contains ZQ
’/E = ZQ, hence, ZQ is at most countable (reference [HJ], Chapter 4, page 77). Finally, by 

Theorem 3.2.22, ZQ is countable, as desired. □ 

Theorem 3.2.59. ZQ has neither a greatest nor a least element.  

Proof. By Theorem 2.2.55 and 3.2.22, ZQ has no greatest element and, by Theorem 3.2.26, ZQ has no least 

element, as desired. □ 

  

4. Q-Rationals. We develop the q-rationals as equivalence classes of ordered pairs of q-integers, where, for all (a_b, c_d) 

ϵ ZQ x ZQ, c_d ≠ 0_0, (a_b, c_d) is to be considered equivalent to a_b/c_d. Here “/“ is equivalent to the “÷“ of Definition 

3.1.12, however, we extend “÷“ in the sense that, if ¬ (c_d |a_b), per Definition 3.1.12, then a_b/c_d defines a new 

entity.  
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 4.1. Definitions. We define our mathematical entities using standard terminology. 

 Definition 4.1.01. Let QQ
’ = {(a_b, c_d) | (a_b, c_d) ϵ ZQ, c_d ≠ 0_0}, a proper subset of ZQ x ZQ. 

 Definition 4.1.02. The relation E on QQ
’ is defined by: 

 (k_p, m_q) E (n_r, o_s) iff k_p * o_s = m_q * n_r. 

 Definition 4.1.03. The operation “+“ (addition) on QQ
’ is defined by: 

  + [(k_p, m_q), (n_r, o_s)] = [(k_p * o_s + m_q * n_r), m_q * o_s]. 

 Definition 4.1.04. The operation “*“ (multiplication) on QQ
” is defined by: 

  * [(k_p, m_q), (n_r, o_s)] = (k_p * n_r,  m_q * o_s). 

 Definition 4.1.05. Let (a_b, c_d) ϵ QQ
’ be arbitrary, then the equivalence class of (a_b, c_d) modulo E,             

[(a_b, c_d)]E, which is subject to Definition 4.1.03 and 4.1.04, will be called q-rationals and the set of all such q-rationals 

will be designated QQ. 

 Definition 4.1.06. Let [(k_p, m_q)]E, [(n_r, o_s)]E ϵ QQ be arbitrary, then: 

  + {[(k_p, m_q)]E, [(n_r, o_s)]E} = [{(k_p * o_s + m_q * n_r), m_q * o_s}]E; 

  * {[(k_p, m_q)]E, [(n_r, o_s)]E} = [(k_p * n_r,  m_q * o_s)]E. 

In those special cases where m_q * o_s = 0_0, both addition and multiplication are undefined. 

 Definition 4.1.07. The “zero” q-rational, 0_0, is the equivalence class [(0_0, m_q)]E ϵ QQ. 

 Definition 4.1.08. Denote the q-rational number, [(x_y, 1_0)]E, by x_y and the q-rational number, [(a_b, c_d)]E, by 

a_b/c_d.  

 Definition 4.1.09. The operation “-“ (subtraction) on QQ is defined by: 

for all [(k_p, m_q)]E, [(n_r, o_s)]E ϵ QQ, - ([(k_p, m_q)]E, [(n_r, o_s)]E) = [(a_b, c_d)]E iff [(k_p, m_q)]E =   

[(a_b, c_d)]E + [(n_r, o_s)]E. 

 Definition 4.1.10. The operation “÷ “ (division) on QQ is defined by: 

for all [(k_p, m_q)]E, [(n_r, o_s)]E ϵ QQ, ÷ ([(k_p, m_q)]E, [(n_r, o_s)]E) = [(a_b, c_d)]E iff [(k_p, m_q)]E =   

[(a_b, c_d)]E * [(n_r, o_s)]E, where [(n_r, o_s)]E ≠ 0_0. 

 Definition 4.1.11. Denote the additive inverse of [(a_b, c_d)]E by - [(a_b, c_d)]E = - (a_b)/c_d. 

 Definition 4.1.12. Denote the multiplicative inverse, [(c_d, a_b)]E = c_d/a_b, of [(a_b, c_d)]E, by [(a_b, c_d)]E
- 1. 

 Definition 4.1.13.  The relation “<“ (strict order) on QQ is defined by: 

for all [(k_p, m_q)]E, [(n_r, o_s)]E ϵ QQ, < ([(k_p, m_q)]E, [(n_r, o_s)]E) iff k_p * m_q * (o_s)2 < n_r * o_s * 

(m_q)2. 

 Definition 4.1.14. Let [(k_p, m_q)]E ϵ QQ be arbitrary, then [(k_p, m_q)]E is said to be in lowest terms iff (0_0 < 

m_q) ˄ (gcd (k_p, m_q) = 1_0). 



49 
 
 Definition 4.1.5 Let [(k_p, m_q)]E ϵ QQ be arbitrary, then [(k_p, m_q)]E is said to be positive if [(0_0, m_q)]E < 

[(k_p, m_q)]E and negative if [(k_p, m_q)]E < [(0_0, m_q)]E. The set of all positive q-rationals will be designated by QQ
+ 

and the set of all negative q-rationals by QQ
-. 

 Definition 4.1.16. The operation “||“ (absolute value) on QQ is defined by: 

  for all [(k_p, m_q)]E ϵ QQ, |[(k_p, m_q)]E| = [(k_p, m_q)]E, if [(0_0, m_q)]E ≤ [(k_p, m_q)]E; 

         = - [(k_p, m_q)]E, if [(k_p, m_q)]E < [(0_0, m_q)]E. 

 Definition 4.1.17. For all a_b/c_d ϵ QQ – {0_0}, and all k ϵ Z, [(a_b/c_d)0 = 1_0] ˄ [(a_b/c_d)1 = a_b/c_d] ˄   

[(a_b/c_d)k + 1 = (a_b/c_d)k * a_b/c_d] ˄ [(a_b/c_d)- k = (c_d/a_b)k] ˄ {[(a_b/c_d)1/k = e_f/g_h] iff [(e_f/g_h)k = a_b/c_d]}. 

 Definition 4.1.18. Let (P,<) be an arbitrary linearly ordered set, then a gap in (P, <) is an ordered pair, (A, B) of 

subsets of P such that: 

1. (A, B ≠ ɸ) ˄ (A ∩ B = ɸ) ˄ (A U B = P); 

2. for all a ϵ A, b ϵ B, a < b; 

3. A has no greatest element and B has no least element. 

 

4.2. Arguments. We demonstrate our arguments using the standard methods and terminology of mathematical 

logic and ZFC/AFA or generalizations thereof. Specific to the current work, we generalize the Principle of Induction to the 

Principle of Q-Induction and we utilize results from reference [HJ] and [CD]. 

 Theorem 4.2.01. The set QQ
’ of Definition 4.1.01 exists. 

 Proof. By Theorem 3.2.01, ZQ exists, hence, by the Axiom of Power Set, the definition of ordered pair, and the 

definition of Cartesian product, QQ
’, which is contained in ZQ x ZQ, exists, as desired. □ 

 Theorem 4.2.02. The relation E on QQ
’, from Definition 4.1.02, is an equivalence relation. 

 Proof. The proof is in three parts: 

1) Reflexivity. Let (a_b, c_d) ϵ QQ
’ be arbitrary, then, by Theorem 3.2.08, a_b * c_d = c_d * a_b, hence, by Definition 

4.1.02, (a_b, c_d) E (a_b, c_d). 

2) Symmetry. Let (k_p, m_q), (n_r, o_s) ϵ QQ
’ be arbitrary but such that (k_p, m_q) E (n_r, o_s), then, by Definition 

4.1.02, k_p * o_s = m_q * n_r and, by Theorem 3.2.08, n_r * m_q = o_s * k_p, hence, by Definition 4.1.02 again, 

(n_r, o_s) E (k_p, m_q). 

3)  Transitivity. Let (k_p, m_q), (n_r, o_s), (v_t, w_u) ϵ QQ
’ be arbitrary but such that [(k_p, m_q) E (n_r, o_s)] ˄                               

[(n_r, o_s) E (v_t, w_u)], then, by Definition 4.1.02, (k_p * o_s = m_q * n_r) ˄ (n_r * w_u = o_s * v_t). By 

Definition 3.1.12 and Theorem 3.2.08 and 3.2.10, (k_p * o_s * w_u = m_q * n_r * w_u) ˄ (m_q * n_r * w_u = 

m_q *o_s * v_t), hence, k_p * o_s * w_u = m_q *o_s * v_t. By Definition 4.1.01, o_s ≠ 0_0 and, by Theorem 

3.2.08 and 3.2.10, (k_p * w_u) * o_s = (m_q * v_t) * o_s and, by Definition 3.1.12 again, k_p * w_u = m_q * v_t, 

hence, by Definition 4.1.02, (k_p, m_q) E (v_t, w_u).  

Therefore, E is an equivalence relation on QQ
’, as desired. □ 

 Theorem 4.2.03. For all (a_b, c_d) ϵ QQ
’ and x_y ϵ ZQ, (a_b, c_d) E (a_b * x_y, c_d * x_y). 

 Proof. By Theorem 3.2.08 and 3.2.10, a_b * c_d * x_y = c_d * a_b * x_y and, by Definition 4.1.02, (a_b, c_d) E 

(a_b * x_y, c_d * x_y), as desired. □ 
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 Theorem 4.2.04. Addition on QQ

’, as defined by Definition 4.1.03, is well-defined relative to the E of Definition 

4.1.02. 

 Proof. Let (a_b, c_d), (e_f, g_h), (k_p, m_q), (n_r, o_s) ϵ QQ
’ be arbitrary but such that [(a_b, c_d) E (e_f, g_h)] ˄ 

[k_p, m_q) E (n_r, o_s)], then, by Definition 4.1.02, (a_b * g_h = c_d * e_f) ˄ (k_p * o_s = m_q * n_r). By Definition 

4.1.03, (a_b, c_d) + (k_p, m_q) = [(a_b *m_q + c_d * k_p), c_d * m_q] and (e_f, g_h) + (n_r, o_s) = [(e_f * o_s + g_h * 

n_r), g_h * o_s] and, by Theorem 3.2.08, 3.2.10, 3.2.11, and 3.2.12: 

 (a_b *m_q + c_d * k_p) * g_h * o_s = (a_b *m_q) * g_h * o_s + (c_d * k_p) * g_h * o_s; 

           = a_b *(m_q * g_h) * o_s + c_d * (k_p * g_h) * o_s; 

           = a_b *(g_h * m_q) * o_s + c_d * (g_h * k_p) * o_s; 

           = (a_b *g_h) * m_q * o_s + c_d * g_h * (k_p * o_s); 

           = (c_d *e_f) * m_q * o_s + c_d * g_h * (m_q * n_r); 

           = c_d *(e_f * m_q) * o_s + c_d * (g_h * m_q) * n_r; 

           = (c_d * m_q) * e_f * o_s + (c_d * m_q) * g_h * n_r; 

           = (c_d * m_q) * (e_f * o_s + g_h * n_r). 

Therefore, by Definition 4.1.02, [(a_b *m_q + c_d * k_p), c_d * m_q] E [(e_f * o_s + g_h * n_r), g_h * o_s], as desired. □ 

 Theorem 4.2.05. Multiplication on QQ
’, as defined by Definition 4.1.04, is well-defined relative to the E of 

Definition 4.1.02. 

 Proof. Let (a_b, c_d), (e_f, g_h), (k_p, m_q), (n_r, o_s) ϵ QQ
’ be arbitrary but such that [(a_b, c_d) E (e_f, g_h)] ˄ 

[(k_p, m_q) E (n_r, o_s)], then, by Definition 4.1.02, (a_b * g_h = c_d * e_f) ˄ (k_p * o_s = m_q * n_r). By Definition 

4.1.04, (a_b, c_d) * (k_p, m_q) = (a_b * k_p, c_d * m_q) and (e_f, g_h) * (n_r, o_s) = (e_f * n_r, g_h * o_s) and, by 

Theorem 3.2.08 and 3.2.10: 

 (a_b * k_p) * (g_h * o_s) = [(a_b * k_p) * g_h] * o_s; 

      = [a_b * (k_p * g_h)] * o_s; 

      = [a_b * (g_h * k_p)] * o_s; 

      = (a_b * g_h) * (k_p * o_s); 

      = (c_d * e_f) * (m_q * n_r); 

      = [(c_d * e_f) * m_q] * n_r; 

      = [c_d * (e_f * m_q)] * n_r; 

      = [c_d * (m_q * e_f)] * n_r; 

      = (c_d * m_q) * (e_f * n_r). 

Therefore, by Definition 4.1.02, (a_b * k_p, c_d * m_q) E (e_f * n_r, g_h * o_s), as desired. □ 

 Theorem 4.2.06. The set of all q-rationals, QQ, is closed under the arithmetical operations “+“ (addition) and “*“ 

(multiplication).  
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 Proof. This is an immediate consequence of Definition 4.1.01, 4.1.05, and 4.1.06 and Theorem 3.2.06, as desired. 

□ 

 Theorem 4.2.07. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ QQ, [(a_b, c_d)]E + [(e_f, g_h)]E = [(e_f, g_h)]E + [(a_b, c_d)]E. 

 Proof. By Definition 4.1.06 and Theorem 3.2.07 and 3.2.08: 

  [(a_b, c_d)]E + [(e_f, g_h)]E = [{(a_b * g_h + c_d * e_f), c_d * g_h}]E; 

           = [{(c_d * e_f + a_b * g_h), c_d * g_h}]E; 

           = [{(e_f  * c_d + g_h * a_b), g_h * c_d }]E; 

           = [(e_f, g_h)]E + [(a_b, c_d)]E. 

Therefore, addition on QQ is commutative, as desired. □ 

 Theorem 4.2.08. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ QQ, [(a_b, c_d)]E * [(e_f, g_h)]E = [(e_f, g_h)]E * [(a_b, c_d)]E. 

 Proof. By Definition 4.1.06 and Theorem 3.2.08: 

  [(a_b, c_d)]E * [(e_f, g_h)]E = [(a_b * e_f, c_d * g_h)]E; 

           = [( e_f * a_b, g_h * c_d )]E; 

           = [(e_f, g_h)]E * [(a_b, c_d)]E. 

Therefore, multiplication on QQ is commutative, as desired. □ 

 Theorem 4.2.09. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ QQ, ([(a_b, c_d)]E + [(e_f, g_h)]E) + [(k_l, m_n)]E 

= [(a_b, c_d)]E + ([(e_f, g_h)]E + [(k_l, m_n)]E). 

 Proof. Letting A = ([(a_b, c_d)]E + [(e_f, g_h)]E) + [(k_l, m_n)]E, by Definition 4.1.06 and Theorem 3.2.10, 3.2.11, 

and 3.2.12: 

  A = [{(a_b * g_h + c_d * e_f), c_d * g_h}]E + [(k_l, m_n)]E; 

     = [{([(a_b * g_h + c_d * e_f) * m_n] + (c_d * g_h) * k_l), (c_d * g_h) * m_n}]E; 

     = [{(a_b * g_h * m_n + c_d * e_f * m_n + c_d * g_h * k_l), c_d * g_h * m_n}]E; 

     = [{(a_b * [g_h * m_n] + c_d * [e_f * m_n + g_h * k_l]), c_d * [g_h * m_n]}]E; 

     = [(a_b, c_d)]E + [{(e_f * m_n + g_h * k_l]), g_h * m_n}]E; 

     = [(a_b, c_d)]E + ([(e_f, g_h)]E + [(k_l, m_n)]E). 

Therefore, addition on QQ is associative, as desired. □ 

 Theorem 4.2.10. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ QQ, ([(a_b, c_d)]E * [(e_f, g_h)]E) * [(k_l, m_n)]E 

= [(a_b, c_d)]E * ([(e_f, g_h)]E * [(k_l, m_n)]E). 

 Proof. By Definition 4.1.06 and Theorem 3.2.10: 

([(a_b, c_d)]E * [(e_f, g_h)]E) * [(k_l, m_n)]E = [(a_b * e_f, c_d * g_h)]E * [(k_l, m_n)]E; 

                 = [{(a_b * e_f) * k_l, (c_d * g_h) * m_n}]E; 

            = [{a_b * (e_f * k_l), c_d * (g_h * m_n)}]E; 
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                  = [(a_b, c_d)]E * [(e_f * k_l, g_h * m_n)]E; 

            = [(a_b, c_d)]E * ([(e_f, g_h)]E * [(k_l, m_n)]E). 

Therefore, multiplication on QQ is associative, as desired. □ 

 Theorem 4.2.11. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ QQ, [(a_b, c_d)]E * ([(e_f, g_h)]E + [(k_l, m_n)]E) 

= [(a_b, c_d)]E * [(e_f, g_h)]E + [(a_b, c_d)]E * [(k_l, m_n)]E. 

 Proof. Letting A = [(a_b, c_d)]E * ([(e_f, g_h)]E + [(k_l, m_n)]E), by Definition 4.1.06 and Theorem 3.2.08, 3.2.10, 

3.2.11, and 4.2.03: 

  A = [(a_b, c_d)]E * [{(e_f * m_n + g_h * k_l), g_h * m_n}]E; 

     = [{[a_b * (e_f * m_n + g_h * k_l)], c_d * g_h * m_n}]E; 

     = [{(a_b * e_f * m_n +  a_b * g_h * k_l), c_d * g_h * m_n}]E; 

     = [{[c_d * (a_b * e_f * m_n +  a_b * g_h * k_l)], [c_d * (c_d * g_h * m_n)]}]E; 

     = [{[c_d * (a_b * e_f) * m_n +  c_d * (a_b * g_h) * k_l], [c_d * (c_d * g_h) * m_n]}]E; 

     = [{[(a_b * e_f) * (c_d * m_n) + (a_b * g_h) * (c_d * k_l)], [(c_d * g_h) * (c_d * m_n)]}]E; 

     = [(a_b * e_f, c_d * g_h)]E + [(a_b * k_l, c_d * m_n)]E; 

     = [(a_b, c_d)]E * [(e_f, g_h)]E + [(a_b, c_d)]E * [(k_l, m_n)]E. 

Therefore, multiplication is left distributive over addition on QQ, as desired. □ 

 Theorem 4.2.12. For all [(a_b, c_d)]E, [(e_f, g_h)]E, [(k_l, m_n)]E ϵ QQ, ([(e_f, g_h)]E + [(k_l, m_n)]E) * [(a_b, c_d)]E 

= [(e_f, g_h)]E * [(a_b, c_d)]E  + [(k_l, m_n)]E * [(a_b, c_d)]E. 

 Proof. Letting A = ([(e_f, g_h)]E + [(k_l, m_n)]E) * [(a_b, c_d)]E, by Definition 4.1.06 and Theorem 3.2.08, 3.2.10, 

3.2.11, and 4.2.03: 

  A = [{(e_f * m_n + g_h * k_l), g_h * m_n}]E * [(a_b, c_d)]E; 

     = [{[(e_f * m_n + g_h * k_l) * a_b], (g_h * m_n) * c_d}]E; 

     = [{(e_f * m_n * a_b  +  g_h * k_l * a_b), g_h * m_n * c_d}]E; 

     = [{[c_d * (e_f * m_n * a_b  +  g_h * k_l * a_b)], [c_d * (g_h * m_n * c_d)]}]E; 

     = [{[c_d * e_f * (m_n * a_b) +  (c_d * g_h) * k_l * a_b], [(c_d * g_h) * m_n * c_d]}]E; 

     = [{[c_d * (e_f * a_b) * m_n +  (g_h * c_d) * (k_l * a_b)], [(g_h * c_d) * (m_n * c_d)]}]E; 

     = [{[(e_f * a_b) * (c_d * m_n) +  (g_h * c_d) * (k_l * a_b)], [(g_h * c_d) * (m_n * c_d)]}]E; 

     = [(e_f * a_b, g_h * c_d)]E + [(k_l * a_b, m_n * c_d)]E; 

     = [(e_f, g_h)]E * [(a_b, c_d)]E  + [(k_l, m_n)]E * [(a_b, c_d)]E. 

Therefore, multiplication is right distributive over addition on QQ, as desired. □ 

 Theorem 4.2.13. For all [(a_b, c_d)]E ϵ QQ, [(a_b, c_d)]E + [(0_0, m_q)]E = [(a_b, c_d)]E. 

 Proof. By Definition 4.1.06 and Theorem 3.2.13, 3.2.15, and 4.2.03: 
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  [(a_b, c_d)]E + [(0_0, m_q)]E = [{(a_b * m_q + c_d * 0_0, c_d * m_q)]E; 

             = [{(a_b * m_q + 0_0, c_d * m_q)]E; 

             = [{(a_b * m_q, c_d * m_q)]E; 

             = [(a_b, c_d)]E. 

Therefore, the zero q-rational, 0_0, is an additive identity for QQ, as desired. □ 

 Corollary 4.2.14. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ QQ, ([(a_b, c_d)]E + [(e_f, g_h)]E = [(a_b, c_d)]E) → ([(e_f, 

g_h)]E = [(0_0, m_q)]E). 

 Proof. Suppose [(a_b, c_d)]E + [(e_f, g_h)]E = [(a_b, c_d)]E, then, by Definition 4.1.06, [{(a_b * g_h + c_d * e_f), 

c_d * g_h)]E = [(a_b, c_d)]E and, by Definition 4.1.05 and 4.1.02, (a_b * g_h + c_d * e_f) * c_d = (c_d * g_h) * a_b. By 

Theorem 3.2.08 and 3.2.12, (a_b * g_h) * c_d + (c_d * e_f) * c_d = (a_b * g_h) * c_d, hence, by Theorem 3.2.13, (c_d * 

e_f) * c_d = 0_0. By Definition 4.1.01, c_d ≠ 0_0, hence, by Theorem 3.2.15, e_f = 0_0 and [(e_f, g_h)]E = [(0_0, m_q)]E. 

Therefore, the additive identity for QQ is unique, as desired. □ 

 Theorem 4.2.15. For all [(a_b, c_d)]E ϵ QQ, [(a_b, c_d)]E * [(m_q, m_q)]E = [(a_b, c_d)]E. 

 Proof. This is an immediate consequence of Definition 4.1.06 and Theorem 4.2.03; therefore, the unity q-

rational, 1_0, is a multiplicative identity for QQ, as desired. □ 

 Corollary 4.2.16. For all [(a_b, c_d)]E, [(e_f, g_h)]E ϵ QQ, ([(a_b, c_d)]E * [(e_f, g_h)]E = [(a_b, c_d)]E) → ([(e_f, 

g_h)]E = [(m_q, m_q)]E). 

 Proof. Suppose [(a_b, c_d)]E * [(e_f, g_h)]E = [(a_b, c_d)]E, then, by Definition 4.1.06, [(a_b * e_f, c_d * g_h)]E = 

[(a_b, c_d)]E and, by Definition 4.1.02 and 4.1.05, (a_b * e_f) * c_d = (c_d * g_h) * a_b. By Theorem 3.2.08 and 3.2.10: 

  (a_b * c_d) * e_f = a_b * (c_d * e_f); 

      = a_b * (e_f * c_d); 

      = (a_b * e_f) * c_d; 

      = (c_d * g_h) * a_b; 

      = c_d * (g_h * a_b); 

      = c_d * (a_b * g_h); 

      = (c_d * a_b) * g_h; 

      = (a_b * c_d) * g_h. 

 By Definition 3.1.12 and Theorem 3.2.16, e_f = g_h, hence, by Definition 4.1.02 and 4.1.05, [(e_f, g_h)]E = [(m_q, 

m_q)]E.  

Therefore, the multiplicative identity for QQ, 1_0, is unique, as desired. □ 

 Lemma 4.2.17. For all [(a_b, c_d)]E, [(e_f, c_d)]E ϵ QQ, [(a_b, c_d)]E + [(e_f, c_d)]E = [{(a_b + e_f), c_d}]E. 

 Proof. By Definition 4.1.06 and Theorem 4.2.08 and 4.2.11: 

 [(a_b, c_d)]E + [(e_f, c_d)]E = [{(a_b * c_d  + c_d * e_f), (c_d)2}]E; 

           = [{(c_d * a_b  + c_d * e_f), (c_d)2}]E; 
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           = [{c_d * (a_b  + e_f), (c_d)2}]E. 

Therefore, (c_d)2 * (a_b + e_f) = (c_d)2 * (a_b + e_f) and, by Definition 4.1.02, [(a_b, c_d)]E + [(e_f, c_d)]E = [{(a_b + e_f), 

c_d}]E, as desired. □ 

 Lemma 4.2.18. For all [(a_b, 1_0)]E, [(c_d, 1_0)]E ϵ QQ, [(a_b, 1_0)]E *  [(c_d, 1_0)]E = [(a_b * c_d, 1_0)]E. 

