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Abstract

This paper presents evidence for the idea that much of the workings
of brains and nervous systems may be understood as information compres-
sion via the matching and unification of patterns (ICMUP). Information
compression can mean selective advantage for any creature: in the efficient
storage and transmission of information; and, owing to the close connection
between information compression and concepts of prediction and probabil-
ity, in the making of predictions about where food may be found, potential
dangers, and so on. Several aspects of our everyday perceptions and think-
ing may be seen as information compression. For example, many words in
natural languages may be seen as relatively short identifiers or ‘codes’ for
relatively complex concepts. When viewing the world with two eyes, we see
one view, not two. Random-dot stereograms provide confirmation that, in
binocular vision, we do indeed merge information from our two eyes and
thus compress it. Information compression may be seen in the workings of
sensory units in the eye of Limulus, the horseshoe crab. Computer models
demonstrate how information compression may be a key to the unsupervised
discovery of grammars for natural language, including segmental structures
(words and phrases), classes of structure, and abstract patterns. Informa-
tion compression may be seen in the perceptual constancies, including size
constancy, lightness constancy, and colour constancy. Mathematics, which
is a product of the human intellect, may be seen to be a set of techniques for
ICMUP, and their application. The SP theory of intelligence, with its em-
pirical support, provides evidence for the importance of ICMUP, and more
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specifically a concept of ‘SP-multiple-alignment’, in several aspects of hu-
man learning, perception, and thinking. Four objections to the main thesis
of this paper are described, with answers to those objections.

Keywords: information compression, intelligence, perception, learning, cognition

1 Introduction

“Fascinating idea! All that mental work I’ve done over the years, and
what have I got to show for it? A goddamned zipfile! Well, why not,
after all?” (John Winston Bush, 1996).

This paper describes observations and arguments that, in varying degrees, pro-
vide support for the idea that much of the workings of brains and nervous systems,
including human learning, perception, and cognition, may be understood as infor-
mation compression via the discovery of patterns that match each other and the
merging or ‘unification’ of two or more instances of any pattern to make one.
That perspective on information compression is described more fully in Section
2.4, below.

For the sake of brevity, the expression ‘human learning, perception, and cogni-
tion’ will be referred to as ‘HLPC’, the expression ‘information compression via the
matching and unification of patterns’ will be referred to as ‘ICMUP’, and the main
thesis of this paper—that much of the workings of brains and nervous systems may
be understood as ICMUP—will be referred to as ‘BICMUP’.

The aim here is to review, update, and extend the discussion in [71], itself the
basis for [72, Chapter 2], but with the main focus on the workings of brains and
nervous systems.

The next section describes some of the background to this research and some
relevant general principles, and the next-but-one section describes related research.
Sections 4 to 15 inclusive describe empirical evidence in support of BICMUP, and
Section 16, with Appendix B, describes apparent contradictions of ideas in this
paper, and how they may be resolved.

2 Background and general principles

This section provides some background to this paper and summarises some general
principles that have a bearing on BICMUP and the programme of research of which
this paper is a part.
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2.1 The importance of wide scope in theorising and in the
creation and testing of computer models

As the title of this subsection suggests, this research attaches importance to main-
taining a wide scope in the development of theories, and the importance of devel-
oping and testing computer models with wide scope as an aid to the development
of theories.

In his famous essay, You can’t play 20 questions with nature and win, Allen
Newell [42] writes about the sterility of developing theories in narrow fields, and
calls for each researcher to focus on “a genuine slab of human behaviour” (ibid.,
p. 303).1

Newell’s exhortation accords with a slightly extended version of Occam’s Razor:
in developing simple theories of empirical phenomena, we should concentrate on
those with the greatest explanatory range. A theory that works well across a wide
area is likely to be relatively robust and relatively immune to invalidation by new
evidence.

In a similar vein, President Eisenhower is reputed to have said: “If you can’t
solve a problem, enlarge it”, meaning that putting a problem in a broader context
may make it easier to solve. Good solutions to a problem may be hard to see
when the problem is viewed through a keyhole, but become visible when the door
is opened.

With regard to the creation and testing of computer models with wide scope:
this helps to guard against vagueness in theorising; it provides a very effective
means of exposing the weaknesses of any idea; and it provides a means of demon-
strating what a theory can do.

2.2 The SP theory of intelligence and its realisation in the
SP computer model

In accordance with the principles outlined in Section 2.1, the SP Theory of Intelli-
gence and its realisation in the SP Computer Model (outlined in Appendix C) is a
unique attempt to simplify and integrate observations and concepts across artificial
intelligence, mainstream computing, mathematics, and HLPC, with information
compression as a unifying theme.2

1Newell’s essay and his book Unified Theories of Cognition [43] led to many attempts by
himself and others to develop such theories. But in the light of Ben Goertzel’s [24, p. 1] remark
that “We have not discovered any one algorithm or approach capable of yielding the emergence
of [general intelligence].” it seems that there is still some way to go.

2The name ‘SP’ is short for Simplicity and Power, because compression of any given body
of information, I, may be seen as a process of reducing informational ‘redundancy’ in I and
thus increasing its ‘simplicity’, whilst retaining as much as possible of its non-redundant
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This paper relates to the SP research in two main ways:

• Since ICMUP is a central part of the SP theory, evidence for BICMUP
presented in this paper in Sections 4 to 14 inclusive (but excluding Section
15) strengthens empirical support for the SP theory, viewed as a theory of
HLPC.

• Empirical evidence for the SP theory as a theory of HLPC—summarised in
Section 15—provides evidence for BICMUP which is additional to that in
Sections 4 to 14 inclusive.

Owing to the wide scope of the SP theory and its many potential benefits
and applications, it has proved difficult in writing about any one aspect of the
system, or any one area of application, to avoid repeating information that has
been presented elsewhere. In this paper and others, efforts have been made to
avoid unnecessary repetition of information. At the same time, attention has been
given to the need for clarity, and the need for each paper, including this one, to
be free-standing so that it makes sense without recourse to other publications.

2.3 Approaches to information compression and probabil-
ity

There are many approaches to information compression, many of them with a
mathematical flavour (see, for example, [50]). Much the same is true of concepts
of prediction and probability which, as outlined in Section 2.5, are closely related
to information compression.

In the SP programme of research, the orientation is different. Amongst other
things, the SP theory attempts to get below or behind the mathematics of other
approaches to information compression and probability—to focus on ICMUP: the
relatively simple, ‘primitive’ idea that information may be compressed by finding
two or more patterns that match each other, and merging or ‘unifying’ them so
that multiple instances of the pattern are reduced to one.3 Of course, mathematics
is very useful in many situations, including parts of the SP theory itself (see, for
example, [72, Sections 3.5, 3.7, 3.10.6.2, and 9.2.6]). The intention in developing

expressive ‘power’.
3An apparent exception to the generalisation that most approaches to information

compression have a mathematical flavour is the widely-used ‘LZ’ algorithms [81, 82] and their
variations (see, for example, “LZ77 and LZ78”, Wikipedia, bit.ly/2wKOuhl, retrieved
2017-10-10). In these algorithms, the matching and unification of patterns is quite prominent.
But the programs have little or no relevance to an understanding of HLPC because they are
designed for speed on low-powered computers rather than the achievement of high levels of
information compression, and of course they never aspired to be models of HLPC.

4

http://bit.ly/2wKOuhl


the SP system has been to avoid too much dependence on mathematics in the
conceptual core of the theory.

There are three main reasons for this focus on ICMUP and the avoidance of
too much dependence on mathematics:

• Since ICMUP is relatively ‘concrete’ and less abstract than the more mathe-
matical approaches to information compression, it suggests avenues that may
be explored in understanding possible mechanisms for compression of infor-
mation and the estimation or calculation of probabilities, both in artificial
systems and in brains and nervous systems. Here are two putative examples:

– The concept of SP-multiple-alignment (Appendix C.1) is founded on
ICMUP and is not a recognised part of today’s mathematics—but it
has proved to be effective in the compression of information, it makes
possible a relatively straightforward approach to the calculation of prob-
abilities for inferences, and it facilitates the modelling of several aspects
of HLPC (Section 15, [80], [72, 74]).

– The SP system, including the concept of SP-multiple-alignment with
ICMUP, suggests how aspects of intelligence may be realised in a ‘neu-
ral’ version of the SP theory, SP-neural, expressed in terms of neurons
and their interconnections (Appendix C.4).

• The SP theory, including ICMUP, aims to be, amongst other things, a theory
of the foundations of mathematics [78], so it would not be appropriate for
the theory to be too dependent on mathematics.

• Whilst the SP theory has benefitted from valuable insights gained from re-
search on Algorithmic Probability Theory (APT), Algorithmic Information
Theory (AIT), and related work (Section 3.2), it differs from that work in
that it is not founded on the concept of a ‘universal Turing machine’ (UTM).

Instead, a focus on ICMUP, has yielded a new theory of computing and cogni-
tion, founded on ICMUP and SP-multiple-alignment, with the generality of
the UTM [72, Chapter 4] but with strengths in the modelling of human-like
intelligence which are missing from the UTM ([80], [72, 74]).

Overall, the SP system, including ICMUP, provides a novel approach to con-
cepts of information compression and probability which appears to have potential
as an alternative to established methods in these areas.

A qualification to what has been said in this subsection is that, as argued in [78],
mathematics may itself be seen to be founded on ICMUP. From that conclusion, it
might be argued that, for the analysis of phenomena in HLPC, there is nothing to
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choose between ICMUP in mathematics and ICMUP in the SP system. In response
to that argument: the SP system is a relatively direct expression of ICMUP; and
it provides mechanisms such as SP-multiple alignment which are not provided in
mathematics.

2.4 Six variants of ICMUP

In case the concept of ICMUP seems obscure, this subsection first describes ‘basic
ICMUP’ more fully, and in Section 2.4.3, below, it describes five other variants
which are widely used in everyday life and in science and engineering, and will be
referred to later in the paper.

2.4.1 Searching for matches between patterns

The main idea in ICMUP is illustrated in the top part of Figure 1, below.
Here, a stream of raw data may be seen to contain two instances of the pat-
tern ‘INFORMATION’. Subjectively, we ‘see’ this immediately. But in a computer or
a brain, the discovery of that kind of replication of patterns must necessarily be
done by a process of searching for matches between patterns.

As indicated in Appendix C.1, the process of searching for matches between
patterns can, in the process of building ‘good’ SP-multiple-alignments, be quite
subtle and complex, including processes for finding good partial matches between
patterns as well as full matches, as described in [72, Appendix A].