 Proof. This is an immediate consequence of Definition 4.1.06 and Theorem 3.2.16, as desired. □ 

 Theorem 4.2.19. For all a_b/c_d ϵ QQ, a_b/c_d + - (a_b)/c_d) = 0_0.  

 Proof. By Definition 3.1.11 and 4.1.07, Theorem 3.2.24, and Lemma 4.2.17: 

  a_b/c_d + [- (a_b)]/c_d) = {a_b + [- (a_b)]}/c_d; 

                   = 0_0/c_d; 

                   = 0_0, as desired. □ 

 Theorem 4.2.20. QQ is closed under subtraction. 

 Proof. This is an immediate consequence of Definition 4.1.09 and Theorem 3.2.06 and 3.2.31, as desired. □ 

 Theorem 4.2.21. For all a_b/c_d, e_f/g_h ϵ QQ, (a_b/c_d) - (e_f/g_h) = (a_b/c_d) + [- (e_f)/g_h] = [(a_b * g_h) - 

(c_d * e_f)]/(c_d * g_h) . 

 Proof. By Definition 4.1.01, 4.1.05, 4.1.06, and 4.1.08, Lemma 3.2.30, and Corollary 3.2.43: 

  (a_b/c_d) + [- (e_f)/g_h] = [(a_b * g_h) + ([- (e_f)] * c_d)]/(c_d * g_h); 

      = {(a_b * g_h) + [- (e_ f * c_d)]}/(c_d * g_h); 

      = {(a_b * g_h) + [- (c_d * e_f)]}/(c_d * g_h); 

      = [(a_b * g_h) - (c_d * e_f)]/(c_d * g_h). 

By Definition 4.1.01, 4.1.05, 4.1.06, and 4.1.08, Theorem 3.2.12, 3.2.18, and 4.2.15, and Lemma 3.2.30: 

   a_b/c_d = [(a_b * g_h) - (c_d * e_f)]/(c_d * g_h) + e_f/g_h; 

     = {[(a_b * g_h) - (c_d * e_f)] * g_h + (c_d * g_h * e_f)} /[c_d * (g_h)2]; 

     = {[a_b * (g_h)2] - (c_d * e_f * g_h) + (c_d * g_h * e_f)} /[c_d * (g_h)2]; 

     = [a_b * (g_h)2] /[c_d * (g_h)2]; 

     = a_b/c_d. 

Therefore, by Definition 4.1.09, (a_b/c_d) - (e_f/g_h) = (a_b/c_d) + [- (e_f)/g_h] = [(a_b * g_h) - (c_d * e_f)]/(c_d * g_h), 

as desired. □ 

 Theorem 4.2.22. For all a_b/c_d ϵ QQ – {0_0}, a_b/c_d * c_d/a_b = 1_0. 

 Proof. By Definition 3.1.12 and 4.1.06 and Theorem 3.2.08: 

  a_b/c_d * c_d/a_b = (a_b * c_d)/(c_d * a_b); 

          = (a_b * c_d)/(a_b * c_d); 

          = 1_0. 
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Therefore, c_d/a_b is the multiplicative inverse for a_b/c_d, as desired. □ 

 Lemma 4.2.23. For all a_b/c_d, e_f/g_h ϵ QQ, - (a_b)/c_d * e_f/g_h = - (a_b * e_f)/(c_d * g_h). 

 Proof. This is an immediate consequence of Definition 4.1.01, 4.1.05, and 4.1.06 and Corollary 3.2.43, as desired. 

□ 

 Lemma 4.2.24. For all a_b/c_d, e_f/g_h ϵ QQ, - (a_b)/c_d * -(e_f)/g_h = (a_b * e_f)/(c_d * g_h).    

 Proof. This is an immediate consequence of Definition 4.1.01, 4.1.05, and 4.1.06 and Corollary 3.2.44, as desired. 

□ 

 Theorem 4.2.25. For all a_b/c_d ϵ QQ, a_b/c_d * 0_0 = 0_0. 

 Proof. This is an immediate consequence of Definition 4.1.06 and 4.1.07 and Theorem 3.2.15, as desired. □ 

 Corollary 4.2.26. 0_0 does not have a multiplicative inverse. 

 Proof. By Theorem 4.2.25, as desired. □ 

 Theorem 4.2.27. For all a_b/c_d, e_f/g_h ϵ QQ, e_f/g_h ≠ 0_0, (a_b/c_d) ÷ (e_f/g_h) = (a_b/c_d) *(e_f/g_h)- 1 = 

(a_b * g_h)/(c_d * e_f). 

 Proof. By Definition 4.1.06 and Theorem 4.2.22: 

  (a_b/c_d) *(e_f/g_h)- 1 = (a_b/c_d) *(g_h/e_f); 

                 = (a_b * g_h)/(c_d * e_f). 

Now, suppose, for contradiction, that (a_b/c_d) ÷ (e_f/g_h) ≠ (a_b * g_h)/(c_d * e_f), then, by Definition 4.1.10 and 

Theorem 4.2.10, 4.2.14, and 4.2.22: 

  a_b/c_d ≠ [(a_b * g_h)/(c_d * e_f)] * (e_f/g_h); 

    ≠ [(a_b/c_d) * (g_h/e_f)] * (e_f/g_h); 

    ≠ (a_b/c_d) * [(g_h/e_f) * (e_f/g_h)]; 

    ≠ (a_b/c_d) * 1_0; 

    ≠ a_b/c_d, a contradiction. 

Therefore, (a_b/c_d) ÷ (e_f/g_h) = (a_b/c_d) *(e_f/g_h)- 1 = (a_b * g_h)/(c_d * e_f), as desired. □ 

 Theorem 4.2.28. The relation “<“ (strict order) on QQ, as defined by Definition 4.1.13, is well-defined relative to 

the E of Definition 4.1.02. 

 Proof. Let (a_b, c_d), (e_f, g_h), (k_p, m_q), (n_r, o_s) ϵ QQ be arbitrary but such that [(a_b, c_d) E (e_f, g_h)] ˄ 

[(k_p, m_q) E (n_r, o_s)], then, by Definition 4.1.02, (a_b * g_h = c_d * e_f) ˄ (k_p * o_s = m_q * n_r) and, by Definition 

3.1.12, [a_b = (c_d * e_f)/g_h] ˄ [k_p = (m_q * n_r)/o_s]. Suppose (a_b, c_d) < (k_p, m_q), then, by Definition 4.1.13, 

(a_b * c_d) * (m_q)2 < (k_p *m_q) * (c_d)2 and, by Definition 3.1.13, there exists t_u ϵ ZQ
+ such that (a_b * c_d) * (m_q)2 

+ t_u = (k_p *m_q) * (c_d)2. But then, by substitution, Definition 3.1.11, 3.1.12, 3.1.15, 4.1.06, and 4.1.10, and Theorem 

3.2.08, 3.2.10, and 3.2.11:  

                              a_b * c_d * (m_q)2 + t_u = k_p *m_q * (c_d)2; 

                                                [(c_d * e_f)/g_h] * c_d * (m_q)2 + t_u = [(m_q * n_r)/o_s] *m_q * (c_d)2; 
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                                   [(e_f * c_d)/g_h] * c_d * (m_q)2 + t_u = [(n_r * m_q)/o_s] *m_q * (c_d)2; 

                                                          [e_f * (c_d)2 * (m_q)2]/g_h + t_u = [n_r * (m_q)2 * (c_d)2]/o_s;  

                          (g_h)2 * (o_s)2 * ([e_f * (c_d)2 * (m_q)2]/g_h + t_u) = ([n_r * (m_q)2 * (c_d)2]/o_s) * (g_h)2 * (o_s)2;            

[(g_h)2 * (o_s)2 * e_f * (c_d)2 * (m_q)2]/g_h + (g_h)2 * (o_s)2 * t_u = [n_r * (m_q)2 * (c_d)2 * (g_h)2 * (o_s)2]/o_s;            

          {[g_h * (o_s)2] * e_f} * (c_d)2 * (m_q)2 + (g_h)2 * (o_s)2 * t_u = n_r * {[(m_q)2 * (c_d)2] * [(g_h)2 * o_s]}; 

          {e_f * [g_h * (o_s)2]} * (c_d)2 * (m_q)2 + (g_h)2 * (o_s)2 * t_u = n_r * {[o_s * (g_h)2] * [(m_q)2 * (c_d)2]}; 

               e_f * g_h * (o_s)2 * (c_d)2 * (m_q)2 + (g_h)2 * (o_s)2 * t_u = n_r * o_s * (g_h)2 * (m_q)2 * (c_d)2. 

Hence, by Definition 3.1.12 and Theorem 3.2.29, e_f * g_h * (o_s)2 * (c_d)2 * (m_q)2 < n_r * o_s * (g_h)2 * (m_q)2 * 

(c_d)2. Suppose, for contradiction, that n_r * o_s * (g_h)2 < e_f * g_h * (o_s)2, then, by Theorem 3.2.41, (c_d)2 * (m_q)2 ϵ 

ZQ
-, contradicting Theorem 3.2.29. Therefore, by Definition 4.1.13, (e_f, g_h) < (n_r, o_s) and the relation “<“ on QQ is 

well-defined, as desired. □ 

 Theorem 4.2.29. Let S = {[(a_b, 1_0)]E |{[(a_b, 1_0)]E ϵ QQ}, then (S, <, +, *) is ring isomorphic to (ZQ, <, +, *). 

 Proof. There is an obvious isomorphism, f:S → ZQ, defined by f([(a_b, 1_0)]E) = a_b. That f is a ring isomorphism 

follows immediately from Lemma 4.2.17 and 4.2.18, as desired. □ 

 Theorem 4.2.30. (QQ, <) is a linearly ordered set. 

 Proof. The proof is in three parts: 

1) Transitivity.  Let a_b/c_d, e_f/g_h, k_p/m_q ϵ QQ be arbitrary but such that (a_b/c_d < e_f/g_h) ˄ (e_f/g_h < 

k_p/m_q), then, by Definition 4.1.13, [a_b * c_d * (g_h)2 < e_f * g_h * (c_d)2] ˄ [e_f * g_h * (m_q)2 < k_p * 

m_q * (g_h)2]. By Definition 4.1.01 and 4.1.05 and Theorem 3.2.06 and 3.2.35, a_b * c_d * (g_h)2 < k_p * 

m_q * (g_h)2, hence, by Definition 4.1.13 again, a_b/c_d < k_p/m_q. 

2) Asymmetry. Let a_b/c_d, e_f/g_h ϵ QQ be arbitrary and suppose, for contradiction, that (a_b/c_d < e_f/g_h) 

˄ (e_f/g_h < a_b/c_d), then, by transitivity, a_b/c_d < a_b/c_d, a contradiction.  

3) Linearity. Let a_b/c_d, e_f/g_h, ϵ QQ be arbitrary, then, by Definition 4.1.01 and 4.1.05 and Theorem 3.2.06,  

a_b * c_d * (g_h)2, e_f * g_h * (c_d)2 ϵ ZQ and, by Theorem 3.2.35, [a_b * c_d * (g_h)2 < e_f * g_h * (c_d)2] ˅ 

[a_b * c_d * (g_h)2 = e_f * g_h * (c_d)2] ˅ [e_f * g_h * (c_d)2 < a_b * c_d * (g_h)2], hence, by Definition 

4.1.13, (a_b/c_d < e_f/g_h) ˅ (a_b/c_d = e_f/g_h) ˅ (e_f/g_h < a_b/c_d). 

Therefore, (QQ, <) is a linearly ordered set, as desired. □ 

 Theorem 4.2.31. For all a_b/c_d, e_f/g_h, k_p/m_q ϵ QQ, (a_b/c_d < e_f/g_h) iff [(a_b/c_d + k_p/m_q) < 

(e_f/g_h + k_p/m_q)]. 

 Proof. Suppose a_b/c_d < e_f/g_h, then, by Definition 4.1.13, a_b * c_d * (g_h)2 < e_f * g_h * (c_d)2. Now, 

suppose, for contradiction, that (e_f/g_h + k_p/m_q) < (a_b/c_d + k_p/m_q), then, by Definition 4.1.06, e_f/g_h + 

k_p/m_q = [(e_f * m_q + g_h * k_p)/g_h * m_q] < [(a_b * m_q + c_d * k_p)/c_d * m_q] = a_b/c_d + k_p/m_q. Letting A = 

(e_f * m_q + g_h * k_p) *(g_h * m_q) * (c_d * m_q)2, by Definition 3.1.15 and 4.1.13 and Theorem 3.2.08, 3.2.10, and 

3.2.12: 

A = {(e_f * m_q) *[g_h * m_q * (c_d * m_q)2]} + {(g_h * k_p) *[g_h * m_q * (c_d * m_q)2]}; 

       = {(e_f * m_q) *[g_h * m_q * (c_d)2 * (m_q)2]} + {(k_p * g_h) *[g_h * m_q * (c_d)2 * (m_q)2]}; 

       = {e_f * m_q *[g_h * (c_d)2] * m_q * (m_q)2} + {k_p * (g_h *g_h) * (c_d)2 * m_q * (m_q)2}; 
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       = {e_f * [g_h * (c_d)2] * m_q * (m_q)3} + {k_p * (g_h)2 * (c_d)2 * (m_q)3}; 

       = {e_f * g_h * (c_d)2* (m_q)4} + {k_p * (g_h)2 * (c_d)2 * (m_q)3}; 

       < (a_b * m_q + c_d * k_p) * [c_d * m_q * (g_h * m_q)2]; 

       = {(a_b * m_q) * [c_d * m_q * (g_h)2 * (m_q)2]} + {(c_d * k_p) * [c_d * m_q * (g_h)2 * (m_q)2]}; 

      = {a_b * (m_q * c_d) * [m_q * (g_h)2] * (m_q)2} + {(k_p * c_d) * c_d * [m_q * (g_h)2] * (m_q)2}; 

       = {a_b * (c_d * m_q) * [(g_h)2 * m_q] * (m_q)2} + {k_p * (c_d)2 * [(g_h)2 * m_q] * (m_q)2}; 

       = {a_b * c_d * [m_q * (g_h)2] * (m_q)3} + {k_p * [(c_d)2 * (g_h)2] * (m_q)3}; 

       = {a_b * c_d * [(g_h)2 * m_q] * (m_q)3} + {k_p * [(g_h)2 * (c_d)2] * (m_q)3}; 

       = {a_b * c_d * (g_h)2 * (m_q)4} + {k_p * (g_h)2 * (c_d)2 * (m_q)3}. 

But then, by Theorem 3.2.37, e_f * g_h * (c_d)2 * (m_q)4< a_b * c_d * (g_h)2 * (m_q)4. Suppose, for contradiction, that 

a_b * c_d * (g_h)2 < e_f * g_h * (c_d)2, then, by Theorem 3.2.41, (m_q)4 ϵ ZQ
-, contradicting Theorem 3.2.29 and Lemma 

3.2.53, hence, under the current supposition, e_f * g_h * (c_d)2 < a_b * c_d * (g_h)2, a contradiction.  

Therefore, (a_b/c_d + k_p/m_q) < (e_f/g_h + k_p/m_q). 

Therefore, (a_b/c_d < e_f/g_h) → [(a_b/c_d + k_p/m_q) < (e_f/g_h + k_p/m_q)]. 

Suppose (a_b/c_d + k_p/m_q) < (e_f/g_h + k_p/m_q), then, letting A = (a_b * m_q + k_p * c_d) * [(c_d * m_q) * (g_h * 

m_q)2], by Definition 3.1.15, 4.1.06, and 4.1.13 and Theorem 3.2.08, 3.2.10, and 3.2.12: 

A = {(a_b * m_q) * [(c_d * m_q) * (g_h * m_q)2]} + {(k_p * c_d) * [(c_d * m_q) * (g_h * m_q)2]}; 

       = {a_b * (m_q * c_d) * [m_q * (g_h)2] * (m_q)2} + {k_p * (c_d * c_d) * m_q * (g_h)2 * (m_q)2}; 

       = {a_b * (c_d * m_q) * [(g_h)2 * m_q] * (m_q)2} + {k_p * (c_d)2 * [m_q * (g_h)2] * (m_q)2};  

       = {a_b * c_d * [m_q * (g_h)2] * (m_q)3} + {k_p * (c_d)2 * [(g_h)2 * m_q] * (m_q)2}; 

       = {a_b * c_d * [(g_h)2 * m_q] * (m_q)3} + {k_p * (c_d)2 * (g_h)2 * (m_q)3}; 

       = {a_b * c_d * (g_h)2 * (m_q)4} + {k_p * (c_d)2 * (g_h)2 * (m_q)3}; 

       < {e_f * g_h * (c_d)2 * (m_q)4} + {k_p * (g_h)2 * (c_d)2  * (m_q)3}; 

      = {e_f * g_h * [(c_d)2 * m_q] * (m_q)3} + {k_p * (g_h)2 * (c_d)2 * (m_q)3}; 

       = {e_f * g_h * [m_q * (c_d)2] * (m_q)3} + {k_p * (g_h)2 * [(c_d)2 * m_q] * (m_q)2}; 

       = {e_f * (g_h * m_q) * [(c_d)2 * m_q] * (m_q)2} + {k_p * (g_h)2 * [m_q * (c_d)2] * (m_q)2}; 

       = {e_f * (m_q * g_h) * [m_q * (c_d)2] * (m_q)2} + {k_p * (g_h * g_h) * m_q * (c_d)2 * (m_q)2}; 

       = {(e_f * m_q) * [(g_h * m_q) * (c_d * m_q)2]} + {(k_p * g_h) * [(g_h * m_q) * (c_d * m_q)2]}; 

       = (e_f * m_q + k_p * g_h) * [(g_h * m_q) * (c_d * m_q)2]. 

Therefore, by Definition 4.1.13 and Theorem 3.2.37, a_b/c_d < e_f/g_h. 

Therefore, [(a_b/c_d + k_p/m_q) < (e_f/g_h + k_p/m_q)] → (a_b/c_d < e_f/g_h). 

Therefore, (a_b/c_d < e_f/g_h) iff [(a_b/c_d + k_p/m_q) < (e_f/g_h + k_p/m_q)], as desired. □ 
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 Theorem 4.2.32. For all a_b/c_d, e_f/g_h, k_p/m_q, n_r/o_s ϵ QQ, [(a_b/c_d < k_p/m_q) ˄ (e_f/g_h < n_r/o_s)] 

→ [(a_b/c_d + e_f/g_h) < (k_p/m_q + n_r/o_s)]. 

 Proof. Suppose (a_b/c_d < k_p/m_q) ˄ (e_f/g_h < n_r/o_s), then, by Theorem 4.2.07, 4.2.19, 4.2.21, 4.2.30, and 

4.2.31: 

  a_b/c_d + (e_f/g_h - k_p/m_q) < k_p/m_q + (e_f/g_h - k_p/m_q); 

      < k_p/m_q + (e_f/g_h + [- (k_p)]/m_q); 

      < k_p/m_q + ([- (k_p)]/m_q + e_f/g_h); 

      < (k_p/m_q + [- (k_p)]/m_q) + e_f/g_h; 

      < e_f/g_h; 

      < n_r/o_s. 

But then: 

  a_b/c_d + (e_f/g_h - k_p/m_q) + k_p/m_q < n_r/o_s + k_p/m_q; 

       a_b/c_d + e_f/g_h + ([- (k_p)]/m_q + k_p/m_q) < n_r/o_s + k_p/m_q; 

       a_b/c_d + e_f/g_h + (k_p/m_q + [- (k_p)]/m_q) < n_r/o_s + k_p/m_q; 

                  a_b/c_d + e_f/g_h < n_r/o_s + k_p/m_q. 

Therefore, [(a_b/c_d < k_p/m_q) ˄ (e_f/g_h < n_r/o_s)] → [(a_b/c_d + e_f/g_h) < (k_p/m_q + n_r/o_s)], as desired. □ 

 Theorem 4.2.33. Let S = {a_b/c_d |(a_b/c_d ϵ QQ
+) ˄ [(a≠ 0) ˄ {(0 < b) ˅ [(b < 0) ˄ (|b| < a)]}] ˄ [(c≠ 0) ˄ {(0 < d) ˅ 

[(d < 0) ˄ (|d| < c)]}]}, then, for all a_b/c_d, e_f/g_h ϵ QQ, k_p/m_q ϵ S, (a_b/c_d < e_f/g_h) iff [(a_b/c_d * k_p/m_q) < 

(e_f/g_h * k_p/m_q)]. 

 Proof. Suppose (a_b/c_d < e_f/g_h), then, by Definition 3.1.15, 4.1.06, and 4.1.13 and Theorem 3.2.08, 3.2.10, 

3.2.29, and 3.2.40: 

 (a_b * k_p) * (c_d * m_q) * (g_h * m_q)2 = a_b * (k_p * c_d) * [m_q * (g_h)2] * (m_q)2; 

        = a_b * (c_d * k_p) * [(g_h)2 * m_q] * (m_q)2; 

        = a_b * c_d * [k_p * (g_h)2] * (m_q)3; 

        = a_b * c_d * [(g_h)2 * k_p] * (m_q)3; 

        = [a_b * c_d * (g_h)2] * [k_p * (m_q)3]; 

        < [e_f * g_h * (c_d)2] * [k_p * (m_q)3]; 

        = e_f * g_h * [(c_d)2 * k_p] * (m_q)3; 

        = e_f * g_h * [k_p * (c_d)2] * (m_q)3; 

        = e_f * (g_h * k_p) * [(c_d)2 * m_q] * (m_q)2; 

        = e_f * (k_p * g_h) * [m_q * (c_d)2] * (m_q)2; 

        = (e_f * k_p) * (g_h * m_q) * (c_d * m_q)2. 

Therefore, by Definition 4.1.13, (a_b/c_d * k_p/m_q) < (e_f/g_h * k_p/m_q). 
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Therefore, (a_b/c_d < e_f/g_h) → [(a_b/c_d * k_p/m_q) < (e_f/g_h * k_p/m_q)]. 

Suppose (a_b/c_d * k_p/m_q) < (e_f/g_h * k_p/m_q), then, by Definition 3.1.15, 4.1.06, and 4.1.13 and Theorem 3.2.08 

and 3.2.10: 

 (a_b * k_p) * (c_d * m_q) * (g_h * m_q)2 = a_b * (k_p * c_d) * [m_q * (g_h)2] * (m_q)2; 

        = a_b * (c_d * k_p) * [(g_h)2 * m_q] * (m_q)2; 

        = a_b * c_d * [k_p * (g_h)2] * (m_q)3; 

        = a_b * c_d * [(g_h)2 * k_p] * (m_q)3; 

        = [a_b * c_d * (g_h)2] * [k_p * (m_q)3]; 

        < [e_f * g_h * (c_d)2] * [k_p * (m_q)3]; 

        = e_f * g_h * [(c_d)2 * k_p] * (m_q)3; 

        = e_f * g_h * [k_p * (c_d)2] * (m_q)3; 

        = e_f * (g_h * k_p) * [(c_d)2 * m_q] * (m_q)2; 

        = e_f * (k_p * g_h) * [m_q * (c_d)2] * (m_q)2; 

        = (e_f * k_p) * (g_h * m_q) * (c_d * m_q)2. 

Therefore, by Theorem 3.2.29, a_b/c_d < e_f/g_h. 

Therefore, [(a_b/c_d * k_p/m_q) < (e_f/g_h * k_p/m_q)] → (a_b/c_d < e_f/g_h). 

Therefore, (a_b/c_d < e_f/g_h) iff [(a_b/c_d * k_p/m_q) < (e_f/g_h * k_p/m_q)], as desired. □ 

 Theorem 4.2.34. Let T = {a_b/c_d |(a_b/c_d ϵ QQ
-) ˄ [(a≠ 0) ˄ {(b < 0) ˅ [(0 < b) ˄ (b <|a| )]}] ˄ [(c≠ 0) ˄ {(d < 0) ˅ 

[(0 < d) ˄ (d <|c|)]}]}, then, for all a_b/c_d, e_f/g_h ϵ QQ, k_p/m_q ϵ T, (a_b/c_d < e_f/g_h) iff [(e_f/g_h * k_p/m_q) < 

(a_b/c_d * k_p/m_q)]. 

 Proof. Suppose (a_b/c_d < e_f/g_h), then, by Definition 3.1.15, 4.1.06, and 4.1.13, and Theorem 3.2.08, 3.2.10, 

3.2.29, and 3.2.41:  

 (e_f * k_p) * (g_h * m_q) * (c_d * m_q)2 = e_f * (k_p * g_h) * [m_q * (c_d)2] * (m_q)2; 

        = e_f * (g_h * k_p) * [(c_d)2 * m_q] * (m_q)2; 

        = e_f * g_h * [k_p * (c_d)2] * (m_q)3; 

        = e_f * g_h * [(c_d)2 * k_p] * (m_q)3; 

        = [e_f * g_h * (c_d)2] * [k_p * (m_q)3]; 

        < [a_b * c_d * (g_h)2] * [k_p * (m_q)3]; 

        = a_b * c_d * [(g_h)2 * k_p] * (m_q)3; 

        = a_b * c_d * [k_p * (g_h)2] * (m_q)3; 

        = a_b * (c_d * k_p) * [(g_h)2 * m_q] * (m_q)2; 

        = a_b * (k_p * c_d) * [m_q * (g_h)2] * (m_q)2; 



60 
 
        = (a_b * k_p) * (c_d * m_q) * (g_h * m_q)2.  

Therefore, by Definition 4.1.13, (e_f/g_h * k_p/m_q) < (a_b/c_d * k_p/m_q). 

Therefore, (a_b/c_d < e_f/g_h) → [(e_f/g_h * k_p/m_q) < (a_b/c_d * k_p/m_q)]. 

Suppose (e_f/g_h * k_p/m_q) < (a_b/c_d * k_p/m_q), then, by Definition 3.1.15, 4.1.06, and 4.1.13 and Theorem 3.2.08 

and 3.2.10:  

 (e_f * k_p) * (g_h * m_q) * (c_d * m_q)2 = e_f * (k_p * g_h) * [m_q * (c_d)2] * (m_q)2; 

        = e_f * (g_h * k_p) * [(c_d)2 * m_q] * (m_q)2; 

        = e_f * g_h * [k_p * (c_d)2] * (m_q)3; 

        = e_f * g_h * [(c_d)2 * k_p] * (m_q)3; 

        = [e_f * g_h * (c_d)2] * [k_p * (m_q)3]; 

        < [a_b * c_d * (g_h)2] * [k_p * (m_q)3]; 

        = a_b * c_d * [(g_h)2 * k_p] * (m_q)3; 

        = a_b * c_d * [k_p * (g_h)2] * (m_q)3; 

        = a_b * (c_d * k_p) * [(g_h)2 * m_q] * (m_q)2; 

        = a_b * (k_p * c_d) * [m_q * (g_h)2] * (m_q)2; 

        = (a_b * k_p) * (c_d * m_q) * (g_h * m_q)2.  

Therefore, by Theorem 3.2.41, a_b/c_d <  e_f/g_h. 

Therefore, [(e_f/g_h * k_p/m_q) < (a_b/c_d * k_p/m_q)] → (a_b/c_d <  e_f/g_h). 

Therefore, (a_b/c_d < e_f/g_h) iff [(e_f/g_h * k_p/m_q) < (a_b/c_d * k_p/m_q)], as desired. □ 

 Lemma 4.2.35. For all a_b/c_d, e_f/g_h ϵ QQ
+, (a_b/c_d < e_f/g_h) iff (g_h/e_f < c_d/a_b). 

 Proof. Suppose a_b/c_d < e_f/g_h, then, by Definition 3.1.15, and 4.1.13 and Theorem 4.2.08, 4.2.10, 4.2.15, 

4.2.22, 4.2.29, and 4.2.33: 

                    a_b * c_d * (g_h)2 < e_f * g_h * (c_d)2; 

a_b * c_d * (g_h * g_h) * (1_0/c_d * 1_0/g_h) < e_f * g_h * (c_d * c_d) * (1_0/g_h * 1_0/c_d); 

a_b * c_d * (1_0/c_d * 1_0/g_h) * (g_h * g_h) < e_f * g_h * (1_0/g_h * 1_0/c_d) * (c_d * c_d);  

a_b * (c_d * 1_0/c_d) * (1_0/g_h * g_h) * g_h < e_f * (g_h * 1_0/g_h) * (1_0/c_d * c_d) * c_d; 

              a_b * 1_0 * 1_0 * g_h < e_f * 1_0 * 1_0 * c_d; 

        a_b * g_h < e_f * c_d. 

Now suppose, for contradiction, that c_d/a_b ≤ g_h/e_f, then, by Definition 3.1.15, and 4.1.13 and Theorem 4.2.08, 

4.2.10, 4.2.15, 4.2.22, 4.2.29, and 4.2.33: 

         c_d * a_b * (e_f)2 ≤ g_h * e_f * (a_b)2; 

c_d * a_b * (e_f * e_f) * (1_0/a_b * 1_0/e_f) ≤ g_h * e_f * (a_b * a_b) * (1_0/ e_f * 1_0/ a_b); 
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c_d * a_b * (1_0/a_b * 1_0/e_f) * (e_f * e_f) ≤ g_h * e_f * (1_0/ e_f * 1_0/ a_b) * (a_b * a_b); 

c_d * (a_b * 1_0/a_b) * (1_0/e_f * e_f) * e_f ≤ g_h * (e_f * 1_0/ e_f) * (1_0/ a_b * a_b) * a_b; 

             c_d * 1_0 * 1_0 * e_f ≤ g_h * 1_0 * 1_0 * a_b) * a_b; 

      c_d * e_f ≤ g_h * a_b; 

                        e_f * c_d ≤ a_b * g_h, a contradiction. 

Therefore, (a_b/c_d < e_f/g_h) → (g_h/e_f < c_d/a_b). 

Suppose g_h/e_f < c_d/a_b, then by Definition 3.1.15, and 4.1.13 and Theorem 4.2.08, 4.2.10, 4.2.15, 4.2.22, 4.2.29, and 

4.2.33: 

           g_h * e_f * (a_b)2 < c_d * a_b * (e_f)2; 

g_h * e_f * (a_b * a_b) * (1_0/ e_f * 1_0/ a_b) < c_d * a_b * (e_f * e_f) * (1_0/a_b * 1_0/e_f); 

g_h * e_f * (1_0/ e_f * 1_0/ a_b) * (a_b * a_b) < c_d * a_b * (1_0/a_b * 1_0/e_f) * (e_f * e_f); 

g_h * (e_f * 1_0/ e_f) * (1_0/ a_b * a_b) * a_b < c_d * (a_b * 1_0/a_b) * (1_0/e_f * e_f) * e_f; 

   g_h * 1_0 * 1_0 * a_b) * a_b < c_d * 1_0 * 1_0 * e_f; 

        g_h * a_b < c_d * e_f; 

                          a_b * g_h < e_f * c_d.  

Now suppose, for contradiction, that e_f/g_h ≤ a_b/c_d, then, by Definition 3.1.15, and 4.1.13 and Theorem 4.2.08, 

4.2.10, 4.2.15, 4.2.22, 4.2.29, and 4.2.33: 

                       e_f * g_h * (c_d)2 ≤ a_b * c_d * (g_h)2; 

e_f * g_h * (c_d * c_d) * (1_0/g_h * 1_0/c_d) ≤ a_b * c_d * (g_h * g_h) * (1_0/c_d * 1_0/g_h); 

e_f * g_h * (1_0/g_h * 1_0/c_d) * (c_d * c_d) ≤ a_b * c_d * (1_0/c_d * 1_0/g_h) * (g_h * g_h);  

e_f * (g_h * 1_0/g_h) * (1_0/c_d * c_d) * c_d ≤ a_b * (c_d * 1_0/c_d) * (1_0/g_h * g_h) * g_h; 

              e_f * 1_0 * 1_0 * c_d ≤ a_b * 1_0 * 1_0 * g_h; 

         e_f * c_d < a_b * g_h, a contradiction. 

Therefore, (g_h/e_f < c_d/a_b) → (a_b/c_d < e_f/g_h). 

Therefore, (a_b/c_d < e_f/g_h) iff (g_h/e_f < c_d/a_b), as desired.  □ 

 Lemma 4.2.36 For all a_b/c_d ϵ QQ, a_b/c_d can be represented uniquely in lowest terms. 

 Proof. Suppose a_b/c_d is not represented in lowest terms, then, by Definition 4.1.13, (c_d < 0_0) ˅ (gcd(a_b, 

c_d) ≠ 1_0) and two cases arise: 

  Case 1. Suppose c_d < 0_0, then, by Definition 3.1.06 and 4.1.06 and Lemma 3.2.42: 

   a_b/c_d = (- 1_0/- 1_0) * (a_b/c_d); 

     = (- 1_0 * a_b/- 1_0 * c_d); 

     = - (a_b)/- (c_d); and, by Definition 3.1.10 and 3.1.13 and Theorem 3.2.18, 0_0 < c_d. 
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Case 2. Suppose gcd(a_b, c_d) ≠ 1_0, then gcd(a_b, c_d) = x_y ϵ ZQ
+ and, by Definition 3.1.12, there 

exists k_p, m_q ϵ ZQ
+ such that a_b = k_p + x_y and c_d = m_q + x_y and, by Theorem 4.2.03, (k_p/m_q) E 

(a_b/c_d), where gcd(k_p,m_q) = 1_0. 

Suppose, for contradiction, that [(e_f/g_h) E (a_b/c_d)] ˄ [gcd(e_f, g_h) = 1_0] ˄ [(k_p/m_q) E (a_b/c_d)] ˄ 

[gcd(k_p, m_q) = 1_0] ˄ (e_f/g_h ≠ k_p/m_q), then, by Theorem 4.2.03, there exists x_y ϵ ZQ, x_y ≠ 1_0, such 

that [(e_f * x_y)/(g_h * x_y) = k_p/m_q] ˅ [(k_p * x_y)/(m_q * x_y) = e_f/g_h]. But then, [(x_y | k_p) ˄ (x_y | 

m_q)] ˅ [(x_y | e_f) ˄ (x_y | g_h)], a contradiction.  

In both cases, a_b/c_d has a unique representation in lowest terms. 

Therefore, a_b/c_d can be represented uniquely in lowest terms, as desired. □ 

 Lemma 4.2.37. For all a_b/c_d ϵ QQ, a_b/c_d in lowest terms, |a_b/c_d| = |a_b|/c_d. 

 Proof. By Definition 3.1.14, 4.1.01, 4.1.05, 4.1.11, 4.1.14, and 4.1.16, as desired. □ 

 Theorem 4.2.38. Let G = {a_b|(a_b ϵ ZQ
+) ˄ (a = 0) ˄ (b ≠ 0)}, let H = { a_b|(a_b ϵ ZQ

+) ˄ (0 < a) ˄ (b < 0) ˄ (a < 

|b|)}, and let: 

1. A = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a < 0) ˄ (b < 0)}; 

2. B = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a < 0) ˄ (0 ≤ b)}; 

3. C = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a = 0) ˄ (b < 0)}; 

4. D = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a = 0) ˄ (0 ≤ b)}; 

5. E = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (0 < a) ˄ (b < 0)}; 

6. F = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (0 < a) ˄ (0 ≤ b)}, where the elements of each set are in lowest terms. 

Then we demonstrate the following: 

a. For all a_b/c_d, e_f/g_h ϵ A, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

b. For all a_b/c_d ϵ A, e_f/g_h ϵ B, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

c. For all a_b/c_d ϵ A, e_f/g_h ϵ C, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

d. For all a_b/c_d ϵ A, e_f/g_h ϵ D, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

e. For all a_b/c_d ϵ A, e_f/g_h ϵ E, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

f. For all a_b/c_d ϵ A, e_f/g_h ϵ F, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 



63 
 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

g. For all a_b/c_d, e_f/g_h ϵ B, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

h. For all a_b/c_d ϵ B, e_f/g_h ϵ C, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, (|a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|) iff (b ≤ │a│). 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

i. For all a_b/c_d ϵ B, e_f/g_h ϵ D, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, (|a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|) iff (b ≤ │a│). 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

j. For all a_b/c_d ϵ B, e_f/g_h ϵ E, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

k. For all a_b/c_d ϵ B, e_f/g_h ϵ F, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

l. For all a_b/c_d, e_f/g_h ϵ C, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

m. For all a_b/c_d ϵ C, e_f/g_h ϵ D, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

n. For all a_b/c_d ϵ C, e_f/g_h ϵ E, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, (|a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|) iff (│f│ ≤ e). 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

o. For all a_b/c_d ϵ C, e_f/g_h ϵ F, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

p. For all a_b/c_d, e_f/g_h ϵ D, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

q. For all a_b/c_d ϵ D, e_f/g_h ϵ E, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, (|a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|) iff (│f│ ≤ e). 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 
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r. For all a_b/c_d ϵ D, e_f/g_h ϵ F, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

s. For all a_b/c_d, e_f/g_h ϵ E, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

t. For all a_b/c_d ϵ E, e_f/g_h ϵ F, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

u. For all a_b/c_d, e_f/g_h ϵ F, ¬ {[(c_d ϵ G) ˄ (g_h ϵ H)] ˅ [(g_h ϵ G) ˄ (c_d ϵ H)]}, |a_b/c_d| * |e_f/g_h| = 

|a_b/c_d * e_f/g_h|. 

Proof. By Definition 4.1.06, Theorem 3.2.45, and Lemma 4.2.37, as desired. □ 

 Theorem 4.2.39. For all a_b/c_d ϵ QQ, a_b/c_d in lowest terms, |a_b/c_d| = |- (a_b)/c_d|.  

 Proof. By Lemma 3.2.46 and 4.2.37, as desired. □ 

 Theorem 4.2.40. For all a_b/c_d, e_f/g_h ϵ QQ, a_b/c_d in lowest terms, |a_b/c_d + e_f/g_h| ≤ |a_b/c_d| + 

|e_f/g_h|. 

 Proof. By Definition 4.1.15 and Theorem 4.2.30, [(a_b/c_d ϵ QQ
-) ˅ (a_b/c_d = 0_0) ˅ (a_b/c_d ϵ QQ

+)] ˄ [(e_f/g_h 

ϵ QQ
-) ˅ (e_f/g_h = 0_0) ˅ (e_f/g_h ϵ QQ

+)] and nine cases arise, three of which are redundant, leaving six cases to 

consider: 

 Case 1. Suppose (a_b/c_d ϵ QQ
-) ˄ (e_f/g_h ϵ QQ

-), then, by Definition 4.1.06 and 4.1.16, Theorem 3.2.08 and 

3.2.10, Corollary 3.2.43, and Lemma 4.2.37: 

    |a_b/c_d + e_f/g_h| = - (a_b/c_d + e_f/g_h); 

                = - [(a_b * g_h + c_d * e_f)/(c_d * g_h)]; 

                = - (a_b * g_h + c_d * e_f)/(c_d * g_h); 

                = {- (a_b) * g_h + c_d * [-(e_f)]}/(c_d * g_h)]; 

                = - (a_b)/c_d + - (e_f)/g_h; 

                             = |a_b/c_d| + |e_f/g_h|. 

 Case 2. Suppose (a_b/c_d = 0_0) ˄ (e_f/g_h = 0_0), then, by Definition 4.1.06 and 4.1.16 and Theorem 4.2.13: 

    |a_b/c_d + e_f/g_h| = |0_0 + 0_0|; 

                             = |0_0|; 

                             = 0_0; 

                             = 0_0 + 0_0; 

                             = |a_b/c_d| + |e_f/g_h|. 

 Case 3. Suppose (a_b/c_d ϵ QQ
+) ˄ (e_f/g_h ϵ QQ

+), then, by Definition 4.1.16: 
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  |a_b/c_d + e_f/g_h| = a_b/c_d + e_f/g_h; 

                           = |a_b/c_d| + |e_f/g_h|. 

 Case 4. Suppose (a_b/c_d ϵ QQ
+) ˄ (e_f/g_h = 0_0), then, by Definition 4.1.16 and Theorem 4.2.13: 

    |a_b/c_d + e_f/g_h| = |a_b/c_d + 0_0|; 

                             = |a_b/c_d|; 

                             = a_b/c_d; 

                             = a_b/c_d + 0_0; 

                             = |a_b/c_d| + |e_f/g_h|. 

 This result remains unchanged in the case (a_b/c_d = 0_0) ˄ (e_f/g_h ϵ QQ
+).  

 Case 5. Suppose (a_b/c_d ϵ QQ
-) ˄ (e_f/g_h = 0_0), then, by Definition 4.1.16 and Theorem 4.2.13: 

   |a_b/c_d + e_f/g_h| = |a_b/c_d + 0_0|; 

                           = |a_b/c_d|; 

                           = - (a_b)/c_d; 

                           = - (a_b)/c_d + 0_0; 

                           = |a_b/c_d| + |e_f/g_h|. 

 This result remains unchanged in the case (a_b/c_d = 0_0) ˄ (e_f/g_h ϵ QQ
-). 

 Case 6. Suppose (a_b/c_d ϵ QQ
-) ˄ (e_f/g_h ϵ QQ

+), then, by Definition 4.1.16 and Theorem 4.2.30, (|a_b/c_d| = - 

(a_b)/c_d < e_f/g_h) ˅ (e_f/g_h < |a_b/c_d| = - (a_b)/c_d) and two cases arise: 

Case 6.a. Suppose |a_b/c_d| = - (a_b)/c_d < e_f/g_h, then, by Definition 4.1.09, 4.1.13, and 4.1.16 and 

Theorem 4.2.07: 

   |a_b/c_d + e_f/g_h| = e_f/g_h - |a_b/c_d|; 

                                      = e_f/g_h - [- (a_b)/c_d]; 

                                         < e_f/g_h + [- (a_b)/c_d]; 

                                         = [- (a_b)/c_d] + e_f/g_h; 

                                         = |a_b/c_d| + |e_f/g_h|. 

  Case 6.b. Suppose e_f/g_h < |a_b/c_d| = - (a_b)/c_d, then, by Definition 4.1.09, 4.1.13, and 4.1.16: 

    |a_b/c_d + e_f/g_h| = |a_b/c_d| - ( e_f/g_h); 

                                       = [- (a_b)/c_d] - (e_f/g_h); 

                                           < [- (a_b)/c_d] + e_f/g_h; 

                                           = |a_b/c_d| + |e_f/g_h|. 

  In both cases, |a_b/c_d + e_f/g_h| < |a_b/c_d| + |e_f/g_h|. 
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 This result remains unchanged in the case (a_b/c_d ϵ QQ

+) ˄ (e_f/g_h ϵ QQ
-). 

 In all six cases, (|a_b/c_d + e_f/g_h| = |a_b/c_d| + |e_f/g_h|) ˅ (|a_b/c_d + e_f/g_h| < |a_b/c_d| + 

|e_f/g_h|). 

Therefore, |a_b/c_d + e_f/g_h| ≤ |a_b/c_d| + |e_f/g_h|, as desired. □ 

 Corollary 4.2.41. For all a_b/c_d, e_f/g_h ϵ QQ, |a_b/c_d| - |e_f/g_h| ≤ |a_b/c_d - e_f/g_h|. 

 Proof. By Definition 4.1.09 and Theorem 4.2.13 and 4.2.19: 

  |(a_b/c_d - e_f/g_h) + e_f/g_h| ≤ |a_b/c_d - e_f/g_h| + |e_f/g_h|; 

                           |a_b/c_d| ≤ |a_b/c_d - e_f/g_h| + |e_f/g_h|; 

                                  |a_b/c_d| - |e_f/g_h| ≤ |a_b/c_d - e_f/g_h|, as desired. □ 

 Theorem 4.2.42. For all a_b/c_d, e_f/g_h ϵ QQ, (0_0 < a_b/c_d) → [(|e_f/g_h| < a_b/c_d) iff [- (a_b)/c_d < 

e_f/g_h < a_b/c_d]. 

 Proof. Suppose (0_0 < a_b/c_d) ˄ (|e_f/g_h| < a_b/c_d), then, by Theorem 4.2.30, (e_/g_h < 0_0) ˅ (0_0 ≤ 

e_f/g_h) and two cases arise:  

Case 1. Suppose e_f/g_h < 0_0, then, by Definition 4.1.06 and 4.1.16 and Theorem 4.2.34, - (a_b)/c_d < 

e_f/g_h. 

Case 2. Suppose 0_0 ≤ e_f/g_h, then, by Definition 4.1.16, 0_0 ≤ e_f/g_h < a_b/c_d. 

In both cases, - (a_b)/c_d < e_f/g_h < a_b/c_d. 

Therefore, (|e_f/g_h | < a_b/c_d) → [- (a_b)/c_d < e_f/g_h < a_b/c_d]. 

Suppose (0_0 < a_b/c_d) ˄ [- (a_b)/c_d < e_f/g_h < a_b/c_d], then, by Theorem 4.2.30, (e_f/g_h < 0_0) ˅ (0_0 ≤ e_f/g_h) 

and two cases arise:  

Case 1. Suppose e_f/g_h < 0_0, then, by Definition 4.1.06 and 4.1.16 and Theorem 4.2.34, - (e_f)/g_h =  

|e_f/g_h | < - [- (a_b)/c_d] = a_b/c_d. 

Case 2. Suppose 0_0 ≤ e_f/g_h, then, by Definition 4.1.16, | e_f/g_h |< a_b/c_d.  

In both cases, | e_f/g_h |< a_b/c_d. 

Therefore, [- (a_b)/c_d < e_f/g_h < a_b/c_d] → (|e_f/g_h |< a_b/c_d). 

Therefore, (0_0 < a_b/c_d) → {(| e_f/g_h | < a_b/c_d) iff [- (a_b)/c_d < e_f/g_h < a_b/c_d]}, as desired. □ 

Theorem 4.2.43. For all n ϵ Z, a_b/c_d ϵ QQ, (a_b/c_d)n is defined. 

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b/c_d)x is defined,” then: 

P(0). By Definition 4.1.17, (a_b/c_d)0 = 1_0. 

Suppose P(n) is true, then (a_b/c_d)n is defined and: 

P(n + 1). By Definition 4.1.17, (a_b/c_d)(n + 1) = (a_b/c_d)n * a_b/c_d, hence, by Definition 4.1.06 and Theorem 

4.2.06, (a_b/c_d)(n + 1) is defined. 

P(–n). By Definition 4.1.17, (a_b/c_d)- n = (c_d/a_b)n, hence, since a_b/c_d ϵ QQ was arbitrary, (a_b/c_d)- n is 

defined.  
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Therefore, P(n) → [P(n + 1) ˄ P(– n)] and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

n ϵ Z, a_b/c_d ϵ QQ, (a_b/c_d)n is defined, as desired. □ 

 Lemma 4.2.44. For all a_b/c_d ϵ QQ
-, (a_b/c_d)n is negative if n is odd and positive if n is even.  

 Proof. This is an immediate consequence of Definition 4.1.06, 4.1.15, and 4.1.17 and Corollary 3.2.43 and 3.2.44, 

as desired. □ 

Theorem 3.2.45. For all n ϵ Z, a_b/c_d, e_f/g_h ϵ QQ, (a_b/c_d * e_f/g_h)n = (a_b/c_d)n * (e_f/g_h)n.  

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b/c_d * e_f/g_h)x = (a_b/c_d)x * (e_f/g_h)x,” 

then: 

P(0). By Definition 4.1.17 and Theorem 4.2.15, (a_b/c_d * e_f/g_h)0 = 1_0 = 1_0 * 1_0 = (a_b/c_d)0 * (e_f/g_h)0. 

Suppose P(n) is true, then (a_b/c_d * e_f/g_h)n = (a_b/c_d)n * (e_f/g_h)n and: 

P(n + 1). By Definition 4.1.17 and Theorem 4.2.08 and 4.2.10: 

 (a_b/c_d * e_f/g_h)(n + 1) = (a_b/c_d * e_f/g_h)n * (a_b/c_d * e_f/g_h); 

                                = (a_b/c_d)n * (e_f/g_h)n * (a_b/c_d * e_f/g_h); 

                                = (a_b/c_d)n * [(e_f/g_h)n * (a_b/c_d * e_f/g_h)]; 

                                = (a_b/c_d)n * [(e_f/g_h)n * a_b/c_d] * e_f/g_h; 

                                = (a_b/c_d)n * [a_b/c_d * (e_f/g_h)n] * e_f/g_h; 

                                = [(a_b/c_d)n * a_b/c_d] * [(e_f/g_h)n * e_f/g_h]; 

                                = (a_b/c_d)(n + 1) * (e_f/g_h)(n + 1). 

P(– n). By Definition 4.1.06 and 4.1.17 and by the fact that a_b/c_d, e_f/g_h ϵ QQ are arbitrary: 

 (a_b/c_d * e_f/g_h)- n = [(a_b * e_f)/(c_d * g_h)]- n; 

              = [(c_d * g_h)/(a_b * e_f)]n; 

              = (c_d/a_b)n * (g_h / e_f)n; 

              = (a_b/c_d)- n * (e_f/g_h)- n. 

Therefore, P(n) → [P(n + 1) ˄ P(– n)]  and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

n ϵ Z, a_b/c_d, e_f/g_h ϵ QQ, (a_b/c_d * e_f/g_h)n = (a_b/c_d)n * (e_f/g_h)n, as desired. □ 

 Theorem 4.2.46. For all m, n ϵ Z, a_b/c_d ϵ QQ, (a_b/c_d)m * (a_b/c_d)n = (a_b/c_d)(m + n). 