2.4.2 Unification of patterns

In itself, the detection of repeated patterns is not very useful. But by merging or
‘unifying’ the two instances of ‘INFORMATION’ in Figure 1 we may create the single
instance shown in the middle of the figure (excluding ‘w62’ at the beginning). This
kind of unification normally achieves a reduction in the overall size of the data. In
other words, unification normally achieves compression of information.4

A discrete pattern like ‘INFORMATION’ is often referred to as a chunk of infor-
mation, a term that gained prominence in psychology largely because of its use by
George Miller in his influential paper The magical number seven, plus or minus
two [40].

Miller did not use terms like ‘unification’ or ‘information compression’, and he
acknowledges some uncertainty about the significance of the concept of a chunk:
“The contrast of the terms bit and chunk also serves to highlight the fact that we

4The qualifying word ‘normally’ is needed because, to achieve lossless compression of
information, the repeated patterns that are to be unified must occur more frequently in the raw
data than one would expect by chance (Section 2.4.5, [72, Section 2.2.8.3]).
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are not very definite about what constitutes a chunk of information.” (ibid., p. 93,
emphasis in the original). However, he describes how chunking of information
may achieve something like compression of information: “... we must recognize
the importance of grouping or organizing the input sequence into units or chunks.
Since the memory span is a fixed number of chunks, we can increase the number
of bits of information that it contains simply by building larger and larger chunks,
each chunk containing more information than before.” (ibid., p. 93, emphasis in
the original) and “... the dits and dahs are organized by learning into patterns
and ... as these larger chunks emerge the amount of message that the operator can
remember increases correspondingly.” (ibid., p. 93, emphasis in the original).

2.4.3 Five other variants of ICMUP

Apart from basic ICMUP, the previously-mentioned five other variants of ICMUP
are these:

• Chunking-with-codes. With each unified chunk of information, give it a rel-
atively short name, identifier, or code, and use that as a shorthand for the
chunk of information wherever it occurs.

The idea is illustrated in Figure 1, where, in the middle of the figure, the
relatively short code or identifier ‘w62’ is attached to a copy of the ‘chunk’
‘INFORMATION’ (that pairing of code and unified chunk would be stored sep-
arately from the body of data that is to be compressed). Then, under the
heading “Compressed data” at the bottom of the figure, each of the two
original instances of ‘INFORMATION’ is replaced by the code ‘w62’ yielding an
overall compression of the original data.

Examples of chunking-with-codes from this paper are the use of ‘ICMUP’ as
a shorthand for “information compression via the matching and unification
of patterns”, and ‘HLPC’ as a shorthand for “human learning, perception,
and cognition”. Thus the use of ‘ICMUP’ to replace each occurrence of “in-
formation compression via the matching and unification of patterns” means
that, in effect, those many instances have been unified and reduced to the
single instance used in the definition of ICMUP.

• Schema-plus-correction. This variant is like chunking-with-codes but the
unified chunk of information may have variations or ‘corrections’ on different
occasions.

An example from everyday life is a menu in a restaurant or cafe. This pro-
vides an overall framework, something like ‘starter main course pudding’
which may be seen as a chunk of information. Each of the three elements
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of the menu may be seen as a place where each customer may make a
choice or ‘correction’ to the menu. For example, one customer may choose
‘starter(soup) main course(fish) pudding(apple pie)’ while another
customer may choose ‘starter(salad) main course(vegetable hotpot)

pudding(ice cream)’, and so on.

• Run-length coding. This variant may be used with any sequence of two
or more copies of a pattern where each copy except the first one follows
immediately after the preceding copy. In that case, it is only necessary to
record one copy of the pattern, with the number of copies, or with symbols
or ‘tags’ to mark the start and end of the sequence.

For example, a repeated pattern like:

‘INFORMATIONINFORMATIONINFORMATIONINFORMATIONINFORMATION’

may be reduced to something like ‘INFORMATION(×5)’ (where ‘×5’ records
the number of instances of ‘INFORMATION’). Alternatively, the sequence may
be reduced to something like ‘p INFORMATION ... #p’, meaning that “the
pattern ‘INFORMATION’ is repeated an unspecified number of times between
the start and end symbols ‘p ... #p’ ”.

This is something like the instruction: “From the old oak tree keep walking
until you see the river”. Here, ‘the old oak tree’ marks the start of the
repetition, ‘keep walking’ describes the repeated operation of putting one
foot in front of the other, and ‘until you see the river’ marks the end of the
repetition.

• Class-inclusion hierarchy with inheritance of attributes. Here, there is a
hierarchy of classes and subclasses, with ‘attributes’ at each level. At every
level except the top level, each subclass ‘inherits’ the attributes of all higher
levels.

In simplified form, the class ‘vehicle’ contains sub-classes like
‘road vehicle’ and ‘rail vehicle’, the class ‘road vehicle’ contains sub-
classes like ‘bus’, ‘lorry’, and ‘car’, and so on. An attribute like
‘contains engine’ would be assigned to the top level (‘vehicle’) and would
be inherited by all lower-level classes, thus avoiding the need to record that
information repeatedly at all levels in the hierarchy. Likewise for attributes
at lower levels.

Of course there are many subtleties in the way people use class-inclusion
hierarchies, such as cross-classification, ‘polythetic’ or ‘family resemblance’
concepts (in which no single attribute is necessarily present in every member
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of the given category and there need be no single attribute that is exclusive
to that category [53]), and the ability to recognise that something belongs in
a class despite errors of omission, commission, or substitution. The way in
which the SP system can accommodate those kinds of subtleties is discussed
in [72, Sections 2.3.2, 6.4.3, 12.2, and 13.4.6.2].

• Part-whole hierarchy with inheritance of contexts. This is like a class-
inclusion hierarchy with inheritance of attributes except that the hierarchical
structure represents the parts and subparts of some entity, and any given part
inherits information about all the higher-level parts. In much the same way
as with a class-inclusion hierarchy, a part-whole hierarchy promotes economy
by sidestepping the need for each part of an entity to store full and explicit
information about the higher-level structures of which it is a part.

A simple example is the way that a ‘person’ has parts like ‘head’, ‘body’,
‘arms’, and ‘legs’, while an arm may be divided into ‘upper arm’, ‘forearm’,
‘hand’, and so on. In a structure like this, inheritance means that if one
hears that a given person has an injury to his or her hand, one can infer
immediately that that person’s arm has been injured, and indeed his or her
whole ‘person’.

2.4.4 ICMUP and SP-multiple-alignment

The way in which the six variants of ICMUP described in Section 2.4.3 may be
realised via the concept of SP-multiple-alignment is described in [79, Appendix
A.8]. In general, the SP-multiple-alignment construct provides for the seamless
integration of these six variants of ICMUP, and perhaps others, in any combination.

Since the concept of SP-multiple-alignment also provides most of the versatility
of the SP system, as outlined in Section 15, it may be seen as a super-charged
version of ICMUP.

2.4.5 Quantification of information compression

So far, we have glossed over issues relating to the quantification of information
compression in ICMUP. Here, in brief, are some key points:

• Any compression of information that may be achieved via basic ICMUP
(Section 2.4) will be ‘lossy’, meaning that it will lose non-redundant infor-
mation. This is because, in the unification of two or more matching patterns,
information about the location of each pattern in the wider context is lost.
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Figure 1: A schematic representation of the way two instances of the pattern
‘INFORMATION’ in a body of raw data may be unified to form a single ‘unified’
pattern or ‘chunk’ of information, with ‘w62’ as a relatively short identifier or
‘code’ assigned by the system. The lower part of the figure shows how the raw
data may be compressed by replacing each instance of ‘INFORMATION’ with a
copy of the (shorter) identifer. Reproduced with permission from Figure 2.3 in
[72].

• The chunking-with-codes technique is a means of avoiding the afore-
mentioned loss of information about locations. This is because copies of
the code associated with a unified pattern may be used to mark the loca-
tions of the patterns from which it was derived. This is illustrated in the
lower part of Figure 1.

• With the chunking-with-codes technique, compression of information may
be optimised by assigning shorter codes to more frequent chunks and longer
codes to rarer chunks, in accordance with some such scheme as Shannon-
Fano-Elias coding [17].

• With the other four techniques outlined in Section 2.4.3, similar principles
may be applied.

• From the perspective of ICMUP, the concept of redundancy in information
may be seen as the occurrence of two or more arrays of symbols that match
each other, including arrays of symbols in which non-matching symbols are
interspersed.
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An important qualification here is that, for a given repeating array of sym-
bols, A, to represent redundancy within a given body of information, I, A’s
frequency of occurrence within I must be higher than would be expected by
chance for an array of the same size [78, Appendix C].

2.4.6 Volumes of data and speeds of learning

An interesting corollary of the last point in the preceding subsection is that large
patterns may exceed the threshold at a lower frequency than small patterns. With
a complex pattern, such as an image of a person or a tree, there can be significant
redundancy in a mere 2 occurrences of the pattern.

If redundancies can be detected via patterns that occur only 2 or 3 times
in a given sample of data, unsupervised learning may prove to be effective with
smallish amounts of data. This may help to explain why, in contrast to the very
large amounts of data that are apparently required for success with deep learning,
children and non-deep-learning types of learning program can do useful things with
relatively tiny amounts of data [77, Section V-E].

In this connection, neuroscientist David Cox has been reported as saying: “To
build a dog detector [with a deep learning system], you need to show the program
thousands of things that are dogs and thousands that aren’t dogs. My daughter
only had to see one dog.” and, the report says, she was happily pointing out
puppies ever since.5

This issue relates to the way in which a camouflaged animal is likely to become
visible when it moves relative to its background (Section 7). As with random-dot
stereograms (Section 6), only two images which are similar but not the same are
needed to reveal hidden structure.

2.5 Information compression and concepts of prediction
and probability

It has been recognised for some time that there is an intimate relation between
information compression and concepts of prediction and probability [63, 54, 55, 35].

In case this seems obscure, it makes sense in terms of ICMUP: a pattern that
repeats is one that invites ICMUP, but it is also one that, via inductive reasoning,
suggests what may happen in the future. As can be seen in the workings of the SP
system, probabilities may be calculated from the frequencies with which different
patterns occur ([72, Section 3,7], [74, Section 4.4]).

5“Inside the moonshot effort to finally figure out the brain”, MIT Technology Review,
2017-10-12, bit.ly/2wRxsOg.
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In more concrete terms, any repeating pattern—such as the association between
black clouds and rain—provides a basis for prediction—black clouds suggest that
rain may be on the way—and probabilities may be derived from the number of
repetitions.

There is a little more detail in [78, Appendix D], and a lot more detail about
how this works with the SP-multiple-alignment concept in [72, Section 3.7] and
[74, Section 4.4].

The SP system has proved to be an effective alternative to Bayesian theory
in explaining such phenomena as ‘explaining away’ ([72, Section 7.8], [74, Section
10.2]).