 Proof. We proceed by induction on n. Let P(x) be the property, “(a_b/c_d)m * (a_b/c_d)x = (a_b/c_d)(m + x),” then: 

P(0). By Definition 4.1.17 and Theorem 4.2.15, (a_b/c_d)m * (a_b/c_d)0 = (a_b/c_d)m * 1_0 = (a_b/c_d)m = (a_b/c_d)(m + 0). 

Suppose P(n) is true, then (a_b/c_d)m * (a_b/c_d)n = (a_b/c_d)(m + n) and: 

P(n + 1). By Definition 4.1.17 and Theorem 4.2.10:  

 (a_b/c_d)m * (a_b/c_d)(n + 1) = (a_b/c_d)m * [(a_b/c_d)n * a_b/c_d]; 

                        = [(a_b/c_d)m * (a_b/c_d)n] * a_b/c_d; 
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                        = (a_b/c_d)(m + n) * a_b/c_d; 

                        = (a_b/c_d)[(m + n) + 1]; 

                        = (a_b/c_d)[m + (n + 1)]. 

P(– n). This is an immediate consequence of the above argument together with the fact that, for all m, n ϵ Z, m – n = m + 

(– n) (reference [CD], Chapter 5, page 165).   

Therefore, P(n) → [P(n + 1) ˄ P(– n)] and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

m, n ϵ Z, a_b/c_d ϵ QQ, (a_b/c_d)m * (a_b/c_d)n = (a_b/c_d)(m + n), as desired. □ 

 Theorem 4.2.47. For all m, n ϵ Z, a_b/c_d ϵ QQ, [(a_b/c_d)m]n = (a_b/c_d)(m * n).  

 Proof. We proceed by induction on n. Let P(x) be the property, “[(a_b/c_d)m]x = (a_b/c_d)(m * x),” then: 

P(0). By Definition 4.1.17, [(a_b/c_d)m]0 = 1_0 = (a_b/c_d)0 = (a_b/c_d)(m * 0). 

Suppose P(n) is true, then [(a_b/c_d)m]n = (a_b/c_d)(m * n) and: 

P(n + 1). By Definition 4.1.17 and Theorem 4.2.46: 

 [(a_b/c_d)m](n + 1) = [(a_b/c_d)m]n * (a_b/c_d)m; 

                   = (a_b/c_d)(m * n) * (a_b/c_d)m; 

                   = (a_b/c_d)[(m * n) + m]; 

                   = (a_b/c_d)[m * (n + 1)]. 

P(– n). By Definition 4.1.17 and the fact that a_b/c_d is arbitrary: 

 [(a_b/c_d)m]- n = [(c_d/a_b)m] n; 

                   = (c_d/a_b)(m * n); 

                   = (a_b/c_d)- (m * n); 

                   = (a_b/c_d)[m * (- n)]. 

Therefore, P(n) → [P(n + 1) ˄ P(– n)] and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

m, n ϵ Z, a_b/c_d ϵ QQ, [(a_b/c_d)m]n = (a_b/c_d)(m * n), as desired. □ 

Theorem 4.2.48. QQ is dense. 

 Proof. Let a_b/c_d, e_f/g_h ϵ QQ be arbitrary but such that a_b/c_d < e_f/g_h, then, by Definition 4.1.13, a_b * 

c_d * (g_h)2 < e_f * g_h * (c_d)2. By Definition3.1.15, 4.1.06, and 4.1.10 and Theorem 3.2.11, 3.2.16, and 4.2.12:  

  (a_b/c_d +  e_f/g_h) * 1_0/2_0 = (a_b/c_d * 1_0/2_0)  +  (e_f/g_h * 1_0/2_0); 

                   = [(a_b * 1_0)/(c_d * 2_0)] + [(e_f * 1_0)/(g_h * 2_0)]; 

                   = a_b/(c_d * 2_0) + e_f/(g_h * 2_0); 

                   = (a_b * g_h * 2_0 + e_f * c_d * 2_0)/ [c_d * g_h * (2_0)2]; 

                   = 2_0 * (a_b * g_h  + e_f * c_d)/ (2_0)2 * (c_d * g_h); 

                   = (a_b * g_h  + e_f * c_d)/ (2_0 * c_d * g_h). 
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By Definition 3.1.06, 3.1.13, and 3.1.15 and Theorem 3.2.08, 3.2.10, 3.2.12, and 3.2.37:  

  a_b * c_d *  (2_0 * c_d * g_h)2 = (a_b * c_d) *  (2_0)2 * (c_d)2 * (g_h)2; 

                 = [(a_b * c_d) * 2_0] * 2_0 * [(c_d)2 * (g_h)2]; 

                 = 2_0 * a_b * c_d * [2_0 * (g_h)2] * (c_d)2; 

                 = [2_0 * a_b * c_d * (g_h)2] * [2_0 * (c_d)2]; 

                 = [a_b * c_d * (g_h)2 + a_b * c_d * (g_h)2] * [2_0 * (c_d)2];   

                < [a_b * c_d * (g_h)2 + e_f * g_h * (c_d)2] * [2_0 * (c_d)2]; 

                = [a_b * (c_d * g_h) * g_h + e_f * (g_h * c_d) *c_d] * [2_0 * (c_d)2]; 

                = [a_b * g_h * (c_d * g_h) + e_f * c_d * (c_d * g_h)] * [2_0 * (c_d)2]; 

                = (a_b * g_h + e_f * c_d) * [(c_d * g_h)* 2_0] * (c_d)2; 

                = (a_b * g_h + e_f * c_d) * (2_0 * c_d * g_h) * (c_d)2. 

Therefore, by Definition 4.1.13, a_b/c_d < [(a_b/c_d + e_f/g_h) * 1_0/2_0]. 

Letting A = (a_b * g_h + e_f * c_d) * (2_0 * c_d * g_h) * (g_h)2, by Definitiion 3.1.06, 3.1.13, and 3.1.15 and Theorem 

3.2.08, 3.2.10, 3.2.12, and 3.2.37: 

   A = (a_b * g_h + e_f * c_d) * [2_0 * (c_d * g_h)] * (g_h)2; 

     = (a_b * g_h + e_f * c_d) * [(c_d * g_h) * 2_0] * (g_h)2; 

     = (a_b * g_h + e_f * c_d) * (c_d * g_h) * [2_0 * (g_h)2]; 

     = [(a_b * g_h) * (c_d * g_h) + (e_f * c_d) * (c_d * g_h)] * [2_0 * (g_h)2]; 

     = {[a_b * (g_h * c_d) * g_h] + [e_f * (c_d * c_d) * g_h]} * [2_0 * (g_h)2]; 

     = {[a_b * (c_d * g_h) * g_h] + [e_f * g_h * (c_d * c_d)]} * [2_0 * (g_h)2]; 

     = {[a_b * c_d * (g_h)2] + [e_f * g_h * (c_d)2]} * [2_0 * (g_h)2]; 

     < {[ e_f * g_h * (c_d)2] + [e_f * g_h * (c_d)2]} * [2_0 * (g_h)2]; 

     = [2_0 * (e_f * g_h) * (c_d)2] * [2_0 * (g_h)2]; 

     = (e_f * g_h) * {2_0  * [(c_d)2 * 2_0] * (g_h)2}; 

     = e_f * g_h * [2_0  * 2_0 * (c_d)2 * (g_h)2]; 

     = e_f * g_h * (2_0)2 * (g_h)2 * (c_d)2; 

     = e_f * g_h * (2_0 * g_h * c_d)2. 

Therefore, by Definition 4.1.13, (a_b/c_d + e_f/g_h) * 1_0/2_0 < e_f/g_h. 

Therefore, by Theorem 4.2.30, a_b/c_d < [(a_b/c_d + e_f/g_h) * 1_0/2_0] < e_f/g_h, and QQ is dense, as desired. □ 

Theorem 4.2.49. For all a_b/c_d ϵ QQ, there exists x_y ϵ ZQ such that a_b/c_d < x_y. 
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 Proof. Let a_b/c_d be in lowest terms, then, by Definition 3.1.12 and Theorem 3.2.16, for all x_y ϵ ZQ, x_y = 

x_y/1_0 ϵ ZQ. Let x_y = |a_b| + 1_0, then, by Definition 3.1.13 and 3.1.14, Theorem 3.2.16, and Corollary 3.2.44: 

  a_b * c_d * (1_0)2 = a_b * c_d; 

        ≤ |a_b| * c_d; 

        < |a_b| * (c_d)2 + (c_d)2; 

        = [(|a_b| + 1_0) * 1_0 * (c_d)2. 

Therefore, by Definition 4.1.13, a_b/c_d < x_y, as desired. □ 

 Theorem 4.2.50. For all a_b/c_d ϵ QQ
+, there exists x_y ϵ ZQ

+ such that 0_1/x_y < a_b/c_d. 

 Proof. Let a_b/c_d ϵ QQ
+ be in lowest terms and let x_y = (c_d + 1_0), then, by Definition 3.1.15 and Theorem 

3.2.12, 3.2.29, and 3.2.40: 

  0_1 * (c_d + 1_0) * (c_d)2 = 0_1 * (c_d)3 + (c_d)2; 

        < a_b * (c_d)3 + 2_0 * (c_d)2 + c_d; 

        = a_b * c_d * [(c_d)2 + 2_0 * c_d + 1_0]; 

        = a_b * c_d * (c_d + 1_0)2. 

Therefore, by Defintion 4.1.13, 0_1/x_y < a_b/c_d, as desired. □ 

Theorem 4.2.51. (QQ, <, +, *) forms a field. 

 Proof. That (QQ, <, +, *) forms a field is an immediate consequence of Theorem 4.2.07, 4.2.08, 4.2.09, 4.2.10, 

4.2.11, 4.2.13, 4.2.14, 4.2.15, 4.2.16, 4.2.20, and 4.2.23, as desired. □ 

Corollary 4.2.52. (QQ, <, +, *) is not an ordered field. 

Proof. Let a_b, c_d ϵ ZQ
+ be such that (a = 0) ˄ (d < 0) ˄ (c < |d|), then, by Theorem 4.2.29, a_b, c_d ϵ QQ

+ and, by 

Lemma 3.2.28, a_b * c_d = 0_b * c + b * d, where (b * c + b * d) < 0, hence, a_b * c_d ϵ QQ
-. Therefore, (QQ, <, +, *) 

violates the closure axiom and is not an ordered field, as desired. □ 

 Theorem 4.2.53. QQ is countable. 

 Proof. By Theorem 3.2.58, ZQ x ZQ is countable (reference [HJ], Chapter 4, page 75) and, by Definition 4.1.01 and 

4.1.05, QQ = QQ
’/E is a proper subset of ZQ x ZQ and at most countable (reference [HJ], Chapter 4, page 77). By Theorem 

4.2.29, QQ properly contains ZQ, hence, QQ is countable, as desired. □ 

 Theorem 4.2.54. QQ has neither a greatest nor a least element. 

 Proof. This is an immediate consequence of Definition 4.1.01 and 4.1.05 and Theorem 3.2.59, as desired. □ 

 Theorem 4.2.55. ¬ [(2_2)1/2 ϵ QQ]. 

 Proof. Suppose, for contradiction, that (2_2)1/2 ϵ QQ, then, by Theorem 4.2.34, (2_2)1/2 can be represented 

uniquely as a q-rational fraction, a_b/c_d, in lowest terms. Let a_b/c_d = (2_2)1/2, then, by Definition 4.1.06 and 4.1.16, 

(a_b)2/(c_d)2 = 2_2/1_0, hence, (a_b)2  = 2_2 and c_d = 1_0. Then, by Definition 2.1.14, Lemma 2.2.07, and Theorem 

3.2.20, (a2 ϵ N) ˄ (a2 = 2). But 12 = 1 < 22 = 4, hence, 1 < a < 2, a contradiction. Therefore, ¬ [(2_2)1/2 ϵ QQ], as desired. □  

Theorem 4.2.56. QQ has gaps. 
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 Proof. Let A = {a_b/c_d | (a_b/c_d ϵ QQ) ˄ [(a_b/c_d ≤ 0_0) ˅ (0_0 < a_b/c_d ˄ (a_b/c_d)1/2 < e_f)]} and let B = QQ 

– A, then, by Theorem 4.2.30, A and B exist. Clearly A ∩ B = A ∩ (QQ – A) = φ and A U B = A U (QQ – A) = QQ. Suppose, for 

contradiction, that A has a greatest element, a_b/c_d, and B a least element, e_f/g_h, then a_b/c_d is the greatest lower 

bound of B and e_f/g_h is the least upper bound of A, hence, a_b/c_d = e_f/g_h (reference [HJ], Chapter 2, pages 35 and 

36), contradicting the fact that A ∩ B = φ. Therefore, by Definition 4.1.18, QQ has gaps, as desired. □  

 Lemma 4.2.57. Let W = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a ≠ 0) ˄ (c = 0)}, then, for all a_b/c_d ϵ QQ ─ W, a_b/c_d = x_y, 

where x,y ϵ R. 

 Proof. Let a_b/c_d ϵ QQ ─ W be arbitrary, then, by Definition 3.1.12, 4.1.01, and 4.1.05 and Lemma 3.2.28: 

  a_b = x_y * c_d; 

         = (x * c)_(y * c + x * d + y * d); 

         = (x * c)_[x * d + y * (c + d)]. 

Hence, x = a/c, y = (b * c - a * d)/[c * (c + d)], and a_b/c_d = (a/c)_{(b * c - a * d)/[c * (c + d)}, as desired. □ 

 

 5. Q-Reals. We develop the q-reals as suprema of Dedekind cuts on the q-rationals. This development adheres 

rather faithfully to the standard Dedekind cut method; however, due to the definition of multiplication on QQ, the fact 

that ZQ
+ is not closed under multiplication, and that there exist elements of ZQ

- which remain in ZQ
- when multiplied, 

there is a slight deviation, in the form of two added cases under Dedekind cut multiplication. The modification necessary 

to accommodate these additional cases is rather straight-forward and the elegance of the Dedekind cut method is 

largely retained, allowing this development to fill the gaps in the q-rationals resulting in a unique, q-naturally lattice 

complete field. Due to the aforementioned violation of closure, the q-rational completion is not an ordered field.  

Historically, the standard reals were invented after it was discovered that the standard rationals were insufficient for the 

general quantification of geometrical elements. Through analogous geometrical considerations, we discover that the q-

components of the q-reals must be allowed to take complex values; in fact, there is a proper subset of the q-reals which, 

from a practical perspective, could be defined as elements of R x C, where, for all (a, b + ci) ϵ R x C, (a, b + ci) = a_b + ci. 

Given that, in the geometrical context, these q-reals quantify the magnitude of linear elements, it is difficult if not 

impossible to physically interpret the imaginary components as rotations in the plane.  

 

 5.1. Definitions. We define our mathematical entities using standard terminology. 

 Definition 5.1.01. Given a dense, linearly ordered set, (P, <), a Dedekind cut on P is an ordered pair of sets, (A, B), 

such that: 

1. (A, B ≠ φ) ˄ (A ∩ B = φ) ˄ (A U B = P); 

2. for all a ϵ A, b ϵ B, a < b; 

3. A does not have a greatest element. 

Since B = P ─ A, we can fully define a Dedekind cut simply by specifying the set A in the ordered pair (A, B).  

 Definition 5.1.02. Let RD
 = {A|(A, QQ ─ A) is a Dedekind cut on (QQ, <)}.   

 Definition 5.1.03. The relation “<“ (strict order) on RD is defined by: 

for all A1, A2 ϵ RD, A1 < A2 iff A2 properly contains A1. 
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 Definition 5.1.04. The operation “+“ (addition) on RD is defined by: 

  for all A1, A2 ϵ RD, A1 + A2 = {a_b/c_d + e_f/g_h|(a_b/c_d ϵ A1) ˄ (e_f/g_h ϵ A2)}. 

 Definition 5.1.05. Let Z = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a_b/c_d < 0_0)} ϵ RD, then we call Z the zero element of RD. 

 Definition 5.1.06. Let U = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a_b/c_d < 1_0)} ϵ RD, then we call U the unity element of 

RD.  

Definition 5.1.07. Let A ϵ RD be arbitrary, then the additive inverse of A is: 

- A = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (there exists e_f/g_h ϵ QQ such that, for all k_p/m_q ϵ A, a_b/c_d < 

e_f/g_h < - (k_p)/m_q}. 

 Definition 5.1.08. Let A ϵ RD be arbitrary, then: 

1. if there exist a_b/c_d ϵ A such that 0_0 < a_b/c_d, then Z < A and A is called positive; 

2. if there exist a_b/c_d ϵ QQ ─ A such that a_b/c_d < 0_0, then A < Z and A is called negative;  

3. the set of all positive elements of RD will be designated RD
+ and the set of all negative elements RD

-. 

 Definition 5.1.09. The relation “||“ (absolute value) on QQ is defined by: 

  for all A ϵ RD, |A| = A U (- A). 

 Definition 5.1.10. Let K represent the statement:  

for all a_b/c_d ϵ A1 ─ Z (|A1| ─ Z), e-f/g_h ϵ A2 ─ Z (|A2| ─ Z), {[(a = 0) ˄ (f < 0) ˄ (e < |f|)] ˅ [(e = 0) ˄ (b < 

0) ˄ (a < |b|)]}, where |Ai| ─ Z applies is Ai < Z. 

Let L represent the statement: 

for all a_b/c_d ϵ A1 ─ Z (|A1| ─ Z), e-f/g_h ϵ A2 ─ Z (|A2| ─ Z), {[(c = 0) ˄ (h < 0) ˄ (g < |h|)] ˅ [(g = 0) ˄ (d < 

0) ˄ (c < |d|)]}, where |Ai| ─ Z applies is Ai < Z. 

Let M = {a_b/c_d * e_f/g_h|[a_b/c_d ϵ A1 ─ Z (|A1| ─ Z)] ˄ [e_f/g_h ϵ A2 ─ Z (|A2| ─ Z)]}, where |Ai| ─ Z applies is 

Ai < Z. 

Let - M = {a_b/c_d|- (a_b)/c_d ϵ M}. 

Let |M| = M U (- M). 

Then the operation, “*” (multiplication) on RD is defined by: 

  for all A1, A2 ϵ RD, A1 * A2 = M U Z, if (Z < A1, A2) ˄ ¬ (K ˅ L); 

      = - (|M| U Z) if (Z < A1, A2) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)]; 

      = - (M U Z) if [(A1 < Z) ˄ (Z < A2)] ˅ [(A2 < Z) ˄ (Z < A1)]; 

      = M U Z, if (A1, A2 < Z) ˄ ¬ (K ˅ L); 

      = - (|M| U Z) if (A1, A2 < Z) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)]; 

      = Z, if (A1 = Z) ˅ (A2 = Z). 

 Definition 5.1.11. Let A ϵ RD ─ Z be arbitrary, then the multiplicative inverse of A is: 

A- 1 = { a_b/c_d|(a_b/c_d ϵ QQ) ˄ (there exists e_f/g_h ϵ QQ ─ A (QQ ─ |A|) such that e_f/g_h < c_d/a_b} U 

Z U {0_0}, if Z < A; 
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A- 1 = - (|A|- 1), if A < Z.    

 Definition 5.1.12. The operation “-“ (subtraction) on RD is defined by: 

for all A1, A2 ϵ RD, A1 - A2 = A3 iff A1 = A3 * A2.  

 Definition 5.1.13. The operation “÷ “ (division) on RD is defined by: 

for all A1, A2 ϵ RD, A1 ÷ A2 = A1 * A2
- 1.  

 Definition 5.1.14. Let A ϵ RD be arbitrary, then if QQ ─ A has a least element in QQ, A is called a q-rational cut; 

otherwise, A is called a q-irrational cut. The set of all q-rational cuts will be designated by QD.  

 Definition 5.1.15. Let RQ = {a_b|a_b = sup A, A ϵ RD}, then the elements of RQ will be called q-real numbers. If sup 

A ϵ QQ, then sup A can be represented by a_b/c_d or e_f, where a_b = e_f * c_d, provided e_f exists. If ¬ (sup A ϵ QQ), 

then sup A can be represented by k_p, where k, p ϵ R, the set of real numbers. 

 Definition 5.1.16. For all a_b ϵ RQ – {0_0}, p/q ϵ Q, k ϵ Z, [(a_b)0 = 1_0] ˄ [(a_b)1 = a_b] ˄ [(a_b)k + 1 = (a_b)k * a_b] 

˄ [(a_b)- k = 1_0/(a_b)k] ˄ {[(a_b)1/k = c_d] iff [(c_d)k = a_b]} ˄ {(a_b)p/q = [(a_b)p]1/q}. 

 Definition 5.1.17. Let (C, <, +, *) be an arbitrary field, then (C, <, +, *) is Dedekind complete iff every Dedekind cut 

on (C, <) has a supremum in (C, <). 

 Definition 5.1.18.  Let (C, <, +, *) be an arbitrary field, then (C, <, +, *) has the infimum property iff every non-

empty subset of (C, <) which is bounded below, has an infimum in (C, <). 

 Definition 5.1.19. Let (C, <, +, *) be an arbitrary field, then (C, <, +, *) is lattice complete iff it is Dedekind 

complete and has the infimum property. 

 Definition 5.1.20. A lattice complete field constructed set-theoretically on the foundation (NQ, <, +, *) is said to 

be q-naturally lattice complete or, equivalently, first-order lattice complete. 

 

5.2. Arguments. We demonstrate our arguments using the standard methods and terminology of mathematical 

logic and ZFC/AFA or generalizations thereof. Specific to the current work, we generalize the Principle of Induction to the 

Principle of Q-Induction and we utilize results from reference [HJ] and [CD]. 

 

 Theorem 5.2.01. The set RD of Definition 5.1.02 exists. 

 Proof. By Definition 5.1.01, RD is properly containded in P(QQ), hence, by Theorem 4.2.01 and the Axiom of 

Power Set, RD exists, as desired. □ 

 Theorem 5.2.02. The set RD is closed under the arithmetical operation addition. 

 Proof. Consistent with Definition 5.1.01, the proof is in three parts: 

1) Let A1, A2 ϵ RD be arbitrary, then, by Definition 5.1.01 and 5.1.02, (A1 ≠ φ) ˄ (A2 ≠ φ), hence, by Definition 

5.1.04, A1 + A2 ≠ φ. Let (a_b/c_d ϵ A1) ˄ (e_f/g_h ϵ A2) ˄ (k_p/m_q ϵ QQ ─ A1) ˄ (n_r/o_s ϵ QQ ─ A2) be 

arbitrary, then, by Definition 5.1.01 and 5.1.02, (a_b/c_d < k_p/m_q) ˄ (e_f/g_h < n_r/o_s), hence, by 

Theorem 4.2.32, (a_b/c_d + e_f/g_h) < (k_p/m_q + n_r/o_s) and QQ ─ (A1 + A2) ≠ φ. 

2) Suppose, for contradiction, that there exists some a_b/c_d ϵ QQ ─ (A1 + A2) such that for some e_f/g_h ϵ (A1 

+ A2), a_b/c_d < e_f/g_h. Then, by Theorem 4.2.07, 4.2.19, and 4.2.21, a_b/c_d + [e_f/g_h - a_b/c_d] = 

e_f/g_h and, by Definition 5.1.01, 5.1.02, and 5.1.04 and Theorem 4.2.20, (a_b/c_d ϵ A1) ˅ (a_b/c_d ϵ A2), a 
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contradiction. Therefore, for all e_f/g_h ϵ (A1 + A2), a_b/c_d ϵ QQ ─ (A1 + A2), e_f/g_h < a_b/c_d. From this 

immediately follows (A1 + A2) U [QQ ─ (A1 + A2)] = QQ. 

3) By Definition 5.1.01 and 5.1.02, neither A1 nor A2 have greatest elements, hence, by Definition 5.1.04 and 

Theorem 4.2.32, (A1 + A2) has no greatest element. 

Therefore, (A1 + A2) ϵ RD and RD is closed under addition, as desired. □ 

 Theorem 5.2.03. (A ϵ RD) → (- A ϵ RD). 

 Proof. Suppose A ϵ RD, then, consistent with Definition 5.1.01, the proof is in three parts: 

1) By Definition 5.1.01 and 5.1.02, A ≠ φ and, by Definition 5.1.07 and Theorem 4.2.51, - A ≠ φ and, for every 

k_p/m_q  ϵ A, - (k_p)/m_q ϵ QQ ─ (- A), hence, [QQ ─ (- A)] ≠ φ.  

2) Suppose, for contradiction, that there exists some a_b/c_d ϵ QQ ─ (- A) such that for some e_f/g_h ϵ (- A), 

a_b/c_d < e_f/g_h. Then, by Definition 5.1.07 and Theorem 4.2.30, a_b/c_d ϵ - A, a contradiction. Therefore, 

for all e_f/g_h ϵ (- A), a_b/c_d ϵ QQ ─ (- A), e_f/g_h < a_b/c_d. From this immediately follows (- A) U [QQ ─ (- 

A)] = QQ.  

3) By Definition 5.1.01 and 5.1.02, A has no greatest element, hence, by Definition 5.1.07 and Theorem 4.2.51, 

- A has no greatest element. 

Therefore, - A ϵ RD, as desired. □ 

 Lemma 5.2.04. For all A ϵ RD, A = - (- A).  

 Proof. Let a_b/c_d ϵ A be arbitrary, then, by Definition 5.1.07, there exists e_f/g_h ϵ QQ, k_p/m_q ϵ - A such that 

k_p/m_q < e_f/g_h < - (a_b)/c_d. But then, by Theorem 4.2.15 and 4.2.34 and Lemma 4.2.23 and 4.2.24, a_b/c_d <          

- (e_f)/g_h < - (k_p)/m_q, hence, a_b/c_d ϵ - (- A) and - (- A) contains A.  

Let a_b/c_d ϵ - (- A) be arbitrary, then, by Definition 5.1.07, for all k_p/m_q ϵ - A, there exists e_f/g_h ϵ QQ such that 

a_b/c_d < e_f/g_h < - (k_p)/m_q. But then, by Theorem 4.2.15 and 4.2.34 and Lemma 4.2.23 and 4.2.24, k_p/m_q <         

- (e_f)/g_h < - (a_b)/c_d, hence, a_b/c_d ϵ A and A contains - (- A).  

Therefore, A = - (- A), as desired. □ 

 Theorem 5.2.05. For all A ϵ RD, [(A < Z) iff (Z < - A)] ˄ [(- A < Z) iff (Z < A)]. 

 Proof. Suppos A < Z, then, by Definition 5.1.03 and 5.1.05, for all a_b/c_d ϵ A, a_b/c_d < 0_0 and, by Theorem 

4.2.15, 4.2.25, and 4.2.34 and Lemma 4.2.23 and 4.2.24, 0_0 < - (a_b)/c_d, hence, by Definition 5.1.07 and 5.1.08,            

Z < - A.  Therefore, (A < Z) → (Z < - A). 

Suppose Z < - A, then, by Definition 5.1.08, there exists a_b/c_d ϵ - A such that 0_0 < a_b/c_d and, by Definition 5.1.07 

and Lemma 5.2.04, there exists k_p/m_q ϵ QQ ─ A such that k_p/m_q < 0_0, hence, A < Z. Therefore, (Z < - A) → (A < Z).  

Therefore, (A < Z) iff (Z < - A). 

Suppose - A < Z, then, by Definition 5.1.03 and 5.1.05, for all a_b/c_d ϵ - A, a_b/c_d < 0_0 and, by Theorem 4.2.15, 

4.2.25, and 4.2.34 and Lemma 4.2.23 and 4.2.24, 0_0 < - (a_b)/c_d, hence, by Definition 5.1.07 and 5.1.08 and Lemma 

5.2.04,            Z < A.  Therefore, (- A < Z) → (Z < A). 

Suppose Z < A, then, by Definition 5.1.08, there exists a_b/c_d ϵ A such that 0_0 < a_b/c_d and, by Definition 5.1.07, 

there exists k_p/m_q ϵ QQ ─ (- A) such that k_p/m_q < 0_0, hence, - A < Z. Therefore, (Z < A) → (- A < Z).  

Therefore, (- A < Z) iff (Z < A). 

Therefore, [(A < Z) iff (Z < - A)] ˄ [(- A < Z) iff (Z < A)], as desired. □ 
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 Corollary 5.2.06. For all A ϵ RD ─ Z, |A| = |- A| ϵ RD

+. 

 Proof. By Definition 5.1.09, Lemma 5.2.04, and Theorem 5.2.05, as desired. □ 

 Theorem 5.2.07. The set RD is closed under the arithmetical operation multiplication. 

 Proof. By Definition 5.1.10, there are seven cases, three of which are redundant, leaving four cases to consider: 

 Case 1. Suppose (Z < A1, A2) ˄ ¬ (K ˅ L), then, consistent with Definition 5.1.01, the proof is in three parts: 

1) By Definition 5.1.01 and 5.1.02, (A1 ≠ φ) ˄ (A2 ≠ φ), hence, by Definition 5.1.10, A1 * A2 ≠ φ. Let (a_b/c_d ϵ A1 

─ Z) ˄ (e_f/g_h ϵ A2 ─ Z) ˄ (k_p/m_q ϵ QQ ─ A1) ˄ (n_r/o_s ϵ QQ ─ A2) be arbitrary, then, by Definition 5.1.01, 

5.1.02, and 5.1.05, (0_0 ≤ a_b/c_d < k_p/m_q) ˄ (0_0 ≤ e_f/g_h < n_r/o_s) and, by Definition 4.1.13 and 

Theorem 4.2.40, (a_b/c_d * e_f/g_h) < (k_p/m_q * n_r/o_s), hence, QQ ─ (A1 * A2) ≠ φ. 

2) Suppose, for contradiction, that there exists some a_b/c_d ϵ QQ ─ (A1 * A2) such that for some e_f/g_h ϵ (A1 

* A2), a_b/c_d < e_f/g_h. By Theorem 4.2.30, (a_b/c_d < 0_0) ˅ (a_b/c_d = 0_0) ˅ (0_0 < a_b/c_d).  If 

a_b/c_d < 0_0, by Definition 5.1.10, a_b/c_d ϵ (A1 * A2), a contradiction. Otherwise, if 0_0 ≤ a_b/c_d, then 

0_0 ≤ a_b/c_d < k_p/m_q * n_r/o_s for some k_p/m_q ϵ A1 ─ Z, n_r/o_s ϵ A2 ─ Z. By Definition 4.1.12 and 

4.1.13 and Theorem 4.2.22 and 4.2.33, 0_0 ≤ a_b/c_d * o_s/n_r < k_p/m_q and, by Definition 5.1.01 and 

5.1.02 and Theorem 4.2.30, a_b/c_d * o_s/n_r ϵ A1 ─ Z. But then, by Definition 5.1.10 and Theorem 4.2.22 

again, a_b/c_d ϵ (A1 * A2), a contradiction. Therefore, for all e_f/g_h ϵ (A1 * A2), a_b/c_d ϵ QQ ─ (A1 * A2), 

e_f/g_h < a_b/c_d. From this immediately follows (A1 * A2) U [QQ ─ (A1 * A2)] = QQ. 

3) By Definition 5.1.01 and 5.1.02, neither A1 ─ Z nor A2 ─ Z have greatest elements, hence, by Definition 5.1.10 

and Theorem 4.2.33, (A1 * A2) has no greatest element. 

Case 2. Suppose (Z < A1, A2) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)], then, consistent with Definition 5.1.01, the proof is in three 

parts: 

1) By Definition 5.1.01 and 5.1.02, (A1 ≠ φ) ˄ (A2 ≠ φ), hence, by Definition 5.1.10, A1 * A2 ≠ φ. Let (a_b/c_d ϵ A1 

─ Z) ˄ (e_f/g_h ϵ A2 ─ Z) ˄ (k_p/m_q ϵ QQ ─ A1) ˄ (n_r/o_s ϵ QQ ─ A2) be arbitrary, then, by Definition 5.1.10, 

a_b/c_d * e_f/g_h < 0_0 ≤ k_p/m_q * n_r/o_s, hence, by Theorem 4.2.30, QQ ─ (A1 * A2) ≠ φ. 

2) Suppose, for contradiction, that there exists some a_b/c_d ϵ QQ ─ (A1 * A2) such that for some e_f/g_h ϵ (A1 

* A2), a_b/c_d < e_f/g_h, then, by Definition 5.1.10, (a_bc_d ϵ |M|) ˅ (a_bc_d ϵ Z ─ M), a contradiction in 

either case. Therefore, for all e_f/g_h ϵ (A1 * A2), a_b/c_d ϵ QQ ─ (A1 * A2), e_f/g_h < a_b/c_d. From this 

immediately follows (A1 * A2) U [QQ ─ (A1 * A2)] = QQ. 

3) By Definition 5.1.01 and 5.1.02, neither A1 ─ Z nor A2 ─ Z have greatest elements. By Definition 4.1.06, 4.1.13, 

and 5.1.01, as a_b/c_d ϵ A1 ─ Z, e_f/g_h ϵ A2 ─ Z get larger, a_b/c_d * e_f/g_h gets smaller, hence, M has no 

least element, - M has no greatest element, and A1 * A2 = - (|M| U Z) has no greatest element. 

Case 3. That - (M U Z) ϵ RD is an immediate consequence of Case 1 and Theorem 5.2.03. 

Case 4. That - (M U Z) ϵ RD is an immediate consequence of Case 1 and Theorem 5.2.03. 

Case 5. That M U Z ϵ RD is an immediate consequence of Case 1. 

Case 6. That - ((|M| U Z) ϵ RD is an immediate consequence of Case 2. 

Case 7. Z ϵ RD by Definition 5.1.05. 

 In all seven cases, (A1 * A2) ϵ RD.  

Therefore, RD is closed under multiplication, as desired. □  

Theorem 5.2.08. For all A1, A2 ϵ RD, A1 + A2 = A2 + A1. 
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 Proof. By Definition 5.1.04 and Theorem 4.2.07, addition on RD is commutative, as desired. □ 

 Theorem 5.2.09. For all A1, A2 ϵ RD, A1 * A2 = A2 * A1. 

 Proof. By Definition 5.1.10 and Theorem 4.2.08, multiplication on RD is commutative, as desired. □ 

Theorem 5.2.10. For all A1, A2, A3 ϵ RD, (A1 + A2) + A3 = A1 + (A2 + A3). 

Proof. By Definition 5.1.04 and Theorem 4.2.09, addition on RD is associative, as desired. □ 

Theorem 5.2.11. For all A1, A2, A3 ϵ RD, (A1 * A2) * A3 = A1 * (A2 * A3). 

Proof. By Definition 5.1.10 and Theorem 4.2.10, multiplication on RD is associative, as desired. □ 

Theorem 5.2.12. For all A1, A2, A3 ϵ RD, A1 * (A2 + A3) = A1 * A2  + A1 * A3. 

Proof. By Definition 5.1.04 and 5.1.10 and Theorem 4.2.11, multiplication is left distributive over addition on RD, 

as desired. □ 

Theorem 5.2.13. For all A1, A2, A3 ϵ RD, (A1 + A2) * A3 = A1 * A3  + A2 * A3. 

Proof. By Definition 5.1.04 and 5.1.10 and Theorem 4.2.12, multiplication is right distributive over addition on 

RD, as desired. □ 

Theorem 5.3.14. For all A ϵ RD, A + Z = A. 

Proof. Let a_b/c_d ϵ A, e_f/g_h ϵ Z be arbitrary, then, by Definition 5.1.05, e_f/g_h < 0_0 and, by Theorem 

4.2.31, e_f/g_h + a_b/c_d < 0_0 + a_b/c_d. Therefore, by Definition 5.1.01, A contains A + Z. 

Conversely, let a_b/c_d, e_f/g_h ϵ A be arbitrary but such that a_b/c_d < e_f/g_h, then, by Theorem 4.2.19 and 4.2.31, 

a_b/c_d + [- (e_f)]/g_h < 0_0. But then, by Definition 5.1.05, a_b/c_d + [- (e_f)]/g_h ϵ Z and, by Theorem 4.2.19 again, 

a_b/c_d ϵ A + Z. Therefore, A + Z contains A. 

Therefore, A + Z = A and Z is the additive identity for RD, as desired. □ 

 Corollary 5.2.15. For all A, X ϵ RD, (A + X = A) → (X = Z). 

 Proof. Suppose A + X = A and let a_b/c_d ϵ A, e_f/g_h ϵ X be arbitrary, then, by Theorem 5.2.14, a_b/c_d + 

e_f/g_h ϵ A + Z and, since a_b/c_d ϵ A, e_f/g_h ϵ Z, hence, Z contains X. 

Conversely, let a_b/c_d ϵ A, e_f/g_h ϵ Z be arbitrary, then, by supposition and Theorem 5.2.14, a_b/c_d + e_f/g_h ϵ A + 

X and, since a_b/c_d ϵ A, e_f/g_h ϵ X, hence, X contains Z. 

Therefore, X = Z and the additive identity is unique, as desired. □ 

Theorem 5.2.16. For all A ϵ RD, A + (- A) = Z. 

Proof. Let a_b/c_d ϵ - A be arbitrary, then, by Definition 5.1.07, there exists e_f/g_h ϵ QQ such that, for all 

k_p/m_q ϵ A, a_b/c_d < e_f/g_h < - (k_p)/m_q. But then, by Theorem 4.2.07, 4.2.19, and 4.2.32, a_b/c_d + k_p/m_q < 

0_0 and, by Definition 5.1.05, Z contains A + (- A). 

By Defintion 5.1.04 and 5.1.07 and Theorem 4.2.19 and 4.2.48, for all a_b/c_d ϵ A, e_f/g_h ϵ - A,  a_b/c_d + e_f/g_h < 

0_0, yet there exists a_b/c_d ϵ A, e_f/g_h ϵ - A such that a_b/c_d + e_f/g_h approaches arbitrarily close to 0_0 without 

attaining 0_0. But, by Definition 5.1.05, this precisely describes the elements of Z, hence, A + (- A) contains Z. 

Therefore, A + (- A) = Z and - A is the additive inverse of A, as desired. □ 

 Corollary 5.2.17. For all A, X ϵ RD, (A + X = Z) → (X = - A). 
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 Proof. Suppose A + X = Z, then, by Theorem 5.2.08, 5.2.10, 5.2.14, and 5.2.16: 

  (A + X) + (- A) = Z + (- A); 

  (X + A) + (- A) = (- A); 

  X + [A + (- A)] = (- A); 

    X + Z = (- A); 

          X = (- A). 

Therefore, the additive inverse is unique, as desired. □ 

 Lemma 5.2.18. For all A ϵ RD, A * Z = Z.  

 Proof. By Definition 5.1.10, as desired. □ 

 Theorem 5.2.19. (RD, <) is a linearly ordered set. 

 Proof. The proof is in three parts: 

1) Transitivity. Let A1, A2, A3 ϵ RD be arbitrary but such that (A1 < A2) ˄ (A2 < A3). Then, by Definition 5.1.03, A2 

properly contains A1 and A3 properly contains A2, hence, A3 properly contains A1 and A1 < A3. 

2) Asymmetry. Let A1, A2 ϵ RD be arbitrary and suppose, for contradiction, that (A1 < A2) ˄ (A2 < A1), then, by 

transitivity, A1 < A1, a contradiction.  

3) Linearity. Let A1, A2 ϵ RD be arbitrary, then, by Definition 5.1.01 and 5.1.02, there are three possible cases: 

Case 1. (A1 ─ A2 = φ) ˄ (A2 ─ A1 ≠ φ), then, by Definition 5.1.03, A1 < A2. 

Case 2.  (A1 ─ A2 = φ) ˄ (A2 ─ A1 = φ), then, by the Axiom of Extensionality, A1 = A2.  

Case 3. (A1 ─ A2 ≠ φ) ˄ (A2 ─ A1 = φ), then, by Definition 5.1.03, A2 < A1. 

Therefore, (RD, <) is a linearly ordered set, as desired. □ 

 Theorem 5.2.20. For all A ϵ RD, A * U = A.  

 Proof. By Theorem 5.2.19, (A < Z) ˅ (A = Z) ˅ (Z < A) and three cases arise: 

Case 1. Suppose Z < A and let a_b/c_d ϵ A ─ Z, e_f/g_h ϵ U be arbitrary. Then, by Definition 5.1.06, e_f/g_h < 1_0 

and, by Theorem 4.2.08, 4.2.15, and 4.2.33, a_b/c_d * e_f/g_h < a_b/c_d, hence, by Definition 5.1.10, A contains 

A * U. 

Let a_b/c_d ϵ A be arbitrary, then, by Definition 5.1.01 and 5.1.02, there exists e_f/g_h ϵ A such that a_b/c_d < 

e_f/g_h. Let k_p.m_q ϵ U be arbitrary, then, by Definition 5.1.06, k_p/m_q approaches arbitrarily close to 1_0. 

Let k_p/m_q approach arbitrarily close to 1_0, then, by Theorem 4.2.15, e_f/g_h * k_p/m_q approaches 

arbitrarily close to e_f/g_h and a_b/c_d < e_f/g_h * k_p/m_q. Therefore, by Definition 5.1.10, A * U contains A. 

Therefore, (Z < A) → (A * U = A). 

Case 2. Suppose A = Z, then, by Lemma 5.2.18, A * U = A. 

Case 3. Suppose A < Z, then, by Definition 5.1.10, Case 1 immediately above, and Lemma 5.2.04, A * U = A. 

 In all three cases, A * U = A. 

Therefore, A * U = A and U is a multiplicative identity for RD, as desired. □ 
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 Corollary 5.2.21. For all A, X ϵ RD, (A * X = A) → (X = U). 

 Proof. Suppose A * X = A, then, by Theorem 5.2.20, A * X = A * U and, by Definition 5.1.10, X = U. Therefore, the 

multiplicative identity is unique, as desired. □ 

 Lemma 5.2.22. For all A1, A2 ϵ RD, A1 - A2 = A1 + - (A2). 

 Proof. Suppose, for contradiction, that A1 - A2 ≠ A1 + - (A2), then, by Definition 5.1.12 and Theorem 5.2.08, 5.2.10, 

5.2.14, and 5.2.16: 

  A1 - A2 ≠ A1 + (- A2); 

         A1 ≠ [A1 + (- A2)] + A2;  

              ≠ A1 + [(- A2) + A2]; 

              ≠ A1 + [A2 + (- A2)]; 

              ≠ A1 + Z; 

              ≠ A1, a contradiction.  

Therefore, A1 - A2 = A1 + - (A2), as desired. □ 

 Theorem 5.2.23. RD is closed under subtraction. 

 Proof. By Theorem 5.2.02 and Lemma 5.2.22, as desired. □ 

 Theorem 5.2.24. (A ϵ RD ─ Z) → (A- 1 ϵ RD). 

 Proof. Suppose A ϵ RD ─ Z, then, by Theorem 5.2.19, (A < Z) ˅ (Z < A) and two cases arise: 

Case 1. Suppose Z < A, then, consistent with Definition 5.1.01, the proof is in three parts: 

1) By Definition 5.1.01 and 5.1.02, (QQ ─ A ≠ φ), hence, by Definition 5.1.01, 5.1.02, and 5.1.11 and Lemma 

4.2.35, A- 1 ≠ φ. 

2) Suppose, for contradiction, that there exists some a_b/c_d ϵ QQ ─ A- 1 such that, for some e_f/g_h ϵ A- 1, 

a_b/c_d < e_f/g_h. Then, by Definition 5.1.11, there exists k_p/m_q ϵ QQ ─ A such that k_p/m_q < g_h/e_f 

and, by Lemma 4.2.35, g_h/e_f < c_d/a_b, hence, by Theorem 4.2.30, a_b/c_d ϵ A- 1, a contradiction. 

Therefore, for all e_f/g_h ϵ A- 1, a_b/c_d ϵ QQ ─ A- 1, e_f/g_h < a_b/c_d. From this immediately follows A- 1 U 

(QQ ─ A- 1) = QQ. 

3) Suppose, for contradiction, that A- 1 has a greatest element a_b/c_d. Then, by Lemma 4.2.35, for all e_f/g_h 

ϵ A- 1, there exists k_p/m_q ϵ QQ ─ A such that k_p/m_q < c_d/a_b ≤ g_h/e_f. But then, by Theorem 4.2.48, 

there exists o_s/n_r ϵ QQ such that k_p/m_q < o_s/n_r < c_d/a_b and a_b/c_d < n_r/o_s ϵ A- 1, a 

contradiction. 

Therefore, [(A ϵ RD ─ Z) ˄ (Z < A)] → (A- 1 ϵ RD). 

 Case 2. Suppose A < Z, then, by Definition 5.1.11, Case 1 immediately above, and Lemma 5.2.04, A- 1 ϵ RD. 

Therefore, [(A ϵ RD ─ Z) ˄ (A < Z)] → (A- 1 ϵ RD). 

 In both cases, A- 1 ϵ RD. 

Therefore, [(A ϵ RD ─ Z) → (A- 1 ϵ RD), as desired. □ 

 Theorem 5.2.25. For all A ϵ RD ─ Z, A * A- 1 = U. 
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 Proof. By Theorem 5.2.19, (A < Z) ˅ (Z < A) and two cases arise: 

 Case 1. Suppose Z < A, then, by Definition 5.1.03 and 5.1.11, Z < A- 1. Let a_b/c_d ϵ A ─ Z, e_f/g_h ϵ A- 1 ─ Z be 

arbitrary, then, by Definition 5.1.01, 5.1.02, and 5.1.11, there exist k_p/m_q ϵ QQ ─ A such that a_b/c_d < k_p/m_q < 

g_h/e_f and, by Theorem 4.2.30 and Lemma 4.2.35, e_f/g_h < c_d/a_b, hence, by Theorem 4.2.08, 4.2.22, and 4.2.33: 

  a_b/c_d * e_f/g_h = e_f/g_h * a_b/c_d; 

          < c_d/a_b * a_b/c_d; 

          = a_b/c_d * c_d/a_b; 

          = 1_0. 

 Therefore, by Definition 5.1.06, U contains A * A- 1. 

Let glb(QQ ─ A) = x_y, then, by Definition 5.1.01 and 5.1.02 and Lemma 4.2.35, for any e_f/g_h ϵ QQ ─ A, g_h/e_f 

< (x_y)- 1 and, by Definition 5.1.11 and Theorem 4.2.48, g_h/e_f ϵ A- 1. Furthermore, by Theorem 4.2.48, e_f/g_h 

approaches arbitrarily close to x_y, hence, g_h/e_f approaches arbitrarily close to (x_y)- 1. Let a_b/c_d * g_h/e_f 

ϵ A * A- 1 be arbitrary, then, as g_h/e_f approaches arbitrarily close to (x_y)- 1, by Definition 5.1.01, 5.1.02, and 

5.1.10 and Theorem 4.2.22, a_b/c_d * g_h/e_f approaches arbitrarily close to x_y * (x_y)- 1 = 1_0, hence, by 

Definition 5.1.06, A * A- 1 contains U. 

Therefore, (Z < A) → (A * A- 1 = U). 

 Case 2. Suppose A < Z, then, by Definition 5.1.10, Case 1 immediately above, and Lemma 5.2.04, A * A- 1 = U. 

Therefore, (A < Z) → (A * A- 1 = U). 

In both cases, A * A- 1 = U. 

Therefore, A * A- 1 = U, as desired. □ 

 Theorem 5.2.26. For all A1, A2 ϵ RD, A2 ≠ Z, A1 ÷ A2 ϵ RD. 

 Proof. By Definition 5.1.13 and Theorem 5.2.07 and 5.2.24, as desired. □ 

Theorem 5.2.27. For all A1, A2, A3 ϵ RD, (A1 < A2) iff [(A1 + A3) < (A2 + A3)]. 

Proof. Suppose A1 < A2, then, by Definition 5.1.03, for all a_b/c_d ϵ A1, a_b/c_d ϵ A2, but there exist e_f/g_h ϵ A2 

such that ¬ (e_f/g_h ϵ A1). But then, by Definition 5.1.04, for all k_p/m_q ϵ A3, a_b/c_d ϵ A1, [a_b/c_d + k_p/m_q ϵ (A1 + 

A3)] ˄ [a_b/c_d + k_p/m_q ϵ (A2 + A3)], while, for those e_f/g_h ϵ A2, ¬ (e_f/g_h ϵ A1),  {¬ [e_f/g_h + k_p/m_q ϵ (A1 + A3)]} 

˄ [e_f/g_h + k_p/m_q ϵ (A2 + A3)], hence, by Definition 5.1.03, (A1 + A3) < (A2 + A3). Therefore, (A1 < A2) → [(A1 + A3) < (A2 + 

A3)]. 

Suppose (A1 + A3) < (A2 + A3), then, by Definition 5.1.03, for all a_b/c_d ϵ A1, k_p/m_q ϵ A3, a_b/c_d + k_p/m_q ϵ (A2 + A3), 

but there exists e_f/g_h ϵ A2 such that {¬ [e_f/g_h + k_p/m_q ϵ (A1 + A3)]} ˄ [e_f/g_h + k_p/m_q ϵ (A2 + A3)]. But then, by 

Definition 5.1.04, for all a-b/c_d ϵ A1, a_b/c_d ϵ A2 while there exists e_f/g_h ϵ A2 such that ¬ (e_f/g_h ϵ A1), hence, by 

Definition 5.1.03, A1 < A2. Therefore, [(A1 + A3) < (A2 + A3)] → (A1 < A2). 