As indicated in Section 4, the close connection between information compres-
sion and concepts of prediction and probability makes sense in terms of biology.

2.6 Emotions and motivations

A point that deserves emphasis is that, while this paper is part of a programme
of research aiming for simplification and integration of observations and ideas in
cognitive psychology and related fields, it does not attempt to provide a com-
prehensive view of human psychology. In particular, it does not attempt to say
anything about emotions or motivations, despite their undoubted importance and
relevance to many aspects of human psychology, including cognitive psychology.

While the evidence is strong that ICMUP has an important role to play in
HLPC, emotions and motivations are certainly important too.

3 Related research

An early example of thinking relating to information compression in cognition was
the suggestion by William of Ockham in the 14th century that “Entities are not
to be multiplied beyond necessity.”. Later, there have been remarks by prominent
scientists about the importance of simplicity in science (summarised in [78, Section
3]). Then research with a more direct bearing on BICMUP began in the 1950s
and ’60s after the publication of Claude Shannon’s [52] ‘theory of communication’
(later called ‘information theory’), and partly inspired by it.

In the two subsections that follow, there is a rough distinction between re-
search with the main focus on issues in cognitive psychology and neuroscience,
and research that concentrates on issues in mathematics and computing. In both
sections, research is described roughly in the order in which it was published.

In this research, the prevailing view of information, and compression of in-
formation, is that they are things to be defined and analysed in mathematical
terms. This perspective has yielded some useful insights, such as, for example,
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Solomonoff’s demonstration of the close relation between information compression
and concepts of prediction and probability (Section 2.5). But, as suggested in
Section 2.3, there are potential advantages in the ICMUP perspective adopted in
the SP research.

3.1 Psychology- and neuroscience-related research

Research relating to information compression and HLPC may be divided roughly
into two parts: early research initiated in the 1950s and 60s by Fred Attneave,
Horace Barlow and others, and then after a relative lull in activity, later research
from the 1990s onwards.

3.1.1 Early research

In a paper called “Some informational aspects of visual perception”, Fred Attneave
[2] describes evidence that visual perception may be understood in terms of the
distinction between areas in a visual image where there is much redundancy, and
boundaries between those areas where non-redundant information is concentrated:

“... information is concentrated along contours (i.e., regions where color
changes abruptly), and is further concentrated at those points on a
contour at which its direction changes most rapidly (i.e., at angles or
peaks of curvature).” [2, p. 184].

For those reasons, he suggests that:

“Common objects may be represented with great economy, and fairly
striking fidelity, by copying the points at which their contours change
direction maximally, and then connecting these points appropriately
with a straight edge.” [2, p. 185].

And he illustrates the point with a drawing of a sleeping cat reproduced in Figure
2.

Satosi Watanabe picked up the baton in a paper, referenced in Section 2.5,
called “Information-theoretical aspects of inductive and deductive inference” [63].
He later wrote about the role of information compression in pattern recognition
[64, 65].

At about this time, Horace Barlow published a paper called “Sensory mecha-
nisms, the reduction of redundancy, and intelligence” [3] in which he argued, on
the strength of the large amounts of sensory information being fed into the [mam-
malian] central nervous system, that “the storage and utilization of this enormous
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Fie. 2. Subjects attempted to approximate
the dosed figure shown above with a pattern
of 10 dots. Radiating bars indicate the rela-
tive frequency with which various portions of
the outline were represented by dots chosen.

Evidence from other and entirely dif-
ferent situations supports both of these
inferences. The concentration of infor-
mation in contours is illustrated by the
remarkably similar appearance of ob-
jects alike in contour and different
otherwise. The "same" triangle, for ex-
ample, may be either white on black or
green on white. Even more impressive
is the familiar fact that an artist's
sketch, in which lines are substituted
for sharp color gradients, may consti-
tute a readily identifiable representation
of a person or thing.

An experiment relevant to the second
principle, i.e., that information is fur-
ther concentrated at points where a
contour changes direction most rapidly,
may be summarized briefly.8 Eighty 5s
were instructed to draw, for each of 16
outline shapes, a pattern of 10 dots
which would resemble the shape as
closely as possible, and then to indicate
on the original outline the exact places

3 This study has been previously published
only in the form of a mimeographed note:
"The Relative Importance of Parts of a Con-
tour," Research Note P&MS Sl-8, Human Re-
sources Research Center, November 1951.

which the dots represented. A good
sample of the results is shown in Fig. 2:
radial bars indicate the relative fre-
quency with which dots were placed on
each of the segments into which the con-
tour was divided for scoring purposes.
It is clear that Ss show a great deal of
agreement in their abstractions of points
best representing the shape, and most
of these points are taken from regions
where the contour is most different from
a straight line. This conclusion is veri-
fied by detailed comparisons of dot fre-
quencies with measured curvatures on
both the figure shown and others.

Common objects may be represented
with great economy, and fairly striking
fidelity, by copying the points at which
their contours change direction maxi-
mally, and then connecting these points
appropriately with a straightedge. Fig-
ure 3 was drawn by applying this tech-
nique, as mechanically as possible, to a
real sleeping cat. The informational
content of a drawing like this may be
considered to consist of two compo-
nents: one describing the positions of
the points, the other indicating which
points are connected with which others.
The first of these components will al-
most always contain more information
than the second, but its exact share will
depend upon the precision with which
positions are designated, and will fur-
ther vary from object to object.

Let us now return to the hypothetical
subject whom we left between the corner

FIG. 3. Drawing made by abstracting 38
points of maximum curvature from the con-
tours of a sleeping cat, and connecting these
points appropriately with a straightedge.

Figure 2: Drawing made by abstracting 38 points of maximum curvature from
the contours of a sleeping cat, and connecting these points appropriately with a
straight edge. Reproduced from Figure 3 in [2], with permission.

sensory inflow would be made easier if the redundancy of the incoming messages
was reduced.” (ibid. p. 537).

In the paper, Barlow makes the interesting suggestion that:

“... the mechanism that organises [the large size of the sensory in-
flow] must play an important part in the production of intelligent be-
haviour.” (ibid. p. 555).

and in a later paper he writes:

“... the operations required to find a less redundant code have a rather
fascinating similarity to the task of answering an intelligence test, find-
ing an appropriate scientific concept, or other exercises in the use of
inductive reasoning. Thus, redundancy reduction may lead one towards
understanding something about the organization of memory and intel-
ligence, as well as pattern recognition and discrimination.” [4, p. 210].

These prescient insights into the significance of information compression for
the workings of human intelligence, with further discussion in [5], is a strand of
thinking that has carried through into the SP theory of intelligence, with a wealth
of supporting evidence, summarised in Section 15.6

Barlow developed these and related ideas over a period of years in several
papers, some of which are referenced in this paper. However, in [6], he adopted a
new position, arguing that:

6When I was an undergraduate at Cambridge University, it was fascinating lectures by
Horace Barlow about the significance of information compression in the workings of brains and
nervous systems, that first got me interested in those ideas.
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“... the [compression] idea was right in drawing attention to the impor-
tance of redundancy in sensory messages because this can often lead to
crucially important knowledge of the environment, but it was wrong in
emphasizing the main technical use for redundancy, which is compres-
sive coding. The idea points to the enormous importance of estimating
probabilities for almost everything the brain does, from determining
what is redundant to fuelling Bayesian calculations of near optimal
courses of action in a complicated world.” (ibid. p. 242).

While there are some valid points in what Barlow says in support of his new
position, his overall conclusions appear to be wrong. His main arguments are
summarised in Appendix A, with what I’m sorry to say are my critical comments
after each one.7

3.1.2 Later research

Later studies relating to information compression in brains and nervous systems
have little to say about ICMUP. But they help to confirm the importance of
information compression in HPLC, and thus provide some indirect support for
BICMUP. A selection of publications are described briefly here.

• Ruma Falk and Clifford Konold [19] describe the results of experiments in-
dicating that the perceived randomness of a sequence is better predicted by
various measures of its encoding difficulty than by its objective randomness.
They suggest that judging the extent of a sequence’s randomness is based
on an attempt to encode it mentally, and that the subjective experience of
randomness may result when that kind of attempt fails.

• Jose Hernández-Orallo and Neus Minaya-Collado [27] propose a definition
of intelligence in terms of information compression. At the most abstract
level, it chimes with remarks by Horace Barlow quoted in Section 3.1.1, and
indeed it is consonant with the SP theory itself. But the proposal shows no
hint of how to model the kinds of capabilities that one would expect to see
in any artificial system that aspires to human-like intelligence.

• Nick Chater, with others, has conducted extensive research on HLPC, com-
pression of information, and concepts of probability, generally with an ori-
entation towards AIT, Bayesian theory, and related ideas. For example:

7I feel apologetic about this because, as I mentioned, Barlow’s lectures and his earlier
research relating to information compression in brains and nervous systems have been an
inspiration for me over many years.
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– Chater [9] discusses how ‘simplicity’ and ‘likelihood’ principles for per-
ceptual organisation may be reconciled, with the conclusion that they
are equivalent. He suggests that “the fundamental question is whether,
or to what extent, perceptual organization is maximizing simplicity and
maximizing likelihood.” (ibid., p. 579).

– Chater [10] discusses the idea that the cognitive system imposes pat-
terns on the world according to a simplicity principle, meaning that
it chooses the pattern that provides the briefest representation of the
available information. Here, the word ‘pattern’ means essentially a the-
ory or system of one or more rules, a meaning which is quite different
from the meaning of ‘pattern’ or ‘SP-pattern’ in the SP research, which
simply means an array of atomic symbols in one or two dimensions.
There is further discussion in [12].

– Emmanuel Pothos with Nick Chater [45] present experimental evidence
in support of the idea that, in sorting novel items into categories, people
prefer the categories that provide the simplest encoding of these items.

– Nick Chater with Paul Vitányi [13] describe how the ‘simplicity prin-
ciple’ (information compression) allows the learning of language from
positive evidence alone, given quite weak assumptions, in contrast to
results on language learnability in the limit [25]. There is further dis-
cussion in [28]. These issues relate to discussion in Section 12.

– Editors Nick Chater and Mike Oaksford [11] present a variety of stud-
ies using Bayesian analysis to understand probabilistic phenomena in
HLPC.

– Paul Vitányi with Nick Chater [59] discuss whether it is possible to infer
a probabilistic model of the world from a sample of data from the world
and, via arguments relating to AIT, they reach positive conclusions.

• Jacob Feldman [20] describes experimental evidence that, when people are
asked to learn ‘Boolean concepts’, meaning categories defined by logical rules,
the subjective difficulty of learning a concept is directly proportional to its
‘compressibility’, meaning the length of the shortest logically equivalent for-
mula.

• Don Donderi [18] presents a review of concepts that relate to the concept of
‘visual complexity’. These include Gestalt psychology, Neural Circuit The-
ory, AIT, and Perceptual Learning Theory. The paper includes discussion of
how these and related ideas may contribute to an understanding of human
performance with visual displays.
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• Vivien Robinet and co-workers [49] describe a dynamic hierarchical chunking
mechanism, similar to the MK10 computer model (Section 10). The theoret-
ical orientation of this research is towards AIT, while the MK10 computer
model embodies ICMUP.

• From analysis and experimentation, Nicolas Gauvrit and others [23] con-
clude that how people perceive complexity in images seems to be partly
shaped by the statistics of natural scenes. [22] describe how it is possible to
overcome the apparent shortcoming of AIT in estimating the complexity of
short strings of symbols, and they show how the method may be applied to
examples from psychology.

• In a review of research on the evolution of natural language, Simon Kirby
and others [32] describe evidence that transmission of language from one
person to another has the effect of developing structure in language, where
‘structure’ may be equated with compressibility. On the strength of further
research, [57] conclude that increases in compressibility arise from learning
processes (storing patterns in memory), whereas reproducing patterns leads
to random variations in language.

• On the strength of a theoretical framework, an experiment and a simulation,
Benôıt Lemaire and co-workers [34] argue that the capacity of the human
working memory may be better expressed as a quantity of information rather
than a fixed number of chunks.

• In related work, Fabien Mathy and Jacob Feldman [39] redefine George
Miller’s [40] concept of a ‘chunk’ in terms of AIT as a unit in a “maxi-
mally compressed code”. On the strength of experimental evidence, they
suggest that the true limit on short-term memory is about 3 or 4 distinct
chunks, equivalent to about 7 uncompressed items (of average compressibil-
ity), consistent with George Miller’s famous magical number.

• And Mustapha Chekaf and co-workers [14] describe evidence that people
can store more information in their immediate memory if it is ‘compressible’
(meaning that it conforms to a rule such as “all numbers between 2 and
6”) than if it is not compressible. They draw the more general conclusion
that immediate memory is the starting place for compressive recoding of
information.

3.2 Mathematics- and computer-related research

Other research, with an emphasis on issues in mathematics and computing, can
be helpful in the understanding of information compression in brains and nervous
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systems. This includes:

• Ray Solomonoff developed a formal theory known as Algorithmic Probability
Theory showing the intimate relation between information compression and
inductive inference [54, 55] (Section 2.5).

• Chris Wallace with others explored the significance of information compres-
sion in classification and related areas (see, for example, [61, 62, 1].

• Gregory Chaitin and Andrei Kolmogorov, working independently, built on
the work of Ray Solomonoff in developing AIT. The main idea here is that
the information content of a string of symbols is equivalent to the length
of the shortest computer program that anyone has been able to devise that
describes the string.

• Jorma Rissanen has developed related ideas in [47, 48] and other publications.

A detailed description of these and related bodies of research may be found in
[35].

In research on deep learning in artificial neural networks, well reviewed by
Jürgen Schmidhuber [51], there is some recognition of the importance of informa-
tion compression (ibid., Sections 4.2, 4.4, and 5.6.3), but it appears that the idea
is not well developed in that area.

Marcus Hutter, with others, [29, 30, 58] has developed the ‘AIXI’ model of intel-
ligence based on Algorithmic Probability Theory and Sequential Decision Theory.
He has also initiated the ‘Hutter Prize’, a competition with e 50,000 of prize money,
for lossless compression of a given sample of text. The competition is motivated by
the idea that “being able to compress well is closely related to acting intelligently,
thus reducing the slippery concept of intelligence to hard file size numbers.”8 This
is an interesting project which may yet lead to general, human-level AI.

4 Information compression and biology

This section and those that follow describe evidence that, in varying degrees, lends
support to the BICMUP perspective.

First, let’s take an abstract, bird’s eye view of why information compression
might be important in people and other animals. In terms of biology, information
compression can confer a selective advantage to any creature:

8From www.hutter1.net, retrieved 2017-10-10.
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• By allowing it to store more information in a given storage space or use less
storage space for a given amount of information, and by speeding up the
transmission of any given volume of information along nerve fibres—thus
speeding up reactions—or reducing the bandwidth needed for the transmis-
sion of the same volume of information in a given time.

In connection with the last point, we have seen in Section 3.1 how Barlow
[3, p. 548] draws attention to evidence that, in mammals at least, each op-
tic nerve is far too small to carry reasonable amounts of the information
impinging on the retina unless there is considerable compression of that in-
formation.

• Perhaps more important than the impact of information compression on the
storage or transmission of information is the close connection, outlined in
Section 2.5 and noted in Section 3.2, between information compression and
concepts of prediction and probability. Compression of information provides
a means of predicting the future from the past and estimating probabilities
so that, for example, an animal may learn to anticipate where food may be
found or where there may be dangers.

As mentioned in Section 2.5, the close connection between information com-
pression and concepts of prediction and probability makes sense in terms of
ICMUP: any repeating pattern can be a basis for predictions, and the prob-
abilities of such predictions may be derived from the number of repetitions
of the given pattern.

Being able to make predictions and estimate probabilities can mean large
savings in the use of energy with consequent benefits in terms of survival.

5 Hiding in plain sight

ICMUP is so much embedded in our thinking, and seems so natural and obvious,
that it is easily overlooked. The following subsections describe some examples.

5.1 Chunking-with-codes

In the same way that ‘TFEU’ may be a convenient code or shorthand for the
rather cumbersome expression ‘Treaty on the Functioning of the European Union’
(Appendix B.1.1), a name like ‘New York’ is a compact way of referring to the
many things of which that renowned city is composed. Likewise for the many other
names that we use: ‘Nelson Mandela’, ‘George Washington’, ‘Mount Everest’, and
so on.
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The ‘chunking-with-codes’ variant of ICMUP (Section 2.4.3) permeates our use
of natural language, both in its surface forms and in the way in which surface forms
relate to meanings.9

Because of its prominence in natural language and because of its intrinsic
power, chunking-with-codes is probably important in other aspects of our think-
ing, as may be inferred from the way people naturally adopt this way of thinking,
and, indirectly, via empirical support for the SP system (Section 15).

5.2 Class-inclusion hierarchies

In a similar way, class-inclusion hierarchies, with variations such as cross-
classification, are prominent in our use of language and in our thinking, with
consequent benefits arising from economies in the storage of information and in
inferences via inheritance of attributes, in accordance with the ‘class-inclusion hi-
erarchies’ variant of ICMUP (Section 2.4.3).

As with chunking-with-codes, names for classes of things provide for great
economies in our use of language: most ‘content’ words in our everyday language
stand for classes of things and, as such, are powerful aids to economical description.
Imagine how cumbersome things would be if, on each occasion that we wanted to
refer to a “table”, we had to say something like “A horizontal platform, often
made of wood, used as a support for things like food, normally with four legs but
sometimes three, ...”, like the slow Entish language of the Ents in Tolkien’s The
Lord of the Rings.10 Likewise for verbs like “speak” or “dance”, adjectives like
“artistic” or “exuberant”, and adverbs like “quickly” or “carefully”.

5.3 Schema-plus-correction, run-length coding, and part-
whole hierarchies

Again, it seems natural and obvious to conceptualise things in terms of other
techniques mentioned in Section 2.4.3: schema-plus-correction, run-length coding,
and part-whole hierarchies. And, as with chunking-with-codes and class-inclusion
hierarchies, there are likely to be substantial benefits in terms of compression of
information and the making of inferences.

9Although natural language provides a very effective means of compressing information
about the world, it is not free of redundancy. And that redundancy has a useful role to play in,
for example, enabling us to understand speech in noisy conditions, and in learning the structure
of language (Appendix B.2 and [74, Section 5.2]).

10J. R. R. Tolkien, The Lord of the Rings, London: HarperCollins, 2005, Kindle edition. For
a description of Entish, see, for example, page 480. See also, pages 465, 468, 473, 477, 478, 486,
and 565.
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5.4 Merging multiple views to make one

Here is another example of something that is so familiar that we are normally not
aware that it is part of our perceptions and thinking.

If, when we are looking at something, we close our eyes for a moment and open
them again, what do we see? Normally, it is the same as what we saw before.
But recognising that the before and after views are the same, means unifying
the two patterns to make one and thus compressing the information, as shown
schematically in Figure 3.

Figure 3: A schematic view of how, if we close our eyes for a moment and open
them again, we normally merge the before and after views to make one. The land-
scape here and in Figure 4 is from Wallpapers Buzz (www.wallpapersbuzz.com),
reproduced with permission.

It seems so simple and obvious that if we are looking at a landscape like the
one in the figure, there is just one landscape even though we may look at it two,
three, or more times. But if we did not unify successive views we would be like
an old-style cine camera that simply records a sequence of frames, without any
kind of analysis or understanding that, very often, successive frames are identical
or nearly so.

5.5 Recognition

With the kind of merging of views just described, we do not bother to give it
a name. But if the interval between one view and the next is hours, months,
or years, it seems appropriate to call it ‘recognition’. In cases like that, it is
more obvious that we are relying on memory, as shown schematically in Figure 4.
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Notwithstanding the undoubted complexities and subtleties in how we recognise
things, the process may be seen in broad terms as ICMUP: matching incoming
information with stored knowledge, merging or unifying patterns that are the
same, and thus compressing the information.

Figure 4: Schematic representation of how, in recognition, incoming visual infor-
mation may be matched and unified with stored knowledge.

If we did not compress information in that way, our brains would quickly be-
come cluttered with millions of copies of things that we see around us—people,
furniture, cups, trees, and so on—and likewise for sounds and other sensory inputs.

As mentioned earlier, Satosi Watanabe has explored the relationship between
pattern recognition and information compression [64, 65].

6 Binocular vision

ICMUP may also be seen at work in binocular vision:

“In an animal in which the visual fields of the two eyes overlap exten-
sively, as in the cat, monkey, and man, one obvious type of redundancy
in the messages reaching the brain is the very nearly exact reduplica-
tion of one eye’s message by the other eye.” [4, p. 213].

In viewing a scene with two eyes, we normally see one view and not two. This
suggests that there is a matching and unification of patterns, with a corresponding
compression of information. A sceptic might say, somewhat implausibly, that
the one view that we see comes from only one eye. But that sceptical view is
undermined by the fact that, normally, the one view shows depth with a vividness
that comes from merging the two slightly different views from both eyes.
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Strong evidence that, in stereoscopic vision, we do indeed merge the views
from both eyes, comes from a demonstration with ‘random-dot stereograms’, as
described in [75, Section 5.1].