Therefore, (A1 < A2) iff [(A1 + A3) < (A2 + A3)], as desired. □ 

 Theorem 5.2.28. For all A1, A2, A3, A4 ϵ RD, [(A1 < A2) ˄ (A3 < A4)] → [(A1 + A3) < (A2 + A4)]. 

 Proof. Suppose (A1 < A2) ˄ (A3 < A4), then, by Theorem 5.2.27, (A1 + A3) < (A2 + A3) and, by Theorem 5.2.08 and 

5.2.27, (A2 + A3) < (A2 + A4), hence, by Theorem 5.2.19, (A1 + A3) < (A2 + A4), as desired. □ 
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 Theorem 5.2.29. Let S = {a_b/c_d|(a_b/c_d ϵ QQ

+) ˄ [(a ≠ 0) ˄{(0 < b) ˅ [(b < 0) ˄ (|b| < a)]}] ˄ [(c ≠ 0) ˄{(0 < d) ˅ 

[(d < 0) ˄ (|d| < c)]}]} and let V = {A|(A ϵ RD
+) ˄ [for any a_b/c_d ϵ (A ─ Z) ─ S, there exists e_f/g_h ϵ (A ─ Z) ∩ S such that 

a_b/c_d < e_f/g_h]}. Then, for all A1, A2 ϵ RD, A3 ϵ V, (A1 < A2) iff [(A1 * A3) < (A2 *A3)]. 

 Proof. Let A1, A2 ϵ RD, A3 ϵ V, be arbitrary, then, by Theorem 5.2.19, [(A1 < Z) ˅ (A1 = Z) ˅ (Z < A1)] ˄ [(A2 < Z) ˅ (A2 = 

Z) ˅ (Z < A2)] and five cases arise: 

 Case 1. Suppose (Z < A1) ˄ (Z < A2) ˄ (A1 < A2), then, by Definition 5.1.01, 5.1.02, and 5.1.03, A2 ─ Z properly 

contains A1 ─ Z, hence, by Definition 5.1.10 and Theorem 4.2.33, A2 * A3 properly contains A1 * A3 and (A1 * A3) < (A2 * 

A3). 

Suppose (Z < A1) ˄ (Z < A2) ˄ [(A1 * A3) < (A2 *A3)], then, by Definition 5.1.01, 5.1.02, and 5.1.03 and Theorem 5.2.07, (A2 

*A3) ─ Z properly contains (A1 * A3) ─ Z, hence, by Definition 5.1.10 and Theorem 4.2.33, A2 properly contains A1 and A1 < 

A2.  

Therefore, [(Z < A1) ˄ (Z < A2)] → {(A1 < A2) iff [(A1 * A3) < (A2 *A3)]}.   

 Case 2. Suppose (A1 < Z) ˄ (A2 < Z) ˄ (A1 < A2), then, by Definition 5.1.01, 5.1.02, and 5.1.03, A2 properly contains 

A1, hence, by Definition 5.1.07 and 5.1.09 and Theorem 4.2.34, |A1| properly contains |A2| and |A2| < |A1|. By Case 1 

immediately above, (|A2| * A3) < (|A1| * A3) and, by Definition 5.1.10 and Theorem 4.2.34 again, (A1 * A3) < (A2 * A3). 

Suppose (A1 < Z) ˄ (A2 < Z) ˄ [(A1 * A3) < (A2 * A3)], then, by Definition 5.1.01, 5.1.02, and 5.1.03, (A2 * A3) properly 

contains (A1 * A3), and, by Definition 5.1.10 and Theorem 4.2.34, (|A2| * A3) < (|A1| * A3). By Case 1 immediately above, 

|A2| < |A1| and, by Definition 5.1.07 and 5.1.09 and Theorem 4.2.34 again, A1 < A2.  

Therefore, [(A1 < Z) ˄ (A2 < Z)] → {(A1 < A2) iff [(A1 * A3) < (A2 * A3)]}.   

 Case 3. Suppose (A1 < Z) ˄ (A2 = Z), then, by Definition 5.1.10 and Lemma 5.2.18, (A1 < A2) iff [(A1 * A3) < (A2 * A3)].  

Therefore, [(A1 < Z) ˄ (A2 = Z)] → {(A1 < A2) iff [(A1 * A3) < (A2 * A3)]}.   

 Case 4. Suppose (A1 < Z) ˄ (Z < A2), then, by Definition 5.1.10, (A1 * A3) < Z < (A2 * A3) and, by Theorem 5.2.19,    

(A1 < A2) iff [(A1 * A3) < (A2 * A3)].  

 Therefore, [(A1 < Z) ˄ (Z < A2)] → {(A1 < A2) iff [(A1 * A3) < (A2 * A3)]}.   

 Case 5. Suppose (A1 = Z) ˄ (Z < A2), then, by Definition 5.1.10 and Lemma 5.2.18, (A1 < A2) iff [(A1 * A3) < (A2 * A3)].  

Therefore, [(A1 = Z) ˄ (Z < A2)] → {(A1 < A2) iff [(A1 * A3) < (A2 * A3)]}.   

 In all five cases, (A1 < A2) iff [(A1 * A3) < (A2 * A3)]. 

Therefore, (A1 < A2) iff [(A1 * A3) < (A2 * A3)], as desired. □ 

 Theorem 5.2.30. Let T = {a_b/c_d|(a_b/c_d ϵ QQ
-) ˄ [(a ≠ 0) ˄ {(0 < b) ˅ [(b < 0) ˄ (|b| < a)]}] ˄ [(c ≠ 0) ˄ {(0 < d) ˅ 

[(d < 0) ˄ (|d| < c)]}]} and let W = {A|(A ϵ RD
-) ˄ [for any a_b/c_d ϵ A ─ T, there exists e_f/g_h ϵ A ∩ T such that e_f/g_h < 

a_b/c_d]}. Then, for all A1, A2 ϵ RD, A3 ϵ W, (A1 < A2) iff [(A2 *A3) < (A1 * A3)]. 

 Proof. Let A1, A2 ϵ RD, A3 ϵ W, be arbitrary, then, by Theorem 5.2.19, [(A1 < Z) ˅ (A1 = Z) ˅ (Z < A1)] ˄ [(A2 < Z) ˅ (A2 

= Z) ˅ (Z < A2)] and five cases arise: 

 Case 1. Suppose (Z < A1) ˄ (Z < A2) ˄ (A1 < A2), then, by Definition 5.1.07 and 5.1.09, |A3| ϵ V, where V is defined 

in Theorem 5.2.29, and, by Theorem 5.2.28, (A1 * |A3|) < (A2 * |A3|). But then, by Definition 5.1.10 and Theorem 4.2.34, 

(A2 * A3) < (A1 * A3). 
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Suppose (Z < A1) ˄ (Z < A2) ˄ [(A2 * A3) < (A1 * A3)], then, by Definition 5.1.07 and 5.1.09 and Theorem 4.2.34, (A1 * |A3|) < 

(A2 *|A3|) and |A3| ϵ V, where V is defined in Theorem 5.2.29. But then, by Theorem 5.2.29, A1 < A2.  

Therefore, [(Z < A1) ˄ (Z < A2)] → {(A1 < A2) iff [(A2 * A3) < (A1 * A3)]}.   

 Case 2. Suppose (A1 < Z) ˄ (A2 < Z) ˄ (A1 < A2), then, by Definition 5.1.07 and 5.1.09, |A3| ϵ V, where V is defined 

in Theorem 5.2.29, and, by Theorem 4.2.34, |A2| < |A1|. But then, by Theorem 5.2.29, (|A2| * |A3|) < (|A1| * |A3|) and, 

by Definition 5.1.10, (A2 * A3) < (A1 * A3). 

Suppose (A1 < Z) ˄ (A2 < Z) ˄ [(A1 * A3) < (A2 * A3)], then, by Definition 5.1.10, (|A2| *|A3|) < (|A1| * |A3|) and, by 

Theorem 5.2.29, |A2| < |A1|. But then, by Definition 5.1.07 and 5.1.09 and Theorem 4.2.34, A1 < A2.  

Therefore, [(A1 < Z) ˄ (A2 < Z)] → {(A1 < A2) iff [(A2 * A3) < (A1 * A3)]}.   

 Case 3. Suppose (A1 < Z) ˄ (A2 = Z), then, by Definition 5.1.10 and Lemma 5.2.18, (A1 < A2) iff [(A2 * A3) < (A1 * A3)].  

Therefore, [(A1 < Z) ˄ (A2 = Z)] → {(A1 < A2) iff [(A2 * A3) < (A1 * A3)]}.   

 Case 4. Suppose (A1 < Z) ˄ (Z < A2), then, by Definition 5.1.10, (A1 * A3) < Z < (A2 * A3) and, by Theorem 5.2.19,    

(A1 < A2) iff [(A2 * A3) < (A1 * A3)].  

 Therefore, [(A1 < Z) ˄ (Z < A2)] → {(A1 < A2) iff [(A2 * A3) < (A1 * A3)]}.   

 Case 5. Suppose (A1 = Z) ˄ (Z < A2), then, by Definition 5.1.10 and Lemma 5.2.18, (A1 < A2) iff [(A2 * A3) < (A1 * A3)].  

Therefore, [(A1 = Z) ˄ (Z < A2)] → {(A1 < A2) iff [(A2 * A3) < (A1 * A3)]}.   

 In all five cases, (A1 < A2) iff [(A2 * A3) < (A1 * A3)]. 

Therefore, (A1 < A2) iff [(A2 * A3) < (A1 * A3)], as desired. □ 

 Theorem 5.2.31. For all A1, A2 ϵ RD, |A1 + A2| ≤ |A1 | + |A2|. 

 Proof. Let A1, A2 ϵ RD be arbitrary, then, by Theorem 5.2.19, [(A1 < Z) ˅ (A1 = Z) ˅ (Z < A1)] ˄ [(A2 < Z) ˅ (A2 = Z) ˅ (Z 

< A2)] and nine cases arise, three of which are redundant, leaving six cases to consider: 

 Case 1. Suppose (A1 < Z) ˄ (A2 < Z), then, by Definition 5.1.04, 5.1.07 and 5.1.09 and Lemma 5.2.22: 

  |A1 + A2| = (A1 + A2) U [- (A1 + A2)]; 

     = (A1 + A2) U [(- A1) + (- A2)]; 

     = [A1 U (- A1)] + [A2 U (- A2)]; 

     = |A1 | + |A2|. 

 Case 2. Suppose (A1 < Z) ˄ (A2 = Z), then, by Definition 5.1.05, 5.1.07 and 5.1.09 and Theorem 5.2.14: 

  |A1 + A2| = |A1 + Z|; 

     = |A1|; 

     = |A1| + Z; 

     = |A1| + |Z|; 

  = |A1| + |A2|. 
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 Case 3. Suppose (A1 < Z) ˄ (Z < A2), then, by Theorem 5.2.19, (|A1|< A2) ˅ (|A1| = A2) ˅ (A2 < |A1|) and three cases 

arise: 

  Case 3.a. Suppose |A1|< A2, then, by Definition 5.1.04 and 5.1.12, Z < (A1 + A2) and, by Theorem 5.2.05 

and 5.2.21, A1 < |A1|, hence, by Definition 5.1.09 and Theorem 5.2.27: 

   |A1 + A2| = A1 + A2; 

      < |A1| + A2; 

      = |A1| + |A2|. 

  Case 3.b. Suppose |A1| = A2, then, by Definition 5.1.05 and 5.1.12, Z = (A1 + A2) and, by Definition 5.1.09 

and Theorem 5.2.05, A1 < |A1|, hence, by Theorem 5.2.27: 

   |A1 + A2| = |Z|; 

      = Z; 

      = A1 + A2; 

      < |A1| + A2; 

      = |A1| + |A2|. 

  Case 3.c. Suppose A2 < |A1|, then, by Definition 5.1.04 and 5.1.12, (A1 + A2) < Z and, by Theorem 5.2.05, Z 

< - (A1 + A2), hence, by Definition 5.2.09, |A1 + A2| = - (A1 + A2). By Theorem 5.2.05, (- A2) < A2 and, by Definition 5.1.09,     

(- A1) = |A1|, hence, by Lemma 5.2.22 and Theorem 5.2.27: 

   |A1 + A2| = - (A1 + A2); 

      = (- A1) + (- A2); 

      < |A1| + A2; 

      = |A1| + |A2|. 

  In all three cases, |A1 + A2| < |A1| + |A2|. 

 Therefore, [(A1 < Z) ˄ (Z < A2)] → (|A1 + A2| < |A1| + |A2|). 

This result remains unchanged in the case (Z < A1) < (A2 < Z).  

 Case 4. Suppose (A1 = Z) ˄ (A2 = Z), then, by Definition 5.1.05, 5.1.07, and 5.1.09 and Theorem 5.2.14:     

  |A1 + A2| =|Z + Z|; 

     = |Z|; 

     = Z; 

     = Z + Z; 

     = |Z| + |Z|; 

     = |A1| + |A2|. 

 Case 5. Suppose (A1 = Z) ˄ (Z < A2), then, by Definition 5.1.05, 5.1.07, and 5.1.09 and Theorem 5.2.14:     

  |A1 + A2| =|Z + A2|; 
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     = |A2|; 

     = Z + |A2|; 

     =|Z| + |A2|; 

     = |A1| + |A2|. 

 This result remains unchanged in the case (Z < A1) ˄ (A2 = Z).  

 Case 6. Suppose (Z < A1) ˄ (Z < A2), then, by Definition 5.1.09: 

  |A1 + A2| = A1 + A2; 

     = |A1| + |A2|. 

 In all nine cases, |A1 + A2| ≤ |A1| + |A2|. 

Therefore, |A1 + A2| ≤ |A1| + |A2|, as desired. □ 

 Corollary 5.2.32. For all A1, A2 ϵ RD, |A1 | - |A2| ≤ |A1 - A2|. 

 Proof. By Definition 5.1.12 and Theorem 5.2.16 and 5.2.31: 

  |(A1 - A2) + A2| ≤ | A1 - A2| + |A2|; 

        |A1  + [(- A2) + A2]| ≤ | A1 - A2| + |A2|; 

        |A1  + [A2 + (- A2)]| ≤ | A1 - A2| + |A2|; 

                   |A1| ≤ | A1 - A2| + |A2|; 

       |A1 | - |A2| ≤ |A1 - A2|, as desired. □ 

 Theorem 5.2.33. For all A1, A2 ϵ RD, (Z < A1) → [(|A2| < A1) iff (- A1 < A2 < A1)]. 

 Proof. Suppose (Z < A1) ˄ (|A2| < A1), then, by Theorem 5.2.19, (A2 < Z) ˅ (A2 = Z) ˅ (Z < A2) and two cases arise: 

 Case 1. Suppose A2 < Z, then, by Definition 5.1.03 and 5.1.09, (A2 < A1) ˄ (- A2 < A1), hence, by Lemma 5.2.04 and 

Theorem 5.2.29, - A1 < A2 < A1.   

 Case 2. Suppose Z ≤ A2, then, by Definition 5.1.09, Z ≤ A2 < A1 and, by Theorem 5.2.30, - A1 < - A2, hence, by 

Lemma 5.2.04 and Theorem 5.2.19, - A1 < A2 < A1.  

 In both cases, - A1 < A2 < A1. 

 Therefore, (|A2| < A1) → (- A1 < A2 < A1). 

Suppose (Z < A1) ˄ (- A1 < A2 < A1), then, by Theorem 5.2.19, (A2 < Z) ˅ (A2 = Z) ˅ (Z < A2) and two cases arise: 

 Case 1. Suppose A2 < Z, then, by Lemma 5.2.04, A2 U - A2 = - A2, and, by Theorem 5.2.30, - A2 < A1, hence, by 

Definition 5.1.09, |A2| < A1.  

 Case 2. Suppose Z ≤ A2, then, by Definition 5.1.09, |A2| < A1.  

 In both cases, |A2| < A1.  

Therefore, (- A1 < A2 < A1) → (|A2| < A1). 

Therefore, (Z < A1) → [(|A2| < A1) iff (- A1 < A2 < A1)], as desired. □ 
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 Therorem 5.2.34. For all A1, A2 ϵ RD, |A1| * |A2| ≤ |A1 * A2|. 

 Proof. Let A1, A2 ϵ RD be arbitrary, then, by Definition 5.1.10, eight cases arise, two of which are redundant, 

leaving six cases to consider: 

 Case 1. Suppose (Z < A1, A2) ˄ ¬ (K ˅ L), then, by Definition 5.1.09 and 5.1.10: 

  |A1| * |A2| = A1 * A2; 

          = M U Z; 

          =|M U Z|; 

          =|A1 * A2|. 

 Case 2. Suppose (Z < A1, A2) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)], then, by Definition 5.1.09 and 5.1.10, Lemma 5.2.04, and 

Theorem 5.2.05: 

  |A1| * |A2| = A1 * A2; 

          = - (|M| U Z); 

          < - [- (|M| U Z)]; 

          =|A1 * A2|. 

 Case 3. Suppose (A1 < Z) ˄ (Z < A2), then, by Definition 5.1.03, A1 U - A1 = - A1 and, by Definition 5.1.09 and 5.1.10 

and Lemma 5.2.04: 

  |A1| * |A2| = - A1 * A2; 

          = M U Z; 

          = - [- (M U Z)]; 

          =|A1 * A2|. 

 This result remains unchanged in the case (Z < A1) ˄ (A2 < Z). 

 Case 4. Suppose (A1, A2 < Z) ˄ ¬ (K ˅ L), then, by Definition 5.1.03, (A1 U - A1 = - A1) ˄ (A2 U - A2 = - A2) and, by 

Definition 5.1.09 and 5.1.10 and Theorem 5.2.05: 

  |A1| * |A2| = - A1 * - A2; 

          = M U Z; 

          =|A1 * A2|. 

 Case 5. Suppose (A1, A2 < Z) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)], then, by Definition 5.1.03, (A1 U - A1 = - A1) ˄ (A2 U - A2 = - A2) 

and, by Definition 5.1.09 and 5.1.10 and Theorem 5.2.05: 

  |A1| * |A2| = - A1 * - A2; 

          = - (|M| U Z); 

          < - [- (|M| U Z)]; 

          =|A1 * A2|. 

 Case 6. Suppose (A1 = Z) ˄ (A2 ≠ Z), then, by Definition 5.1.05, 5.1.07, and 5.1.09 and Lemma 5.2.18: 
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  |A1| * |A2| = |Z| * A2; 

          = Z * A2; 

          = Z;           

       =|Z|; 

          =|Z * A2|; 

       =|A1 * A2|. 

 This result remains unchanged in the case (A1 ≠ Z) ˄ (A2 = Z). 

 In all six cases, |A1| * |A2| ≤ |A1 * A2|.  

Therefore, |A1| * |A2| ≤ |A1 * A2|, as desired. □ 

Theorem 5.2.35. For all n ϵ Z, A ϵ RD, An is defined. 

 Proof. We proceed by induction on n. Let P(x) be the property, “Ax is defined,” then: 

P(0). By Definition 5.1.16, A0 = 1_0. 

Suppose P(n) is true, then An is defined and: 

P(n + 1). By Definition 5.1.16, A(n + 1) = An * A, hence, by Definition 5.1.10 and Theorem 5.2.07, A(n + 1) is defined. 

P(–n). By Definition 5.1.16, A- n = (A- 1)n, hence, by Theorem 5.2.26, A- n is defined.  

Therefore, P(n) → [P(n + 1) ˄ P(– n)] and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

n ϵ Z, A ϵ RD, An is defined, as desired. □ 

 Lemma 5.2.36. For all A ϵ RD
-, An is negative if n is odd and positive if n is even.  

 Proof. This is an immediate consequence of Definition 5.1.08, 5.1.10, and 5.1.16 and Theorem 5.2.22, as desired. 

□ 

Theorem 5.2.37. For all n ϵ Z, A1, A2 ϵ RD, (A1 * A2)n = A1
n * A2

n.  

 Proof. We proceed by induction on n. Let P(x) be the property, “(A1* A2)x = A1
x * A2

x,” then: 

P(0). By Definition 5.1.16 and Theorem 5.2.22, (A1 * A2)0 = 1_0 = 1_0 * 1_0 = A1
0 * A2

0. 

Suppose P(n) is true, then (A1 * A2)n = A1
n * A2

n and: 

P(n + 1). By Definition 5.1.16 and Theorem 5.2.09 and 5.2.11: 

 (A1 * A2)(n + 1) = (A1 * A2)n * (A1 * A2); 

           = A1
n * A2

n * (A1 * A2); 

           = A1
n * [A2

n * (A1 * A2)]; 

           = A1
n * (A2

n * A1) * A2; 

           = A1
n * (A1 * A2

n) * A2; 

           = (A1
n * A1) * (A2

n * A2); 
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           = A1

(n + 1) * A2
(n + 1). 

P(– n). Given that A1, A2 ϵ RD are arbitrary, by Theorem 5.2.07 and 5.2.37: 

(A1 * A2)- n = (A1
- 1 * A2

- 1)n; 

      = (A1
- 1)n * (A2

- 1)n; 

    = A1
- n * A2

- n. 

Therefore, P(n) → [P(n + 1) ˄ P(– n)]  and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

n ϵ Z, A1, A2 ϵ RD, (A1 * A2)n = A1
n * A2

n, as desired. □ 

 Theorem 5.2.38. For all m, n ϵ Z, A ϵ RD, Am * An = A(m + n). 

 Proof. We proceed by induction on n. Let P(x) be the property, “Am * Ax = A(m + x),” then: 

P(0). By Definition 5.1.16 and Theorem 5.2.22, Am * A0 = Am * 1_0 = Am = A(m + 0). 

Suppose P(n) is true, then Am * An = A(m + n) and: 

P(n + 1). By Definition 5.1.16 and Theorem 5.2.11:  

 Am * A(n + 1) = Am * (An * A); 

     = (Am * An) * A; 

     = A(m + n) * A; 

       = A[(m + n) + 1]; 

       = A[m + (n + 1)]. 

P(– n). This is an immediate consequence of the above argument together with the fact that, for all m, n ϵ Z, m – n = m + 

(– n) (reference [CD], Chapter 5, page 165).   

Therefore, P(n) → [P(n + 1) ˄ P(– n)] and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

m, n ϵ Z, A ϵ RD, Am * An = A(m + n), as desired. □ 

 Theorem 5.2.39. For all m, n ϵ Z, A ϵ RD, (Am)n = A(m * n).  

 Proof. We proceed by induction on n. Let P(x) be the property, “(Am)x = A(m * x),” then: 

P(0). By Definition 5.1.16, (Am)0 = 1_0 = A0 = A(m * 0). 

Suppose P(n) is true, then (Am)n = A(m * n) and: 

P(n + 1). By Definition 5.1.16 and Theorem 5.2.38: 

 (Am)(n + 1) = (Am)n * Am; 

   = A(m * n) * Am; 

   = A[(m * n) + m]; 

   = A[m * (n + 1)]. 

P(– n). By Definition 5.1.16 and the fact that A ϵ RD is arbitrary: 

 (Am)- n = [(A- 1)m] n; 
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           = (A- 1)(m * n); 

           = A- (m * n); 

           = A[m * (- n)]. 

Therefore, P(n) → [P(n + 1) ˄ P(– n)] and, by the Principle of Induction on Z (reference [CD], Chapter 5, page 173), for all 

m, n ϵ Z, A ϵ RD, (Am)n = A(m * n), as desired. □ 

 Theorem 5.2.40. (QD, <, +, *), where QD is defined in Definition 5.1.14, is ring isomorphic to (QQ, <, +, *). 

 Proof. There is an obvious isomorphism, f:QD → QQ, defined by f(A) = sup A. Let A1, A2 ϵ QD be arbitrary, then: 

 Addition. By Definition 5.1.04 and Theorem 4.2.31 and 4.2.32: 

  f(A1 + A2) = sup (A1 + A2); 

     = sup A1 + sup A2; 

     = f(A1) + f(A2). 

 Multiplication. By Definition 5.1.10, eight cases arise, two of which are redundant, leaving six cases to consider: 

 Case 1. Suppose (Z < A1, A2) ˄ ¬ (K ˅ L), then, by Definition 5.1.10 and Theorem 4.2.33: 

  f(A1 + A2) = f(M U Z); 

      = sup (M U Z); 

      = sup A1 * sup A2; 

      = f(A1) * f(A2). 