In brief, each of the two images shown in Figure 5 is a random array of black
and white pixels, with no discernable structure, but they are related to each other
as shown in Figure 6: both images are the same except that a square area near
the middle of the left image is further to the left in the right image.

Figure 5: A random-dot stereogram from [31, Figure 2.4-1], reproduced with per-
mission of Alcatel-Lucent/Bell Labs.

When the images in Figure 5 are viewed with a stereoscope, projecting the
left image to the left eye and the right image to the right eye, the central square
appears gradually as a discrete object suspended above the background.

Although this illustrates depth perception in stereoscopic vision—a subject of
some interest in its own right—the main interest here is on how we see the central
square as a discrete object. There is no such object in either of the two images
individually. It exists purely in the relationship between the two images, and seeing
it means matching one image with the other and unifying the parts which are the
same.

This example shows that, although the matching and unification of patterns is
a usefully simple idea, there are interesting subtleties and complexities that arise
when two patterns are similar but not identical:

• Seeing the central object means finding a ‘good’ match between relevant
pixels in the central area of the left and right images, and likewise for the
background. Here, a good match is one that yields a relatively high level
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Figure 6: Diagram to show the relationship between the left and right images
in Figure 5. Reproduced from [31, Figure 2.4-3], with permission of Alcatel-
Lucent/Bell Labs.

of information compression. Since there is normally an astronomically large
number of alternative ways in which combinations of pixels in one image may
be aligned with combinations of pixels in the other image, it is not normally
feasible to search through all the possibilities exhaustively.

• As with many such problems in artificial intelligence, the best is the enemy
of the good. Instead of looking for the perfect solution, we can do better by
looking for solutions that are good enough for practical purposes. With this
kind of problem, acceptably good solutions can often be found in a reasonable
time with heuristic search, as in the SP system (Appendices C.1 and C.2):
doing the search in stages and, at each stage, concentrating the search in the
most promising areas and cutting out the rest, perhaps with backtracking
or something equivalent to improve the robustness of the search. One such
method for the analysis of random-dot stereograms has been described by
Marr and Poggio [37].

7 Abstracting object concepts via motion

It seems likely that the kinds of processes that enable us to see a hidden object in
a random-dot stereogram also apply to how we see discrete objects in the world.
The contrast between the relatively stable configuration of features in an object
such as a car, compared with the variety of its surroundings as it travels around,
seems to be an important part of what leads us to conceptualise the object as an
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object [75, Section 5.2].
Any creature that depends on camouflage for protection—by blending with

its background—must normally stay still. As soon as it moves relative to its
surroundings, it is likely to stand out as a discrete object [75, Section 5.2] (see also
Section 2.4.6).

The idea that information compression may provide a means of discovering
‘natural’ structures in the world—such as the many objects in our visual world—
has been dubbed the ‘DONSVIC’ principle: the discovery of natural structures
via information compression [74, Section 5.2]. Of course, the word ‘natural’ is
not precise, but it has enough precision to be a meaningful name for the process
of learning the kinds of concepts which are the bread-and-butter of our everyday
thinking.

Similar principles may account for how young children come to understand that
their first language (or languages) is composed of words (Section 10).

8 Adaptation in the eye of Limulus and run-

length coding

Information compression may also be seen down in the works of vision. Figure 7
shows a recording from a single sensory cell (ommatidium) in the eye of a horseshoe
crab (Limulus polyphemus), first when the background illumination is low, then
when a light is switched on and kept on for a while, and later switched off—shown
by the step function at the bottom of the figure.

As one might expect, the ommatidium fires at a relatively low rate of about 20
impulses per second even when the illumination is relatively low (shown at the left
of the figure). When the light is switched on, the rate of firing increases sharply
but instead of staying high while the light is on (as one might expect), it drops
back almost immediately to the background rate. The rate of firing remains at
that level until the light is switched off, at which point it drops sharply and then
returns to the background level, a mirror image of what happened when the light
was switched on.

For the main theme of this paper, a point of interest is that the positive spike
when the light is switched on, and the negative spike when the light is switched
off, have the effect of marking boundaries, first between dark and light, and later
between light and dark. In effect, this is a form of run-length coding (Section 2.4.3).
At the first boundary, the positive spike marks the fact of the light coming on. As
long as the light stays on, there is no need for that information to be constantly
repeated, so there is no need for the rate of firing to remain at a high level.
Likewise, when the light is switched off, the negative spike marks the transition
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Figure 7: Variation in the rate of firing of a single ommatidium of the eye of a
horseshoe crab in response to changing levels of illumination. Reproduced from
[46, Figure 16], with permission from the Optical Society of America.



to darkness and, as before, there is no need for constant repetition of information
about the new low level of illumination.11

Another point of interest is that this pattern of responding—adaptation to
constant stimulation—can be explained via the action of inhibitory nerve fibres
that bring the rate of firing back to the background rate when there is little or no
variation in the sensory input [60]. Inhibitory mechanisms are widespread in the
brain [56, p. 45] and it appears that, in general, their role is to reduce or eliminate
redundancies in information ([76, Section 9], [44, Section 13.1]), in keeping with
the main theme of this paper.

9 Other examples of adaptation

Adaptation is also evident at the level of conscious awareness. If, for example, a
fan starts working nearby, we may notice the hum at first but then adapt to the
sound and cease to be aware of it. But when the fan stops, we are likely to notice
the new quietness at first but adapt again and stop noticing it.

Another example is the contrast between how we become aware if something
or someone touches us but we are mostly unaware of how our clothes touch us in
many places all day long. We are sensitive to something new and different and we
are relatively insensitive to things that are repeated.

As with adaptation in the eye of Limulus, these other kinds of adaptation
may be seen as examples of the run-length coding technique for compression of
information.

10 Discovering the segmental structure of lan-

guage

There is evidence that much of the segmental structure of language—words and
phrases—may be discovered via ICMUP, as described in the following two subsec-
tions. To the extent that these mechanisms model aspects of HPLC, they provide
evidence for BICMUP.

11It is recognised that this kind of adaptation in eyes is a likely reason for small eye
movements when we are looking at something, including sudden small shifts in position
(‘microsaccades’), drift in the direction of gaze, and tremor [38]. Without those movements,
there would be an unvarying image on the retina so that, via adaptation, what we are looking
at would soon disappear.
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10.1 The word structure of natural language

As can be seen in Figure 8, people normally speak in ‘ribbons’ of sound, with-
out gaps between words or other consistent markers of the boundaries between
words. In the figure—the waveform for a recording of the spoken phrase “on our
website”—it is not obvious where the word “on” ends and the word “our” begins,
and likewise for the words “our” and “website”. Just to confuse matters, there
are three places within the word “website” that look as if they might be word
boundaries.

Figure 8: Waveform for the spoken phrase “On our website” with an alphabetic
transcription above the waveform and a phonetic transcription below it. With
thanks to Sidney Wood of SWPhonetics (swphonetics.com) for the figure and for
permission to reproduce it.

Given that words are not clearly marked in the speech that young children
hear, how do they get to know that language is composed of words? Learning
to read could provide an answer but it appears that young children develop an
understanding that language is composed of words well before the age when, nor-
mally, they are introduced to reading. Perhaps more to the point is that there are
still, regrettably, many children throughout the world that are never introduced to
reading but, in learning to talk and to understand speech, they inevitably develop
a knowledge of the structure of language, including words.12

12It has been recognised for some time that skilled speakers of any language have an ability
to create or recognise sentences that are grammatical but new to the world. Chomsky’s
well-known example of such a sentence is Colorless green ideas sleep furiously. [16, p. 15],
which, when it was first published, was undoubtedly novel. This ability to create or recognise
grammatical but novel sentences implies that knowledge of a language means knowledge of
words as discrete entities that can form novel combinations.
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In keeping with the main theme of this paper, ICMUP provides an answer.
Computer model MK10 [66, 67, 70], which works largely via ICMUP, can reveal
much of the word structure in an English-language text from which all spaces
and punctuation has been removed [74, Section 5.2]. It true that there are added
complications with speech but it seems likely that similar principles apply.

This discovery of word structure by the MK10 program, illustrated in Figure
9, is achieved without the aid of any kind of dictionary or other information about
the structure of English. It is also achieved in ‘unsupervised’ mode, without the
assistance of any kind of ‘teacher’, or data that is marked as ‘wrong’, or the
grading of samples from simple to complex (cf. [25]). Statistical tests show that
the correspondence between the computer-assigned word structure and the original
(human) division into words is significantly better than chance.

Figure 9: Part of a parsing created by program MK10 [67] from a 10,000 letter
sample of English (book 8A of the Ladybird Reading Series) with all spaces and
punctuation removed. The program derived this parsing from the sample alone,
without any prior dictionary or other knowledge of the structure of English. Re-
produced from Figure 7.3 in [70], with permission.

Two aspects of the MK10 model strengthen its position as a model of what
children do in learning the segmental structure of language [67]: the growth in the
lengths of words learned by the program corresponds quite well with the same mea-
sure for children; the pattern of changing numbers of new words that are learned by
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the program at different stages corresponds quite well with the equivalent pattern
for children.

Discovering the word structure of language via ICMUP is another example of
the DONSVIC principle, mentioned in Section 7—because words are the kinds of
‘natural’ structure which are the subject of the DONSVIC principle, and because
ICMUP provides a key to how they may be discovered.

10.2 The phrase structure of natural language

Program MK10, featured in Section 10.1, does quite a good job at discovering the
phrase structure of unsegmented text in which each word has been replaced by
a symbol representing the grammatical class of the word [68, 70]. An example is
shown in Figure 10. As before, the program works without any prior knowledge of
the structure of English and, apart from the initial assignment of word classes, it
works in unsupervised mode without the assistance of any kind of ‘teacher’, or any-
thing equivalent. As before, statistical tests show that the correspondence between
computer-assigned and human-assigned structures is statistically significant.13

Figure 10: One sentence from a 7600 word sample from the book Jerusalem
the Golden (by Margaret Drabble) showing (above the text) a surface structure
analysis, and (below the text) the parsing developed by program MK10 at a late
stage of processing [68]. This figure is reproduced by kind permission of Kingston
Press Services Ltd.

Since ICMUP is central in the workings of the MK10 computer model, this

13Thanks to Dr. Isabel Forbes, a person qualified in theoretical linguistics, for the
assignment of grammatical class symbols to words in the given text, and for phrase-structure
analyses of the text.
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result suggests that ICMUP may have a role to play, not merely in discovering the
phrase structure of language, but more generally in discovering the grammatical
structure of language (next).