 Case 2. Suppose (Z < A1, A2) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)], then, by Definition 4.1.04 and Theorem 3.2.29, (A1 * A2) < Z 

and, by Definition 5.1.10: 

  f(A1 * A2) = f[- (|M| U Z)]; 

      = sup[- (|M| U Z); 

      = sup A1 * sup A2; 

      = f(A1) * f(A2). 

 Case 3. Suppose (A1 < Z) ˄ (Z < A2), then, by Definition 4.1.04 and Lemma 4.2.23, (A1 * A2) < Z and, by Definition 

5.1.10: 

  f(A1 * A2) = f[- (M U Z)]; 

      = sup[- (M U Z); 

      = sup A1 * sup A2; 

      = f(A1) * f(A2). 

 This result remains unchanged in the case (Z < A1) ˄ (A2 < Z). 

 Case 4. Suppose (A1, A2 < Z) ˄ ¬ (K ˅ L), then, by Definition 4.1.04 and Lemma 4.2.24, Z < (A1 * A2) and, by 

Definition 5.1.10: 
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  f(A1 * A2) = f(M U Z); 

      = sup (M U Z); 

      = sup A1 * sup A2; 

      = f(A1) * f(A2). 

 Case 5. Suppose (A1, A2 < Z) ˄ [(K ˄ ¬ L) ˅ (L ˄ ¬ K)], then, by Definition 4.1.04 and Theorem 3.2.29, (A1 * A2) < Z 

and, by Definition 5.1.10: 

  f(A1 * A2) = f[- (M U Z)]; 

      = sup[- (M U Z); 

      = sup A1 * sup A2; 

      = f(A1) * f(A2). 

 Case 6. Suppose (A1 = Z) ˄ (A2 ≠ Z), then, by Definition 5.1.10: 

  f(A1 * A2) = f(A1 * Z); 

      = sup (A1 * Z); 

      = sup A1 * sup Z; 

      = f(A1) * f(A2). 

 By Theorem 5.2.09, this result remains unchanged in the case (A1 ≠ Z) ˄ (A2 = Z). 

 In all six cases, f(A1 * A2) = f(A1) * f(A2). 

 Therefore, f(A1 * A2) = f(A1) * f(A2).  

Therefore, (QD, <, +, *) is ring isomorphic to (QQ, <, +, *), as desired. □ 

 Theorem 5.2.41. The set (QD, <) of Definition 5.1.14 is dense in RD. 

 Proof. Let A1, A2 ϵ RD be arbitrary but such that A1 < A2, then, by Definition 5.1.03, (A1 ─ A2 = φ) ˄ (A2 ─ A1 ≠ φ). By 

Definition 5.1.01 and 5.1.02 and Theorem 4.2.48, there exists a_b/c_d ϵ QQ such that (a_b/c_d ϵ A2 ─ A1) ˄ ¬ (sup A1 = 

a_b/c_d). But then, by Theorem 5.2.40, a_b/c_d = sup Ai for some Ai ϵ QD and, by Definition 5.1.03, A1 < Ai < A2, as 

desired. □ 

 Corollary 5.2.42. For all A ϵ RD, there exists a_b ϵ ZQ such that sup A < a_b. 

 Proof. By Theorem 3.2.59, 4.2.29, 5.2.40, and 5.2.41, as desired. □ 

 Corollary 5.2.43. For all A ϵ RD
+, there exists a_b ϵ ZQ

+ such that 0_1/a_b < sup A. 

 Proof. By Theorem 5.2.41, as desired. □ 

 Theorem 5.2.44. (RD, <) is dense in itself. 

 Proof. Let A1, A2 ϵ RD be arbitrary but such that A1 < A2, then, by Definition 5.1.13 and Theorem 5.2.12, 5.2.13, 

and 5.2.27: 

  (U + U) * A1 = A1 + A1; 

          < A1 + A2; 
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          < A2 + A2; 

          = A2 * (U + U). 

Hence, by Theorem 5.2.19, 5.2.20, 5.2.25, and 5.2.29, A1 < (A1 + A2)/ (U + U) < A2. Let A3 = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ 

[a_b/c_d < (A1 + A2)/ (U + U)]}, as desired. □ 

 Theorem 5.2.45, RD has neither least nor greatest elements. 

 Proof. By Definition 5.1.01 and 5.1.02 and Theorem 4.2.55, as desired. □ 

 Theorem 5.2.46. RD forms a field.  

 Proof. By Theorem 5.2.08, 5.2.09, 5.2.10, 5.2.11, 5.2.12, 5.2.13, 5.2.14, 5.2.16, 5.2.20, and 5.2.25, as desired. □ 

 Theorem 5.2.47. (RD, <, +, *) is Dedekind complete per Definition 5.1.17. 

 Proof. Let S = {Ki|Ki ϵ RD, i ϵ N} = ran K, for some index function K, be a Dedekind cut on RD
 and let A ϵ RD ─ S be 

arbitrary. Then, by Definition 5.1.01, (S ≠ φ) ˄ (RD ─ S ≠ φ), hence, A exists and is an upper bound of S. To demonstrate 

that US is a Dedekind cut on QQ, it will suffice to notice that: 

1) Since, for every Ki ϵ S, Ki ϵ RD, Ki
 is a Dedekind cut on QQ and since, for every A ϵ RD ─ S, A ϵ RD, A is a Dedekind cut 

on QQ; 

2) Since (S ≠ φ) ˄ (RD ─ S ≠ φ), (US ≠ φ) ˄ [U(RD ─ S) ≠ φ]; 

3) Since, for every Ki ϵ S, A ϵ RD ─ S, Ki < A, by Definition 5.1.03, for every a_b/c_d ϵ US, e_f/g_h ϵ U(RD ─ S), a_b/c_d 

< e_f/g_h, from which immediately follows, (US) U [U(RD ─ S)] = QQ; 

4) Since, for every Ki ϵ S, Ki has no greatest element, US has no greatest element. 

Finally, to demonstrate the existence of sup S, for every Ki ϵ S, Ki is contained in US and Ki is contained in A, hence, US is 

contained in A and sup S = US. 

Therefore, (RD, <, +, *) is Dedekind complete, as desired. □ 

 Theorem 5.2.48. (RD, <, +, *) has the infimum property of Definition 5.1.18. 

 Proof. Let S = {Ki|Ki ϵ RD, i ϵ N} = ran K, for some index function K, be an arbitrary but non-empty subset of RD
 and 

let A ϵ RD be a lower bound of S, the existence of such an A being guaranteed by Theorem 5.3.45. To demonstrate that S 

has an infimum in RD, it will suffice to notice that: 

1) Since, for every Ki ϵ S, Ki ϵ RD, by Definition 5.1.02, each Ki
 and the lower bound A are Dedekind cuts on QQ; 

2) Since (S ≠ φ) ˄ ¬ (A ϵ S), RD ─ S ≠ φ, and, by Definition 5.1.01, (∩S ≠ φ) ˄ [U(RD ─ ∩S) ≠ φ]; 

3) Since every Ki ϵ S is a Dedekind cut, by Definition 5.1.01, for every a_b/c_d ϵ ∩S, e_f/g_h ϵ (US ─ ∩S), a_b/c_d < 

e_f/g_h and, since, for every k_p/m_q  ϵ US, n_r/o_s ϵ U(RD ─ S), k_p/m_q < n_r/o_s, by Theorem 4.2.30, for 

every a_b/c_d ϵ ∩S, n_r/o_s ϵ U(RD ─ S), a_b/c_d < n_r/o_s, from which immediately follows, (∩S) U [U(RD ─ ∩S)] 

= QQ; 

4) Since, for every Ki ϵ S, Ki has no greatest element, ∩S has no greatest element. 

By the last three statements and Definition 5.1.01, ∩S is a Dedekind cut on QQ and ∩S is contained in every Ki ϵ S, hence, 

∩S is a lower bound for S. Suppose, for contradiction, that A is not contained in ∩S, then there exists e_f/g_h ϵ A such 

that ¬ (e_f/g_h ϵ ∩S), but e_f/g_h ϵ Ki for every Ki ϵ S, a contradiction. Therefore, A is contained in ∩S and inf S = ∩S, as 

desired. □  

 Theorem 5.2.49. (RD, <, +, *) forms a lattice complete field per Definition 5.1.19. 

 Proof. By Theorem 5.2.46, 5.2.47, and 5.2.48 (reference [AJ], Chapter 7, page 84), as desired. □ 
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 Theorem 5.2.50. (RD, <, +, *) is the unique lattice completion of NQ. 

 Proof. Let (M, <, +, *) be a lattice complete field constructed set theoretically from NQ. Then, by Theorem 5.2.40, 

M has a copy of QQ embedded in it, by Theorem 4.2.29, M has a copy of ZQ embedded in it, and, by Theorem 3.2.22, M 

has the foundation NQ embedded in it. Now, since M is lattice complete and constructed set theoretically, for every a_b 

ϵ M, a_b = sup D for some Dedekind cut D defined on the embedded copy of QQ, which is constructed from the 

embedded copy of ZQ, which is constructed from the foundation NQ. Let K = {sup A|A ϵ RD} and define an index function, 

f:K → RD, by f(a_b) = Aa_b iff sup A = a_b. Then there is a natural and obvious ring isomorphism, g:RD → M, defined by 

g(Aa_b) = a_b, as desired. □ 

 Theorem 5.2.51. Let W = {A|(A ϵ RD) ˄ (sup A = x_y) ˄ (x = 0)}, then, for all A ϵ RD ─ W, sup A = a_b, (a_b)1/2 has 

four distinct roots: 

1) a1/2_[- a1/2 + (a + b)1/2]; 

2) a1/2_[- a1/2 - (a + b)1/2]; 

3) - a1/2_[a1/2 + (a + b)1/2]; 

4) - a1/2_[a1/2 - (a + b)1/2]. 

Proof. It will suffice to demonstrate that each distinct root, multiplied by itself, is equal to a_b: 

1) a1/2_[- a1/2 + (a + b)1/2] * a1/2_[- a1/2 + (a + b)1/2] = 

(a1/2 * a1/2)_([- a1/2 + (a + b)1/2] *  a1/2 + a1/2 * [- a1/2 + (a + b)1/2] + [- a1/2 + (a + b)1/2] * [- a1/2 + (a + b)1/2]); 

= a_(- a + (a + b)1/2 * a1/2 - a + a1/2 * (a + b)1/2 + [- a1/2 + (a + b)1/2] * (-a1/2) + [- a1/2 + (a + b)1/2] * (a + b)1/2); 

= a_(- a + a1/2 * (a + b)1/2 - a + a1/2 * (a + b)1/2 + a + (a + b)1/2 * (-a1/2) + (- a1/2) * (a + b)1/2 + a + b); 

= a_(- 2a + 2a1/2 * (a + b)1/2 + 2a - 2a1/2 * (a + b)1/2  + b); 

= a_b. 

2) a1/2_[- a1/2 - (a + b)1/2] * a1/2_[- a1/2 - (a + b)1/2] = 

(a1/2 * a1/2)_([- a1/2 - (a + b)1/2] *  a1/2 + a1/2 * [- a1/2 - (a + b)1/2] + [- a1/2 - (a + b)1/2] * [- a1/2 - (a + b)1/2]); 

= a_(- a - (a + b)1/2 * a1/2 - a - a1/2 * (a + b)1/2 + [- a1/2 - (a + b)1/2] * (-a1/2) + [- a1/2 - (a + b)1/2] * [- (a + b)1/2]); 

= a_(- a - a1/2 * (a + b)1/2 - a - a1/2 * (a + b)1/2 + a - (a + b)1/2 * (-a1/2) + a1/2 * (a + b)1/2 + a + b); 

= a_(- 2a - 2a1/2 * (a + b)1/2 + 2a + 2a1/2 * (a + b)1/2  + b); 

= a_b. 

3) (- a1/2_[a1/2 + (a + b)1/2]) * (- a1/2_[a1/2 + (a + b)1/2]) = 

[- a1/2 * (- a1/2)]_([a1/2 + (a + b)1/2] * (- a1/2) - a1/2 * [a1/2 + (a + b)1/2] + [a1/2 + (a + b)1/2] * [a1/2 + (a + b)1/2]); 

= a_(- a + (a + b)1/2 * (- a1/2) - a - a1/2 * (a + b)1/2 + [a1/2 + (a + b)1/2] * a1/2 + [a1/2 + (a + b)1/2] * (a + b)1/2); 

= a_(- a - a1/2 * (a + b)1/2 - a - a1/2 * (a + b)1/2 + a + (a + b)1/2 * a1/2 + a1/2 * (a + b)1/2 + a + b); 

= a_(- 2a - 2a1/2 * (a + b)1/2 + 2a + 2a1/2 * (a + b)1/2  + b); 

= a_b. 

4) (- a1/2_[a1/2 - (a + b)1/2]) * (- a1/2_[a1/2 - (a + b)1/2]) = 
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[- a1/2 * (- a1/2)]_([a1/2 - (a + b)1/2] * (- a1/2) - a1/2 * [a1/2 - (a + b)1/2] + [a1/2 - (a + b)1/2] * [a1/2 - (a + b)1/2]); 

= a_(- a - (a + b)1/2 * (- a1/2) - a + a1/2 * (a + b)1/2 + [a1/2 - (a + b)1/2] * a1/2 + [a1/2 - (a + b)1/2] * [- (a + b)1/2]); 

= a_(- a + a1/2 * (a + b)1/2 - a + a1/2 * (a + b)1/2 + a - (a + b)1/2 * a1/2 - a1/2 * (a + b)1/2 + a + b); 

= a_(- 2a + 2a1/2 * (a + b)1/2 + 2a - 2a1/2 * (a + b)1/2  + b); 

= a_b. 

Therefore, (a_b)1/2 has four distinct roots, as desired. □ 

 Theorem 5.2.52. RD is uncountable. 

 Proof. In extending NQ to ZQ, because of Definition 2.1.13, 2.1.15, and 3.1.01, we not only extend positive q-

naturals to negative q-integers, we also extend the q-components of each q-integer into the negative – i.e. for any a_b ϵ 

ZQ, (b < 0) ˅ (b = 0) ˅ (0 < b), hence, we can think of ZQ as Z x Z with the lexicographic order. This carries through to the q-

reals, however, due to geometrical considerations (or, for that matter, Theorem 5.2.51 immediately above), we find that 

the q-components of the q-reals can also take complex values and, in addition, per Lemma 4.2.57, there are certain q-

rationals which cannot be represented as elements of R x C. Let W = {a_b/c_d|(a_b/c_d ϵ QQ) ˄ (a ≠ 0) ˄ (c = 0)}, then we 

can think of RQ, as defined in Definition 5.1.15, as (R x C) U W and there is a bijection, f:[(R x C) U W] → RQ, defined by 

f(a_b) = a_b, if (a, b) ϵ R x C, and f(a_b/c_d) = a_b/c_d, if a_b/c_d ϵ W. One can view the set W as ZQ x ({0} x Z), hence, by 

Theorem 3.2.58, W is countable (reference [HJ], Chapter 4, pages 75 – 77). But then, the set R x C is uncountable, hence, 

(R x C) U W is uncountable (reference [HJ], Chapter 5, pages 98 – 99) and RQ is uncountable. But then, by Definition 

5.1.15, RD is uncountable, as desired. □ 

 

 6. Q-Complex. We develop the q-complex in the standard way, as ordered pairs of q-real numbers. 

 

 6.1. Definitions.  We define our mathematical entities using standard terminology. 

 Definition 6.1.01. Let CQ = {(a_b, c_d)|(a_b, c_d) ϵ RQ x RQ}. 

 Definition 6.1.02. The operation “+” (addition) on CQ is defined by: 

  (a_b, c_d) + (e_f, g_h) = (a_b + e_f, c_d + g_h). 

 Definition 6.1.03. The operation “*” (multiplication) on CQ is defined by: 

  (a_b, c_d) * (e_f, g_h) = (a_b * e_f - c_d * g_h, a_b * g_h + c_d * e_f). 

 Definition 6.1.04. The members of CQ, subject to Definition 6.1.02 and 6.1.02, will be called q_complex numbers. 

 Definition 6.1.05. Denote q-complex numbers of the form (a_b, 0_0) by a_b. 

 Definition 6.1.06. Denote the q-complex number (0_0, 1_0) by i. 

 Definition 6.1.07. The q-complex number a_b - (c_d)i is called the q-complex conjugate of the q-complex number 

a_b + (c_d)i. 

 Definition 6.1.08. In the q-complex number a_b + (c_d)i, a_b is the q-real coefficient and c_d is the q-imaginary 

coefficient. If c_d ≠ 0_0, then the q-complex number is called q-imaginary. If a_b = 0_0, then the q-complex number is 

called pure q-imaginary. 
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 Definition 6.1.09. For all a_b + (c_d)i ϵ CQ, its negative is - (a_b) - (c_d)i. 

 Definition 6.1.10. For all a_b + (c_d)i ϵ CQ, a_b + (c_d)i ≠ 0_0 + (0_0)i = 0_0:  

[a_b + (c_d)i]- 1 = (a_b/[(a_b)2 + (c_d)2]) – (c_d/[(a_b)2 + (c_d)2])i. 

 Definition 6.1.11. The operation “-“ (subtraction) on CQ is defined by: 

  (a_b, c_d) - (e_f, g_h) = (a_b, c_d) + [- (e_f) - (g_h)]. 

 Definition 6.1.12. The operation “÷“ (division) on CQ is defined by: 

  (a_b, c_d) ÷ (e_f, g_h) = (a_b, c_d) * (e_f + g_h)- 1. 

 

6.2. Arguments. We demonstrate our arguments using the standard methods and terminology of mathematical 

logic and ZFC/AFA or generalizations thereof. Specific to the current work, we generalize the Principle of Induction to the 

Principle of Q-Induction, we reproduce certain arguments, verbatim, from reference [HJ], and utilize results from 

references [HJ] and [CD]. 

Theorem 6.2.01. The set CQ of Definition 6.1.01 exists. 

Proof. By Definition 5.1.15 and Theorem 5.2.01, RQ exists, hence, by Definition 6.1.01, the Axiom of Power Set, 

the definition of ordered pair, and the definition of Cartesian product, RQ x RQ = CQ exists, as desired. □ 

 Theorem 6.2.02. The set CQ is closed under the arithmetical operation addition. 

 Proof. This is an immediate consequence of Definition 5.1.15, 6.1.01, and 6.1.02 and Theorem 5.2.02, as desired. 

□ 

 Theorem 6.2.03. For all (a_b, c_d), (e_f, g_h) ϵ CQ, (a_b, c_d) + (e_f, g_h) = (e_f, g_h) + (a_b, c_d). 

 Proof. This is an immediate consequence of Definition 5.1.15 and 6.1.02 and Theorem 5.2.08. Therefore, 

addition on CQ is commutative, as desired. □ 

 Theorem 6.2.04. For all (a_b, c_d), (e_f, g_h), (i_j, k_l) ϵ CQ, [(a_b, c_d) + (e_f, g_h)] + (i_j, k_l) = (a_b, c_d) + 

[(e_f, g_h) + (i_j, k_l)]. 

 Proof. This is an immediate consequence of Definition 5.1.15 and 6.1.02 and Theorem 5.2.10. Therefore, 

addition on CQ is associative, as desired. □ 

 Theorem 6.2.05. The set CQ is closed under the arithmetical operation multiplication.  

 Proof. This is an immediate consequence of Definition 5.1.15, 6.1.01, and 6.1.03 and Theorem 5.2.02, 5.2.07, 

and 5.2.23, as desired. □ 

 Theorem 6.2.06. For all (a_b, c_d), (e_f, g_h) ϵ CQ, (a_b, c_d) * (e_f, g_h) = (e_f, g_h) * (a_b, c_d). 

 Proof. This is an immediate consequence of Definition 5.1.15 and 6.1.03 and Theorem 5.2.09. Therefore, 

multiplication on CQ is commutative, as desired. □ 

 Theorem 6.2.07. For all (a_b, c_d), (e_f, g_h), (i_j, k_l) ϵ CQ, [(a_b, c_d) * (e_f, g_h)] * (i_j, k_l) = (a_b, c_d) * 

[(e_f, g_h) * (i_j, k_l)]. 

 Proof. Letting A = [(a_b, c_d) * (e_f, g_h)] * (i_j, k_l), by Definition 5.1.15 and 6.1.03 and Theorem 5.2.08, 5.2.10, 

5.2.12, and 5.2.13, and Lemma 5.2.22: 
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A = (a_b * e_f - c_d * g_h, a_b * g_h + c_d * e_f) * (i_j, k_l); 

= {[(a_b * e_f - c_d * g_h) * i_j - (a_b * g_h + c_d * e_f) * k_l], [(a_b * e_f - c_d * g_h) * k_l + (a_b * g_h + c_d * e_f) * 

i_j]}; 

= [(a_b * e_f * i_j - c_d * g_h * i_j - a_b * g_h * k_l - c_d * e_f * k_l), (a_b * e_f * k_l - c_d * g_h * k_l + a_b * g_h * i_j 

+ c_d * e_f * i_j)]; 

= {[a_b * e_f * i_j + (- c_d * g_h * i_j - a_b * g_h * k_l) - c_d * e_f * k_l], [a_b * e_f * k_l + (- c_d * g_h * k_l + a_b * 

g_h * i_j) + c_d * e_f * i_j]}; 

= {[a_b * e_f * i_j - a_b * g_h * k_l + (- c_d * g_h * i_j - c_d * e_f * k_l)], [a_b * e_f * k_l + a_b * g_h * i_j + (- c_d * g_h 

* k_l + c_d * e_f * i_j)]}; 

= [(a_b * e_f * i_j - a_b * g_h * k_l - c_d * e_f * k_l - c_d * g_h * i_j)], [a_b * e_f * k_l + a_b * g_h * i_j + c_d * e_f * i_j 

- c_d * g_h * k_l)]; 

= {[a_b * (e_f * i_j - g_h * k_l) - c_d * (e_f * k_l + g_h * i_j)], [a_b * (e_f * k_l + g_h * i_j) + c_d * (e_f * i_j - g_h * k_l)]}; 

= (a_b, c_d) * (e_f * i_j - g_h * k_l, e_f * k_l + g_h * i_j); 

     = (a_b, c_d) * [(e_f, g_h) * (i_j, k_l)]. 

Therefore, multiplication on CQ is associative, as desired. □ 

 Theorem 6.2.08. For all (a_b, c_d), (e_f, g_h), (i_j, k_l) ϵ CQ, (a_b, c_d) * [(e_f, g_h) + (i_j, k_l)] = (a_b, c_d) * (e_f, 

g_h) + (a_b, c_d) * (i_j, k_l). 

 Proof. Letting A = (a_b, c_d) * [(e_f, g_h) + (i_j, k_l)], by Definition 5.1.15, 6.1.02, and 6.1.03 and Theorem 5.2.08, 

5.2.10, and 5.2.12: 

A = (a_b, c_d) * (e_f + i_j, g_h + k_l); 

   = {[a_b * (e_f + i_j) - c_d * (g_h + k_l)], [a_b * (g_h + k_l) + c_d * (e_f + i_j)]}; 

   = [(a_b * e_f + a_b * i_j - c_d * g_h - c_d * k_l), (a_b * g_h + a_b * k_l + c_d * e_f + c_d * i_j)]; 

   = {[a_b * e_f + (a_b * i_j - c_d * g_h) - c_d * k_l], [a_b * g_h + (a_b * k_l + c_d * e_f) + c_d * i_j]}; 

   = {[(a_b * e_f - c_d * g_h) + (a_b * i_j - c_d * k_l)], [(a_b * g_h + c_d * e_f) + (a_b * k_l + c_d * i_j)]}; 

   = (a_b, c_d) * (e_f, g_h) + (a_b, c_d) * (i_j, k_l). 

Therefore, multiplication is left distributive over addition on CQ, as desired. □ 

 Theorem 6.2.09. For all (a_b, c_d), (e_f, g_h), (i_j, k_l) ϵ CQ, [(e_f, g_h) + (i_j, k_l)] * (a_b, c_d) = (e_f, g_h) * (a_b, 

c_d) + (i_j, k_l) * (a_b, c_d). 

 Proof. Letting A = [(e_f, g_h) + (i_j, k_l)] * (a_b, c_d), by Definition 5.1.15, 6.1.02, and 6.1.03 and Theorem 5.2.08, 

5.2.10, and 5.2.13: 

A = (e_f + i_j, g_h + k_l) * (a_b, c_d); 

   = {[(e_f + i_j) * a_b - (g_h + k_l) * c_d], [(e_f + i_j) * c_d + (g_h + k_l) * a_b]}; 

   = [(e_f * a_b + i_j * a_b - g_h * c_d - k_l * c_d), (e_f * c_d + i_j * c_d + g_h * a_b + k_l * a_b)]; 

   = {[e_f * a_b + (i_j * a_b - g_h * c_d) - k_l * c_d], [e_f * c_d + (i_j * c_d + g_h * a_b) + k_l * a_b]}; 
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   = {[(e_f * a_b - g_h * c_d) + (i_j * a_b - k_l * c_d)], [(e_f * c_d + g_h * a_b) + (i_j * c_d + k_l * a_b)]}; 

   = (e_f, g_h) * (a_b, c_d) + (i_j, k_l) * (a_b, c_d). 