11 Grammatical inference

Picking up the last point from the previous section, it seems likely that learning
the grammar of a language may also be understood in terms of ICMUP. Evidence
in support of that expectation comes from research with two programs designed
for grammatical inference:

• Program SNPR, which was developed from program MK10, can discover
plausible grammars from samples of English-like artificial languages [69, 70].
This includes the discovery of segmental structures, classes of structure, and
abstract patterns. ICMUP is central in how the program works.

• Program SP71, one of the main products of the SP programme of research,
achieves results at a similar level to that of SNPR. As before, ICMUP is cen-
tral in how the program works. With the solution of some residual problems,
outlined in [74, Section 3.3], there seems to be a real possibility that the SP
system will be able to discover plausible grammars from samples of natural
language. Also, it is anticipated that, with further development, the program
may be applied to the learning of non-syntactic ‘semantic’ knowledge, and
the learning of grammars in which syntax and semantics are integrated.

What was the point of developing SP71 when it does no better at grammatical
inference than program SNPR? The reason is that the SNPR program, which
was designed to build structures hierarchically, was not compatible with the new
goal of the SP programme of research: to simplify and integrate observations and
concepts across HLPC and related fields. What was needed was a new organising
principle that would accommodate hierarchical structures and several other kinds
of structure as well. It turns out that the SP-multiple-alignment concept is much
more versatile than the hierarchical organising principle in the SNPR program,
providing for the representation and processing of a variety of knowledge structures
of which hierarchical structures is only one.

12 Generalisation, the correction of over- and

under-generalisations, and ‘dirty data’

Issues relating to generalisation in learning are best described with reference to
the Venn diagram shown in Figure 11. It relates to the the unsupervised learning
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of a natural language but it appears that generalisation issues in other areas of
learning are much the same.

The evidence to be described derives largely from the SNPR and SP com-
puter models. Since both models are founded on ICMUP, evidence that they have
human-like capabilities with generalisation and related phenomena may be seen
as evidence in support of BICMUP.

In the figure, the smallest envelope shows the finite but large sample of ‘ut-
terances’ (by adults and older children) from which a young child learns his or
her native language (which we shall call L).14 The next envelope shows the (infi-
nite) set of utterances in L, and the largest envelope shows the (infinite) set of all
possible utterances. ‘Dirty data’ are the many ‘ungrammatical’ utterances that
children normally hear.

The child generalises ‘correctly’ when he or she infers L and nothing else from
the finite sample he or she has heard, including dirty data. Anything that spills
over into the outer envelope, like “mouses” as the plural of “mouse” or “buyed” as
the past tense of “buy”, is an over-generalisation, while failure to learn the whole
of L represents under-generalisation.

All possible
utterances

All utterances
in language L

A sample of
utterances

‘dirty
data’

Figure 11: Categories of utterances involved in the learning of a first language,
L. In ascending order size, they are: the finite sample of utterances from which
a child learns; the (infinite) set of utterances in L; and the (infinite) set of all
possible utterances. Adapted from Figure 7.1 in [70], with permission.

14To keep things simple in this discussion we shall assume that each child learns only one
first language.
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In connection with the foregoing summary of concepts relating to generalisa-
tion, there are three main problems:

• Generalisation without over-generalisation. How can we generalise our
knowledge without over-generalisation, and this in the face of evidence that
children can learn their first language or languages without the correction of
errors by parents or teachers or anything equivalent?15

• Generalisation without under-generalisation. How can we generalise our
knowledge without under-generalisation? As before, there is evidence that
learning can be achieved without explicit correction of errors.

• Dirty data. How can we learn correct knowledge despite errors in the exam-
ples we hear. Again, it appears that this can be done without correction of
errors.

These things are discussed quite fully in [72, Section 9.5.3] and [74, Section
5.3]. There is also relevant discussion in [77, Section V-H and XI-C].

In brief, information compression provides an answer to all three problems like
this:

• For a given body of raw data, I, compress it thoroughly via unsupervised
learning;

• The resulting compressed version of I may be split into two parts, a grammar
and an encoding of I in terms of the grammar;

• Normally, the grammar generalises correctly without over- or under-
generalisation, and errors in I are weeded out.

• The encoding may be discarded.

This scheme is admirably simple, but, so far, the evidence in support of it is only
informal, deriving largely from informal experiments with English-like artificial
languages with the SNPR computer model of language learning ([69], [70]) and
the SP computer model [72, Section 9.5.3].

The weeding out of errors via this scheme may seem puzzling, but errors, by
their nature, are rare. The grammar retains the repeating parts of I and discards

15Evidence comes chiefly from children who learned language without the possibility that
anyone might correct their errors. Christy Brown was a cerebral-palsied child who not only
lacked any ability to speak but whose bodily handicap was so severe that for much of his
childhood he was unable to demonstrate that he had normal comprehension of speech and
non-verbal forms of communication [8]. Hence, his learning of language must have been
achieved without the possibility that anyone might correct errors in his spoken language.
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the non-repeating parts including most of the errors (which are in the encoding).
‘Errors’ which are not rare acquire the status of ‘dialect’ and cease to be regarded
as errors.

A problem with research in this area is that the identification of any over-
or under-generalisations produced by the above scheme or any other model de-
pends largely on human intuitions. But this is not so very different from the
long-established practice in research on linguistics of using human judgements of
grammaticality to establish what any given person knows about a particular lan-
guage.

The problem of generalising our learning without over- or under-generalisation
applies to the learning of a natural language and also to the learning of such things
as visual images. It appears that the solution outlined here has distinct advantages
compared with, for example, what appear to be largely ad hoc solutions that have
been proposed for deep learning in artificial neural networks [77, Section V-H].

13 Perceptual constancies

It has long been recognised that our perceptions are governed by constancies:

• Size constancy. To a large extent, we judge the size of an object to be
constant despite wide variations in the size of its image on the retina [21,
pp. 40-41].

• Lightness constancy. We judge the lightness of an object to be constant
despite wide variations in the intensity of its illumination [21, p. 376].

• Colour constancy. We judge the colour of an object to be constant despite
wide variations in the colour of its illumination [21, p. 402].

These kinds of constancy, and others such as shape constancy and location
constancy, may each be seen as a means of encoding information economically: it
is simpler to remember that a particular person is “about my height” than many
different judgements of size, depending on how far away that person is. In a similar
way, it is simpler to remember that a particular object is “black” or “red” than
all the complexity of how its lightness or its colour changes in different lighting
conditions.

By filtering out variations due to viewing distance or the intensity or colour
of incident light, we can facilitate ICMUP and thus, for example, in watching a
football match, simplify the process of establishing that there is (normally) just
one ball on the pitch and not many different balls depending on viewing distances,
whether the ball is in a bright or shaded part of the pitch, and so on.
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14 Mathematics

A discussion of mathematics may seem out of place in a paper about BICMUP
but mathematics and computing are both products of human thinking that are
designed to enhance the workings of the human mind. For that reason, in the
spirit of George Boole’s An investigation of the laws of thought [7], a consideration
of their organisation and workings is relevant to the matter in hand.

In [78] it has been argued that mathematics may be seen as a set of techniques
for the compression of information, and their application. In case this seems
implausible:

• An equation like Albert Einstein’s E = mc2 may be seen as a very compressed
representation of what may be a very large set of data points relating energy
(E) and mass (m), with the speed of light (c) as a constant. Similar things
may be said about such well-known equations as s = (gt2)/2 (Newton’s
second law of motion), a2+b2 = c2 (Pythagoras’s equation), PV = k (Boyle’s
law), and F = q(E + v ×B) (the charged-particle equation).

• The second, third, and fourth of the variants of ICMUP outlined in Section
2.4.3 may be seen at work in mathematical notations. For example: mul-
tiplication as repeated addition may be seen as an example of run-length
coding;

Owing to the close connections between logic and mathematics, and between
computing and mathematics, it seems likely that similar principles apply in logic
and in computing.

15 Evidence for bicmup via the SP system

Another strand of empirical evidence for BICMUP is via the SP computer model,
which incorporates ICMUP within the SP-multiple-alignment construct. The
model, with SP-multiple-alignment as its main component, demonstrates many
features of HLPC. These are summarised quite fully in [79, Appendix B], and
described in much more detail in [72, 74].

In summary, the strengths of the SP system in modelling aspects of HLPC are:

• Versatility in the representation of knowledge. The SP system has strengths
in the representation of several different kinds of knowledge including: the
syntax of natural languages; class-inclusion hierarchies (with or without cross
classification); part-whole hierarchies; discrimination networks and trees; if-
then rules; entity-relationship structures; relational tuples; and concepts in
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mathematics, logic, and computing, such as ‘function’, ‘variable’, ‘value’,
‘set’, and ‘type definition’.

With the addition of two-dimensional SP patterns to the SP system, there
is potential to represent such things as: photographs; diagrams; structures
in three dimensions; and procedures that work in parallel.

• Versatility in aspects of intelligence. The SP system has strengths in sev-
eral aspects of human-like intelligence including: unsupervised learning, the
analysis and production of natural language; pattern recognition that is ro-
bust in the face of errors in data; pattern recognition at multiple levels of
abstraction; computer vision; best-match and semantic kinds of information
retrieval; several kinds of reasoning (next paragraph); planning; and problem
solving.

Strengths of the SP system in reasoning include: one-step ‘deductive’ rea-
soning; chains of reasoning; abductive reasoning; reasoning with probabilis-
tic networks and trees; reasoning with ‘rules’; nonmonotonic reasoning and
reasoning with default values; Bayesian reasoning with ‘explaining away’;
causal reasoning; reasoning that is not supported by evidence; the already-
mentioned inheritance of attributes in class hierarchies; and inheritance of
contexts in part-whole hierarchies. There is also potential in the SP system
for spatial reasoning and for what-if reasoning. Probabilities for inferences
may be calculated in a straightforward manner.

• Seamless integration of diverse kinds of knowledge and diverse aspects of in-
telligence, in any combination. Because the SP system’s versatility (in the
representation of diverse kinds of knowledge and in diverse aspects of intelli-
gence) flows from one relatively simple framework—SP-multiple-alignment—
the system has clear potential for the seamless integration of diverse kinds of
knowledge and diverse aspects of intelligence, in any combination. That kind
of seamless integration appears to be essential in the modelling of HLPC.

16 Some apparent contradictions and how they

may be resolved

The idea that ICMUP is fundamental in HLPC, and also in AI, mainstream com-
puting, and mathematics, seems to be contradicted by:

• The productivity of the human brain and the ways in which computers and
mathematics may be used to create redundant copies of information as well
as to compress information;
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• The fact that redundancy in information is often useful in both the storage
and processing of information;

• A less direct challenge to BICMUP and the SP theory as a theory of HLPC is
persuasive evidence, described by Gary Marcus [36], that in many respects,
the human mind is a kluge, meaning “a clumsy or inelegant—yet surprisingly
effective—solution to a problem” (ibid., p 2).