Therefore, multiplication is right distributive over addition on CQ, as desired. □ 

 Theorem 6.2.10. For all (a_b, c_d) ϵ CQ, (a_b, c_d) + (0_0, 0_0) = (a_b, c_d) and (0_0, 0_0) is unique. 

 Proof. This is an immediate consequence of Definition 5.1.15 and 6.1.02, Theorem 5.2.14, and Corollary 5.2.15. 

Therefore, (0_0, 0_0) is the unique additive identity on CQ, as desired. □ 

 Theorem 6.2.11. For all (a_b, c_d) ϵ CQ, (a_b, c_d) * (1_0, 0_0) = (a_b, c_d) and (1_0, 0_0) is unique. 

 Proof. This is an immediate consequence of Definition 5.1.15 and 6.1.03, Theorem 5.2.14, 5.2.16, and 5.2.20, 

and Corollary 5.2.15, 5.2.17, and 5.2.21. Therefore, (1_0, 0_0) is the unique multiplicative identity on CQ, as desired. □ 

 Theorem 6.2.12. For all (a_b, c_d) ϵ CQ, (a_b, c_d) + [- (a_b), - (c_d)] = (0_0, 0_0) and [- (a_b), - (c_d)] is unique. 

 Proof. This is an immediate consequence of Definition 5.1.15 and 6.1.02, Theorem 5.2.16, and Corollary 5.2.17. 

Therefore, [- (a_b), - (c_d)] is the unique additive inverse of (a_b, c_d) on CQ, as desired. □ 

 Theorem 6.2.13. For all (a_b, c_d) ϵ CQ ─ {(0_0, 0_0)}, the unique multiplicative inverse of (a_b, c_d) is 

[(a_b/[(a_b)2 + (c_d)2]), (- (c_d)/[(a_b)2 + (c_d)2])].  

 Proof. Letting A = (a_b, c_d) * [(a_b/[(a_b)2 + (c_d)2]), (- (c_d)/[(a_b)2 + (c_d)2])], by Definition 5.1.15, 6.1.03, and 

6.1.12, Lemma 5.2.04 and 5.2.22, and Theorem 5.2.08, 5.2.09, 5.2.16, and 5.2.25: 

A = {[a_b * (a_b/[(a_b)2 + (c_d)2])] - [c_d * (- (c_d)/[(a_b)2 + (c_d)2])], [a_b * (- (c_d)/[(a_b)2 + (c_d)2]) + c_d * (a_b/[(a_b)2 

+ (c_d)2])]; 

   = {([(a_b)2 + (c_d)2]/[(a_b)2 + (c_d)2]), ([- (a_b * c_d) + (c_d * a_b)]/[(a_b)2 + (c_d)2])}; 

   = {([(a_b)2 + (c_d)2]/[(a_b)2 + (c_d)2]), ([(a_b * c_d) + (- [a_b * c_d])]/[(a_b)2 + (c_d)2])}; 

   = (1_0, 0_0). 

Let (e_f, g_h) ϵ CQ be such that, for all (a_b, c_d) ϵ CQ ─ {(0_0, 0_0)}, (a_b, c_d) * (e_f, g_h) = (1_0, 0_0). Then, by 

Definition 6.1.03, (a_b * e_f - c_d * g_h = 1_0) ˄ (a_b * g_h + c_d * e_f = 0_0), hence, by Definition 5.1.12, 5.1.13, and 

5.1.15, e_f = - (a_b * g_h)/c_d, for c_d ≠ 0_0. By substitution, Theorem 5.2.09 and 5.2.11 and Lemma 5.2.22: 

a_b * [- (a_b * g_h)/c_d] - c_d * g_h = - [(a_b)2 * g_h]/c_d - [(c_d)2 * g_h]/c_d; 

                    = (- (g_h) * [(a_b)2 + (c_d)2])/c_d; 

                         = 1_0. 

Hence, by Definition 5.1.12 and 5.1.13, g_h = - (c_d)/[(a_b)2 + (c_d)2]. By substitution and Theorem 5.2.20 and 5.2.25:  

e_f = - [a_b * (- (c_d)/[(a_b)2 + (c_d)2])]/c_d; 

              = {(a_b * c_d)/[(a_b)2 + (c_d)2]} * (1_0/c_d); 

             = a_b/[(a_b)2 + (c_d)2]. 

Suppose c_d = 0_0, then, by Definition 6.1.03, Theorem 5.2.14, and Lemma 5.2.18, (a_b * e_f = 1_0) ˄ (a_b * g_h = 0_0) 

and, by substitution, (a_b * e_f = (a_b)2/(a_b)2 = 1_0) ˄ (a_b * g_h = 0_0/(a_b)2 = 0_0). 
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 Therefore, [(a_b/[(a_b)2 + (c_d)2]), (- (c_d)/[(a_b)2 + (c_d)2])] is the unique multiplicative inverse of (a_b, c_d), as 

desired. □ 

 Theorem 6.2.14. Let S = {(a_b, 0_0)|(a_b, 0_0) ϵ CQ}, then (S, <, +, *) is ring isomorphic to (RQ, <, +, *). 

 Proof. There is an obvious isomorphism, f:S → RQ, defined by f[(a_b, 0_0)] = a_b. Let (a_b, 0_0), (c_d, 0_0) ϵ S be 

arbitrary, then: 

 Addition. By Definition 6.1.02 and Theorem 5.2.14: 

  f[(a_b, 0_0) + (c_d, 0_0)] = f[(a_b + c_d, 0_0 + 0_0)]; 

       = f[(a_b + c_d, 0_0)]; 

       = a_b + c_d; 

       = f[(a_b, 0_0)] + f[(c_d, 0_0)]. 

 Multiplication. By Definition 6.1.03, Theorem 5.2.14, and Lemma 5.2.18 and 5.2.22:  

  f[(a_b, 0_0) * (c_d, 0_0)] = f[(a_b * c_d - 0_0 * 0_0, a_b * 0_0 + c_d * 0_0)]; 

       = f[(a_b * c_d - 0_0, 0_0 + 0_0)]; 

       = f[(a_b * c_d, 0_0)]; 

       = a_b * c_d; 

       = f[(a_b, 0_0)] * f[(c_d, 0_0)]. 

Therefore, (S, <, +, *) is ring isomorphic to (RQ, <, +, *), as desired. □ 

 Lemma 6.2.15. i2 = (- 1_0, 0_0) = - 1_0, where i is that of Definition 6.1.06. 

 Proof. By Definition 5.1.15, 6.1.03 and 6.1.05, Theorem 5.2.14 and 5.2.20, and Lemma 5.2.18 and 5.2.22:  

  (0_0, 1_0) * (0_0, 1_0) = (0_0 * 0_0 - 1_0 * 1_0, 0_0 * 1_0 + 1_0 * 0_0); 

                 = (0_0 - 1_0, 0_0 + 0_0); 

                 = (- 1_0, 0_0); 

                 = - 1_0, as desired. □ 

 Theorem 6.2.16. For all (a_b, c_d) ϵ CQ, (a_b, c_d) = a_b + (c_d) i. 

 Proof. By Definition 6.1.02, 6.1.03, and 6.1.05, Theorem 5.2.14 and 5.2.20, and Lemma 5.2.18 and 5.2.22: 

  (a_b, c_d) = (a_b, 0_0) + (0_0, c_d); 

       = (a_b, 0_0) + (c_d * 0_0 - 0_0 * 1_0, c_d * 1_0 + 0_0 * 0_0); 

       = (a_b, 0_0) + (c_d, 0_0) * (0_0, 1_0); 

       = a_b + (c_d) i, as desired. □ 

 Corollary 6.2.17. Q-Complex numbers in a_b + (c_d) i form may be added and multiplied as polynomials in i, by 

replacing i2, wherever it occurs, by -1_0.  

 Proof. Let (a_b, c_d), (e_f, g_h) ϵ CQ be arbitrary, then: 
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 Addition. By Definition 6.1.02 and Theorem 5.2.13 and 6.2.16: 

  (a_b, c_d) + (e_f, g_h) = (a_b + e_f, c_d + g_h); 

                = (a_b + e_f) + (c_d + g_h) i;  

                = [a_b + (c_d) i] + [e_f + (g_h) i]. 

 Multiplication. By Definition 6.1.03 and Theorem 5.2.08, 5.2.09, 5.2.10, 5.2.13, and 6.2.16: 

  (a_b, c_d) * (e_f, g_h) = (a_b * e_f - c_d * g_h, a_b * g_h + c_d * e_f); 

                = (a_b * e_f - c_d * g_h) + (a_b * g_h + c_d * e_f) i; 

                = [a_b * e_f + (c_d * g_h) i2] + [(a_b * g_h) i + (c_d * e_f) i]; 

                = a_b * e_f + {(c_d * g_h) i2 + [(a_b * g_h) i + (c_d * e_f) i]}; 

                = a_b * e_f + {[(a_b * g_h) i + (c_d * e_f) i] + (c_d * g_h) i2}; 

                = a_b * e_f + (a_b * g_h) i + (c_d * e_f) i + (c_d * g_h) i2; 

                = [a_b + (c_d) i] * [e_f + (g_h) i]. 

Therefore, q-complex numbers in a_b + (c_d) i form can be added and multiplied as polynomials in i, as desired. □ 

 Corollary 6.2.18. For all (a_b, c_d) ϵ CQ, (a_b, c_d) * [a_b, - (c_d)] = (x_y, 0_0), for some x_y ϵ RQ. 

 Proof. Let (a_b, c_d) ϵ CQ be arbitrary, then, by Definition 5.1.16 and Theorem 5.2.02, 5.2.07, 5.2.09, 5.2.13, 

5.2.16, and 6.2.17 and Lemma 5.2.04: 

  (a_b, c_d) * [a_b, - (c_d)] = [a_b + (c_d) i] * [a_b - (c_d) i]; 

        = [a_b + (c_d) i] * a_b - [a_b + (c_d) i] * (c_d) i; 

        = (a_b)2 + a_b * (c_d) i - [a_b * (c_d) i] - (c_d)2  i2; 

        = (a_b)2 + (c_d)2; 

        = [(a_b)2 + (c_d)2, 0_0], as desired. □ 

 Theorem 6.2.19. CQ forms a field. 

 Proof. This is an immediate consequence of Theorem 6.2.03, 6.2.04, 6.2.06, 6.2.07, 6.2.08, 6.2.09, 6.2.10, 6.2.11, 

6.2.12, and 6.2.13, as desired. □ 

 Corollary 6.2.20. CQ is not an ordered field. 

 Proof. The proof, that (0_0, 1_0) = i violates the ordered field axiom, can be found in reference [CD], Chapter 11, 

pages 391 – 392, as desired. □ 

 

 7. Closing Remarks. We hate to use [LK] as a foil because it’s such a nice paper, but a large part of what makes it 

so nice is the stimulation it provides regarding the philosophical question: When is a field truly complete? In his 

conclusion, Krapp states that, formally, a field is complete relative to some completion axiom but we find this more than 

a bit ambiguous and philosophically inadequate. In our assessment, one can productively distinguish between two 

distinct types of field completion: lattice completion and operational completion. 
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The completion axiom defined in [AJ], Chapter 7, page 84, subsumes all of those discussed in [LK] and it is, simply but 

rigorously, lattice completion: A field F is complete iff every non-empty subset of F which is bounded below has an 

infimum in F and every non-empty subset of F which is bounded above has a supremum in F. This rather eloquently 

captures the essence of field completeness; however, as Krapp points out, this notion of completeness is somewhat 

philosophically compromised by the existence of the hyper-reals! In section 4 of [LK], Krapp demonstrates a non-

standard approach to constructing the completion of the standard rationals and early on assumes the existence of the 

transfinite which is added to the standard rationals. The existence of the transfinite is consistent with the axioms of the 

algebraic structure in question, hence, its introduction is formally justified; what we take issue with, is the manner in 

which the transfinite is introduced into the construction. 

Krapp introduces the transfinite into the standard rationals rather than the standard naturals and, while this may 

arguably be an acceptable expediency with regards to an economical exposition such as [LK], it doesn’t seem to us 

foundationally sound; formally, if one wishes to introduce the transfinite into one’s construction, it would seem to us, 

that one should do so at the foundational level. In this manner, it is the foundation of the construction which 

distinguishes the standard reals from the non-standard hyper-reals and from this immediately follows: a field is lattice 

complete relative to some foundation. In the case of the standard reals, one could say they are naturally lattice 

complete; in the case of the hyper-reals, they are naturally transfinite lattice complete;[DV] in the case of the present 

work, the q-reals are q-naturally lattice complete; and in the event the Q-Universe is extended to the Hyper-Q-Universe, 

the hyper-q-reals would be q-naturally transfinite lattice complete. 

The other field completion we would distinguish, operational completion, is intuitively simple: A field F is operationally 

complete iff it is fully closed under the foundational operations and their derivatives, where foundational operations are 

those included in the foundational structure. The only pure fitness criteria driving the evolution of our constructions is 

operational closure; it is the search for operational closure which informs each and every extension in our constructions. 

The taking of roots is nothing more or less than highly constrained division and it is the taking of roots which makes the 

standard complex field operationally complete and the standard real field not so complete.  

So when is a field truly complete? If by truly one means absolutely, considering the existence of an uncountably many 

non-standard foundational structures, [SR] one is highly inclined to say never; however, if by truly one means relative to 

some foundational structure, then it is lattice complete when it forms a complete lattice and operationally complete 

when it is fully closed under the foundational operations and their derivatives. This seems to us a reasonable and non-

ambiguous answer to the question. Is it adequate? The present work motivates this foundational distinction and seems 

to us a formidable argument that it is adequate; the developments outlined in the final section of this paper would seem 

to provide a bulwark against any argument to the contrary.  

Now, what formal justification is there for calling the standard model standard? In our assessment there is no formal 

justification, rather, the justification is social and historical, and we suggest the practice should be discontinued. We 

further suggest that the standard model be designated the zeroth-order model or zeroth-order Universe and we justify 

this suggestion, formally, in the final section of this paper. Historically and sociologically, the zeroth-order Universe is 

called standard simply because it represents the “cropse of our seedfather;” it is the original evolution to completion, 

both lattice and operational, and, as such, it set the standard. The Hyper-Universe and the Q-Universe are both simply 

generalizations of this standard and neither could exist without it. Based on a historical and cognitive perspective, [LN] 

one is inclined to doubt the possibility of any other standard evolving; it seems that out environment places rather 

formidable constraints on our cognition. Of course, one can’t but wonder at the myriad of possible constructions 

accessible to future artilects, whose minds may or may not be so constrained. As for the present author, he is rather 

firmly in agreement with [WV] in that intelligence is open-ended and, being a Humanist[RH] and a Constructivist, [AR] he 

has no qualms with either historical or sociological justifications; however, social constructs evolve and occasionally 

novel developments justify a re-assessment of those social and historical justifications (reference [BW], Chapters 6 and 

8). 
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 7.1. Do other counter-examples to Tennenbaum’s Theorem exist? The attentive reader will have noticed the 

answer to this question in both the abstract and the table of contents: countably many. As you will see, these counter-

examples are all related in a manner which formally justifies the zeroth-order terminology. 

In their paper, “Origin of Complex Amplitudes and Feynman’s Rules,” [GKS] Philop Goyal, Kevin Knuth, and John Skilling 

develop an abstract formalism which allows them to represent typical quantum experiments algebraically. They use this 

formalism together with a single assumption they call the pair postulate (Bohr’s complementarity) to derive Feynman’s 

rules demonstrating along the way that complementarity induces the complex field requirement of Quantum Theory 

quite naturally. We were aware of this important work while engaged in the present work and, while developing the 

section on the q-complex field, it occurred to us that perhaps the Goyal, Knuth, Skilling approach to reconstructing the 

quantum formalism could be generalized to simple quantum entangled systems using the relevant subset of the q-

complex field, those q-complex numbers of the form a1_a2 + a3_a4 i, where 0 ≤ ai ≤ 1. After notifying one of the paper’s 

authors, we returned to the project at hand but we kept thinking about this idea of more faithfully modelling simple 

entangled systems with the q-complex field; specifically, we were thinking about modelling more complex entangled 

systems. Almost as a lark, we thought to ourself, “Could one possibly extend the Q-Universe out to a Universe 

constructed on ω4?” 

0) (1 * a = a) ˄ (0 * a = 0); 

1) (1_0 * a_b = a_b) ˄ (0_0 * a_b = 0_0); 

2) 1_0_0_0 * a_b_c_d = (1_0 * a_b)_(0_0 * a_b + 1_0 * c_d + 0_0 * c_d) = a_b_c_d; 

3) 1_0_0_0_0_0_0_0 * a_b_c_d_e_f_g_h = (1_0_0_0 * a_b_c_d)_(0_0_0_0 * a_b_c_d + 1_0_0_0 * e_f_g_h + 

0_0_0_0 * e_f_g_h) = a_b_c_d_e_f_g_h; 

. 

. 

. 

Not only can one do that, one can go further still and the foundational operations are recusive! 

Essentially, what we have here is a countable subsumption hierarchy of Universes constructed on foundations which 

conform to the geometric sequence {an} = {1, 2, 4, …, 2n, … }, where n ϵ N; a countable hierarchy of fully nested lattice 

complete fields, all of which are recursive; countably many counter-examples to Tennenbaum’s Theorem! This is the 

formal justification for the zeroth-order designation. In the geometric sequence: 20 = 1, ω1 = ω = N, and the constant 

non-logical symbols of the foundational structure, (N, <, +, *, 0, 1), are single digit; 21 = 2, ω2 = NQ, and the constant non-

logical symbols of the foundational structure, (NQ, <, +, *, 0_0, 1_0), are double digit; 22 = 4, ω4 = N4, and the constant 

non-logical symbols of the foundational structure, (N4, <, +, *, 0_0_0_0, 1_0_0_0), are quadruple digit; and so on to ωω, 

whose constant symbols are infinite digit.  

Of course addition and multiplication increase in complexity as n → ω and factoring large integers in a large n Universe 

can be rather difficult, involving the solving of a somewhat complex system of “nested” Diophantine equations (see the 

appendix). But surprisingly, determining lexicographic order does not really increase much in complexity. To see this, 

consider ω8: 

a_b_c_d_e_f_g_h < i_j_k_l_m_n_o_p iff (a_b_c_d < i_j_k_l) ˅ [(a_b_c_d = i_j_k_l) ˄ (e_f_g_h < m_n_o_p)]; 

a_b_c_d < i_j_k_l iff (a_b < i_j) ˅ [(a_b = i_j) ˄ (c_d < k_l)]; 

a_b < i_j iff (a < i) ˅ [(a = i) ˄ (b < j)]. 

Determining order begins with the zeroth-order and continues systematically in the hierarchic order; immediately upon 

discovering an inequality, the determination is made. 
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So now, is it not conceivable that one can use complex numbers from the ω^(2n) Universe to faithfully model a quantum 

entangled system involving 2n wave/particle pairs? {2n} = {1, 2, 4, …, 16, …, 256, …, 65,536, … } . . .  

So perhaps, in the interests of formal consistency, the completion terminology should reflect the hierarchic structure as 

well. One could say: the standard reals are zeroth-order lattice complete; the standard hyper-reals are transfinite 

zeroth-order lattice complete; the q-reals are first-order lattice complete; the hyper-q-reals would be transfinite first-

order lattice complete; and so on to ωth-order lattice complete. This would seem to demonstrate, in a robust way, 

philosophical adequacy. 

 

 8. Appendix. To get a feel for the complexity involved, we will demonstrate the simplest situation from ω8. 

Letting A = a1_a2_a3_a4_a5_a6_a7_a8: 

A = b1_b2_b3_b4_b5_b6_b7_b8 * c1_c2_c3_c4_c5_c6_c7_c8; 

   = (b1_b2_b3_b4 * c1_c2_c3_c4)_[(b5_b6_b7_b8 * c1_c2_c3_c4) + (b1_b2_b3_b4 * c5_c6_c7_c8) + (b5_b6_b7_b8 * c5_c6_c7_c8)]; 

   = (b1_b2 * c1_c2)_[(b3_b4 * c1_c2) + (b1_b2 * c3_c4) + (b3_b4 * c3_c4)]_[{(b5_b6 * c1_c2)_[b7_b8 * c1_c2 + b7_b8 * c3_c4]} +     

{(b1_b2 * c5_c6)_[b3_b4 * c5_c6 + b1_b2 * c7_c8 + b3_b4 * c7_c8)]} + {(b5_b6 * c5_c6)_[b7_b8 * c5_c6 + b5_b6 * c7_c8 + b7_b8 * 

c7_c8)]}]; 

   = (b1 c1)_(b2 c1 + b1c2 + b2c2)_{(b3 c1)_(b4c1 + b3c2 + b4c2) + (b1c3)_(b2c3 + b1c4 + b2c4) + (b3c3)_(b4c3 + b3c4 + b4c4)}_{(b5 

c1)_(b6c1 + b5c2 + b6c2)_[(b7 c1)_(b8c1 + b7c2 + b8 c2) + (b5c3)_(b6c3 + b5c4 + b6c4) + (b7c3)_(b8c3 + b7c4 + b8c4)]} + {(b1c5)_(b2c5 

+ b1c6 + b2c6)_[(b3c5)_(b4c5 + b3c6 + b4c6) + (b1c7)_(b2c7 + b1c8 + b2c8) + (b3 c7)_(b4c7 + b3c8 + b4c8)]} + {(b5c5)_(b6c5 + b5c6 + 

b6c6)_[(b7c5)_(b8c5 + b7c6 + b8c6) + (b5c7)_(b6c7 + b5c8+ b6c8) + (b7c7)_(b8c7 + b7c8+ b8c8)]}; 

   = (b1 c1)_(b2 c1 + b1c2 + b2c2)_[b1c3 + b3(c1 + c3)]_[b2c3 + b1c4 + b2c4 + b3c2 + b4(c1 + c2) + b3c4 + b4(c3 + c4)]_[b5 c1 + b1c5 + 

b5c5]_[b5 c2 + b6(c1 + c2) + b1c6 + b2(c5 + c6) + b5c6 + b6(c5 + c6)]_{[b5c3 + b7(c1 + c3)]_[b7c2 + b8(c1 + c2) + b5c4 + b6(c3 + c4) + 

b7c4 +  b8(c3 + c4)] + [b1c7 + b3(c5 + c7)]_[b3c6 + b4(c5 + c6) + b1c8 + b2(c7 + c8) + b3c8 + b4(c7 + c8)] + [b5c7 + b7(c5 + c7)]_[b7c6 + 

b8(c5 + c6) + b5c8 + b6(c7 + c8) + b7c8 + b8(c7 + c8)]};         

   = (b1 c1)_[b1c2 + b2(c1 + c2)]_[b1c3 + b3(c1 + c3)]_[b2c3 + b3c2 + (b1 + b2 + b3)c4 + b4(c1 + c2 + c3 + c4)]_[b1c5 + b5(c1 + c5)]_[b1c6 

+ b2(c5 + c6) + b5(c2 + c6) + b6(c1 + c2 + c5 + c6)]_[b5c3 + b3(c5 + c7) + b7(c1 + c3 + c5 + c7) + (b1 + b5)c7]_[b1c8 + b2(c7 + c8) + b5(c4 

+ c8) + b7(c2 + c4) + b4(c5 + c6 + c7 + c8) + b6(c3 + c4 + c7 + c8) + (b7 + b3)( c6 + c8) + b8(c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8)]. 

From which we see that: 

a1 = b1c1; 

a2 = b1c2 + b2(c1 + c2); 

a3 = b1c3 + b3(c1 + c3); 

a4 = b2c3 + b3c2 + (b1 + b2 + b3)c4 + b4(c1 + c2 + c3 + c4); 

a5 = b1c5 + b5(c1 + c5); 

a6 = b1c6 + b2(c5 + c6) + b5(c2 + c6) + b6(c1 + c2 + c5 + c6); 

a7 = b5c3 + b3(c5 + c7) + b7(c1 + c3 + c5 + c7) + (b1 + b5)c7; 

a8 = b1c8 + b2(c7 + c8) + b5(c4 + c8) + b7(c2 + c4) + b4(c5 + c6 + c7 + c8) + b6(c3 + c4 + c7 + c8) + (b7 + b3)( c6 + c8) + b8(c1 + c2 + c3 + 

c4 + c5 + c6 + c7 + c8). 
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