• The fact that certain kinds of redundancy are difficult or impossible for
people to detect and exploit.

These apparent contradictions and how they may be resolved are discussed in
Appendix B.

17 Conclusion

This paper presents evidence for the idea, referred to as ‘BICMUP’, that much
of the workings of brains and nervous systems may be understood as information
compression via the matching and unification of patterns (ICMUP).

The paper is part of a programme of research developing the SP theory of
intelligence and its realisation in the SP computer model—a theory which aims to
simplify and integrate observations and concepts in human learning, perception,
and cognition, and related areas.

Since ICMUP is a central part of the SP theory, evidence for BICMUP pre-
sented in this paper in Sections 4 to 14 inclusive (but excluding Section 15)
strengthens empirical support for the SP theory, viewed as a theory of human
learning, perception, and cognition.

Empirical evidence for the SP theory as a theory of human cognitive
psychology—summarised in Section 15—provides evidence for BICMUP which is
additional to that in Sections 4 to 14 inclusive.

Four possible objections to BICMUP and the SP theory are described, and
how those objections may be answered.
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A Barlow’s change of view about the signifi-

cance of information compression in mam-

malian learning, perception, and cognition,

with comments

As noted in Section 3.1.1, Horace Barlow [6] argued that “... the [compression]
idea was right in drawing attention to the importance of redundancy in sensory
messages ... but it was wrong in emphasizing the main technical use for redundancy,
which is compressive coding.” (ibid. p. 242).

There are some valid points in what Barlow says in support of his new position
but, as mentioned before, his overall conclusions appear to be wrong. His main
arguments follow, with my comments after each one, flagged with ‘JGW’.

1. “It is important to realize that redundancy is not something useless that
can be stripped off and ignored. An animal must identify what is redundant
in its sensory messages, for this can tell it about structure and statistical
regularity in its environment that are important for its survival.” [6, p. 243],
and “It is ... knowledge and recognition of ... redundancy, not its reduction,
that matters.” [6, p. 244].

JGW: It seems that the error here is to assume that compression of informa-
tion means the complete elimination of redundant patterns. On the contrary,
lossless compression of something like ‘tabletabletabletabletable’ means
retaining one instance of ‘table’ with something to show the length of the
sequence in the given context (Section 2.4.3).

Knowledge of the frequency of occurrence of any pattern (in all its contexts)
may serve in the calculation of absolute and relative probabilities ([72, Sec-
tion 3.7], [74, Section 4.4]) and it can be the key to the correction of errors,
as mentioned under point 2.

In general, compression of information is entirely compatible with a knowl-
edge of redundant patterns and what they can say about statistical regular-
ities in a creature’s environment that are important for its survival.

2. “Redundancy is mainly useful for error avoidance and correction” [6, p. 244].
This heading in [6] appears to be a relatively strong point in support of
Barlow’s new position, but he writes: “Since it is certainly true that sensory
transducers and neural communication channels introduce noise, this is likely
to be important in the brain, but the correction of such internally generated
errors is a separate problem, and it will not be considered further here.” [6,
p. 244].
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JGW: Redundancy can certainly be useful in the avoidance or correction of
errors. But that does not invalidate BICMUP. As noted in Appendix B.2,
the SP system, which is dedicated to the compression of information, will not
work properly in such tasks as parsing, pattern recognition and grammatical
inference, unless there are redundancies in its raw data. For that reason, it
needs those redundancies in order to correct errors of omission, commission,
and substitution, as described in [72, Section 6.2], [73, Section 2.2.2], and
[74, Section 6.2].

In a similar way, the system can only work ‘backwards’ in decompression-by-
compression (Appendix B.1.1) and in creating redundancy via information
compression (Appendix B.1.2) if there is some redundancy that it can work
on.

3. Following the remark that “This is the point on which my own opinion has
changed most, partly in response to criticism, partly in response to new facts
that have emerged.” [6, p. 244], Barlow writes:

“Originally both Attneave and I strongly emphasized the econ-
omy that could be achieved by recoding sensory messages to take
advantage of their redundancy, but two points have become clear
since those early days. First, anatomical evidence shows that there
are very many more neurons at higher levels in the brain, sug-
gesting that redundancy does not decrease, but actually increases.
Second, the obvious forms of compressed, non-redundant, repre-
sentation would not be at all suitable for the kinds of task that
brains have to perform with the information represented; ...” [6,
pp. 244–245].

and

“I think one has to recognize that the information capacity of the
higher representations is likely to be greater than that of the rep-
resentation in the retina or optic nerve. If this is so, redundancy
must increase, not decrease, because information cannot be cre-
ated.” [6, p. 245].

JGW: There seem to be two errors here:

• The likelihood that there are “very many more neurons at higher levels
in the brain [than at the sensory levels]” and that “the information
capacity of the higher representations is likely to be greater than that
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of the representation in the retina or optic nerve” does not in any way
invalidate BICMUP.

It seems likely that many of the neurons at higher levels are concerned
with the storage of one’s accumulated knowledge over the period from
one’s birth to one’s current age ([72, Chapter 11], [76, Section 4]). By
contrast, neurons at the sensory level would be concerned only with the
processing of sensory information at any one time.

Although knowledge in one’s long-term memory stores is likely to be
highly compressed and only a partial record of one’s experiences, it is
likely, for most of one’s life except early childhood, to be very much
larger than the sensory information one is processing at any one time.
Hence, it should be no surprise to find many more neurons at higher
levels than at the sensory level.

• For reasons given under point 4, there seem to be errors in the propo-
sition that “the obvious forms of compressed, non-redundant, represen-
tation would not be at all suitable for the kinds of task that brains have
to perform with the information represented.”

4. Under the heading “Compressed representations are unsuitable for the
brain”, Barlow writes:

“The typical result of a redundancy-reducing code would be to
produce a distributed representation of the sensory input with a
high activity ratio, in which many neurons are active simultane-
ously, and with high and nearly equal frequencies. It can be shown
that, for one of the operations that is most essential in order to
perform brain-like tasks, such high activity-ratio distributed rep-
resentations are not only inconvenient, but also grossly inefficient
from a statistical viewpoint ...” [6, p. 245].

JGW: With regard to these points:

• It is not clear why Barlow should assume that compressed represen-
tations are unsuitable for the brain, or that a redundancy-reducing
code would, typically, produce a distributed representation as he de-
scribes. The SP system is dedicated to the creation of non-distributed
compressed representations and, in [76], it is argued that such represen-
tations can be mapped on to plausible structures of neurons and their
inter-connections that are quite similar to Donald Hebb’s [26] concept
of a ‘cell assembly’.
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• With regard to efficiency:

– It is true that deep learning in artificial neural networks [51], with
their distributed representations, are often hungry for computing
resources. But otherwise they are quite successful with certain
kinds of task, and there appears to be scope for increasing their
efficiencies [15].

– The SP system demonstrates that the compressed localist repre-
sentations in the system are efficient and effective in a variety of
kinds of task, as described in [72] and [74].

B Some apparent contradictions of BICMUP

and the SP theory, and how they may be re-

solved

The apparent contradictions of BICMUP and the SP theory as a theory of HLPC
that were mentioned in Section 16 are discussed in the following four subsections,
with suggested answers to those apparent contradictions.

B.1 The creation of redundancy via information compres-
sion: ‘decompression by compression’

The idea that information may be decompressed by compressing information—
‘decompression by compression’—seems paradoxical at first sight. Examples de-
scribed here may help to show why the paradox is more apparent than real.

B.1.1 A simple example of ‘decompression by compression’

In the retrieval of compressed information, the chunking-with-codes idea outlined
in Section 2.4.3 provides a simple example of decompression by compression:

• Compression of information. If, for example, a document contains many in-
stances of the expression “Treaty on the Functioning of the European Union”
we may shorten it by giving that expression a relatively short name or code
like ‘TFEU’ and then replacing all but one instances of the long expression
with its shorter code. This achieves compression of information because,
in effect, multiple instances of “Treaty on the Functioning of the European
Union” have been reduced to one via matching and unification.
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• Retrieval of compressed information. We can reverse the process and thus
decompress the document by searching for instances of ‘TFEU’ and replac-
ing each one with “Treaty on the Functioning of the European Union”. But
to achieve that result, the search pattern, ‘TFEU’, needs to be matched and
unified with each instance of ‘TFEU’ in the document. And that process
of matching and unification is itself a process of compressing information.
Hence, decompression of information has been achieved via information com-
pression.

B.1.2 Creating redundancy via information compression

With a computer, it is very easy to create information containing large amounts
of redundancy and to do it by a process which may itself be seen to entail the
compression of information.

We can, for example, make a ‘call’ to the function defined in Figure 12, using
the pattern ‘oranges and lemons(100)’. The effect of that call is to print out a
highly redundant sequence containing 100 copies of the expression ‘Oranges and
lemons, Say the bells of St. Clement’s; ’.

void oranges_and_lemons(int x)

{

printf("Oranges and lemons, Say the bells of St. Clement’s; ");

if (x > 1) oranges_and_lemons(x - 1) ;

}.

Figure 12: A simple recursive function showing how, via computing, it is possible
to create repeated (redundant) copies of ‘Oranges and lemons, Say the bells of St.
Clement’s; ’.

Taking things step by step, this works as follows:

1. The pattern ‘oranges and lemons(100)’ is matched with the pattern ‘void
oranges and lemons(int x)’ in the first line of the function.

2. The two instances of ‘oranges and lemons’ are unified and the value 100
is assigned to the variable x. The assignment may also be understood in
terms of the matching and unification of patterns but the details would be
a distraction from the main point here.

3. The instruction ‘printf("Oranges and lemons, Say the bells of St.

Clement’s; ");’ in the function has the effect of printing out ‘Oranges
and lemons, Say the bells of St. Clement’s; ’.
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4. Then if x > 1, the instruction ‘oranges and lemons(x - 1)’ has the effect
of calling the function again but this time with 99 as the value of x (because of
the instruction x−1 in the pattern ‘oranges and lemons(x - 1)’, meaning
that 1 is to be subtracted from the current value of x).

5. Much as with the first call to the function (item 1, above), the
pattern ‘oranges and lemons(99)’ is matched with the pattern ‘void
oranges and lemons(int x)’ in the first line of the function.

6. Much as before, the two instances of ‘oranges and lemons’ are unified and
the value 98 is assigned to the variable x.

7. This cycle continues until the value of x is 0.

Where does compression of information come in? It happens mainly when one
copy of ‘oranges and lemons’ is matched and unified with another copy so that,
in effect, two copies are reduced to one.

There is more about recursion at the end of Appendix B.1.3, next.

B.1.3 Decompression by compression and the creation of redundancy
via the SP system

How the SP system may achieve decompression by compression is described in [72,
Section 3.8] and [74, Section 4.5]. It would not be appropriate to reproduce that
description in this paper, and in any case the details are not needed here. Three
points are relevant:

• Decompression of a body of information I, may be achieved by a process
which is exactly the same as the process that achieved the original compres-
sion of I: there is no modification to the program of any kind.

• All that is needed to achieve decompression is to ensure that there is some
residual redundancy in the compressed version of I, so that the program has
something to work on, as noted at the end of point 2 in Appendix A.

• The SP computer model is entirely devoted to compression of information,
without any special provision for decompression of information.

Those three things establish that it is indeed possible to achieve decompression by
compression, meaning that, in that idea, there is really no paradox or contradiction.

With regard to the creation of redundancy via recursion discussed in Appendix
B.1.2, readers may find it useful to examine examples of recursion with the SP
system, described in [72, Sections 4.3.2.1 and 5.3], [75, Section 3.3], and [76, Section
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7]. In all these examples, recursion is driven by a process which is unambiguously
devoted to the compression of information. And this is true in examples like [72,
Figure 4.4a] where recursion has the effect of creating redundancy in information.

B.2 Redundancy is often useful in the storage and process-
ing of information

The fact that redundancy—repetition of information—is often useful in both the
storage and processing of information is the second apparent contradiction to
BICMUP and the SP theory as a theory of HLPC. Here are some examples:

• With any kind of database, it is normal practice to maintain one or more
backup copies as a safeguard against catastrophic loss of the data. Each
backup copy represents redundancy in the system.

• With information on the internet, it is common practice to maintain two or
more ‘mirror’ copies in different places to minimise transmission times and
to spread processing loads across two or more sites, thus reducing the chance
of overload at any one site. Again, each mirror copy represents redundancy
in the system.

• Redundancies in natural language can be a very useful aid to the compre-
hension of speech in noisy conditions.

• It is normal practice to add redundancies to electronic messages, in the
form of additional bits of information together with checksums, and also
by repeating the transmission of any part of a message that has become
corrupted. These things help to safeguard messages against accidental errors
caused by such things as birds flying across transmission beams, or electronic
noise in the system, and so on.

Since similar principle apply in biological systems (Section 4), these examples
appear to argue against BICMUP. However, in both artificial and natural systems,
uses of redundancy of the kind just described may co-exist with ICMUP. For
example: “... it is entirely possible for a database to be designed to minimise
internal redundancies and, at the same time, for redundancies to be used in backup
copies or mirror copies of the database ... Paradoxical as it may sound, knowledge
can be compressed and redundant at the same time.” [72, Section 2.3.7].

As we have seen at the end of point 2 in Appendix A and in Appendix B.1.3, the
SP system, which is dedicated to the compression of information, will not work
properly with totally random information containing no redundancy. It needs
redundancy in its ‘New’ data in order to achieve such things as the parsing of
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natural language, pattern recognition, and grammatical inference. Also, for the
correction of errors in any incoming batch of New SP-patterns, it needs a repository
of Old patterns that represent patterns of redundancy in a previously-processed
body of New information.

B.3 The human mind as a kluge

As mentioned in Section 16, Gary Marcus has described persuasive evidence that,
in many respects, the human mind is a kluge. To illustrate the point, here is a
sample of what Marcus says:

“Our memory is both spectacular and a constant source of disappoint-
ment: we recognize photos from our high school year-books decades
later—yet find it impossible to remember what we had for breakfast
yesterday. Our memory is also prone to distortion, conflation, and sim-
ple failure. We can know a word but not be able to remember it when
we need it ... or we can learn something valuable ... and promptly for-
get it. The average high school student spends four years memorising
dates, names, and places, drill after drill, and yet a significant number
of teenagers can’t even identify the century in which World War I took
place.” [36, p. 18, emphasis as in the original].

Clearly, human memory is, in some respects, much less effective than a com-
puter disk drive or even a book. And it seems likely that at least part of the reason
for this and other shortcomings of the human mind is that “Evolution [by natu-
ral selection] tends to work with what is already in place, making modifications
rather than starting from scratch.” and “piling new systems on top of old ones”
[36, p. 12].

Superficially, this and other evidence in [36] seems to undermine the idea that
there is some grand unifying principle—such as information compression via SP-
multiple-alignment—that governs the organisation and workings of the human
mind.

Perhaps, as Marvin Minsky suggested, “each [human] mind is made of many
smaller processes” called agents each one of which “can only do some simple thing
that needs no mind or thought at all. Yet when we join these agents in societies—in
certain very special ways—this leads to true intelligence.” [41, p. 17].

In answer to these points:

• The evidence that Marcus presents is persuasive: it is difficult to deny that,
in certain respects, the human mind is a kluge. And evolution by natural
selection provides a plausible explanation for anomalies and inconsistencies
in the workings of the human mind.
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• But those conclusions are entirely compatible with BICMUP and the SP
theory as a theory of mind. As Marcus says:

“I don’t mean to chuck the baby along with its bath—or even to
suggest that kluges outnumber more beneficial adaptations. The
biologist Leslie Orgel once wrote that ‘Mother Nature is smarter
than you are,’ and most of the time it is.” [36, p. 16].

although Marcus warns that in comparisons between artificial systems and
natural ones, nature does not always come out on top.

In general it seems that, despite the evidence for kluges in the human mind,
there can be powerful organising principles too. Since BICMUP and the SP theory
are well supported by evidence, they are likely to provide useful insights into the
nature of human intelligence, alongside an understanding that there are likely to
be kluge-related anomalies and inconsistencies too.

Minsky’s counsel of despair—“The power of intelligence stems from our vast
diversity, not from any single, perfect principle.” [41, p. 308]—is probably too
strong. It is likely that there is at least one unifying principle for human-level
intelligence, and there may be more. And it is likely that, with people, any such
principle or principles operates alongside the somewhat haphazard influences of
evolution by natural selection.

B.4 Some kinds of redundancy are difficult or impossible
for people to detect and exploit

There is no doubt that people are imperfect in their abilities to detect and exploit
redundancy. For example:

“... a grid in which pixels encoded the binary expansion of π would,
of course, have a very simple description, but this structure would not
be identified by the perceptual system; the grid would, instead, appear
completely unstructured.” [9, p. 578].

At first sight, this shortfall in our abilities seems to undermine the idea that
ICMUP is a unifying principle in the workings of brains and nervous systems. But
that idea does not imply that brains and nervous systems are perfect compressors
of information. Indeed, it appears that with all but the smallest or most regular
bodies of information, it is necessary to use heuristic techniques for compression
of the information and that these cannot guarantee that the best possible result
has been found (Appendices C.1 and C.2, [77, Appendix I-E.4]).
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C Outline of the sp theory of intelligence

As mentioned in Section 2.2, the SP theory of intelligence and its realisation in
the SP computer model is a unique attempt to simplify and integrate observations
and concepts across artificial intelligence, mainstream computing, mathematics,
and human learning, perception, and cognition, with information compression as
a unifying theme.

As noted in that section, the name ‘SP’ is short for Simplicity and Power,
because compression of any given body of information, I, may be seen as a process
of reducing informational ‘redundancy’ in I and thus increasing its ‘simplicity’,
whilst retaining as much as possible of its non-redundant expressive ‘power’.

The theory, the computer model, and some applications, are described most
fully in [72] and more briefly in [74]. Details of other publications, most with
download links, may be found on www.cognitionresearch.org/sp.htm.

The SP theory is conceived as a brain-like system as shown schematically in
Figure 13. The system receives New information via its senses and stores some or
all of it in compressed form as Old information.16

Figure 13: Schematic representation of the SP system from an ‘input’ perspective.
Reproduced with permission from Figure 1 in [74].

All kinds of knowledge or information in the SP system are represented with
arrays of atomic symbols in one or two dimensions called SP-patterns.17 At present

16To avoid unnecessary confusion, the SP computer model is dedicated exclusively to lossless
compression of information. But with such a model it always possible to discard information if
that proves necessary in the modelling of human psychology or in applications of the projected
industrial-strength SP machine, based on the SP theory and the SP computer model [44].

17Up until recently, the concept of of an array of atomic symbols in the SP system has been
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the SP computer model works only with one-dimensional SP-patterns but it is
envisaged that, at some stage, it will be generalised to work with two-dimensional
SP-patterns.

C.1 SP-multiple-alignment

A central part of the SP system is the powerful concept of SP-multiple-alignment,
outlined here. The concept is described more fully in [72, Sections 3.4 and 3.5]
and [74, Section 4]

The concept of SP-multiple-alignment in the SP system is derived from the
concept of ‘multiple alignment’ in bioinformatics.18,19 That latter concept means
an arrangement of two or more DNA sequences or sequences of amino-acid residues
so that, by judicious ‘stretching’ of sequences in a computer, matching symbols
are aligned—as illustrated in Figure 14. A ‘good’ multiple alignment is one with a
relatively high value for some metric related to the number of symbols that have
been brought into line.

G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 14: A ‘good’ multiple alignment amongst five DNA sequences. Reproduced
with permission from Figure 3.1 in [72].

For a given set of sequences, finding or creating ‘good’ multiple alignments
amongst the many possible ‘bad’ ones is normally a complex process—normally
too complex to be solved by exhaustive search. For that reason, bioinformatics
programs for finding good multiple alignments use heuristic methods, building
multiple alignments in stages and discarding low-scoring multiple alignments at the
end of each stage. With such methods it is not normally possible to guarantee that

referred to as ‘pattern’. But now the term SP-pattern has been introduced to mark the
distinction between arrays of symbols in the SP system from the more general concept of
pattern, which may include both whole SP-patterns and portions of such SP-patterns.

18See “Multiple sequence alignment”, Wikipedia, http://bit.ly/2nArijz, retrieved 2017-10-11.
19Up until recently, the concept of ‘multiple alignment’ in the SP system has been referred to

as ‘multiple alignment’. But now the term SP-multiple-alignment has been introduced to mark
the distinction and the important differences between the concept of multiple alignment as it
has been developed in the SP system from the concept of multiple alignment in bioinformatics.
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the best possible multiple alignment has been found, but it is normally possible to
find multiple alignments that are good enough for practical purposes.

The main difference between the concept of SP-multiple-alignment in the SP
system and the concept of multiple alignment in bioinformatics is that:

• With an SP-multiple-alignment, one of the SP-patterns (sometimes more
than one) is New information from the system’s environment (see Figure 13),
and the remaining SP-patterns are Old information, meaning information
that has been previously stored (also shown in Figure 13).

In the creation of SP-multiple-alignments, the aim is to build ones that, in
each case, allow the New SP-pattern (or SP-patterns) to be encoded econom-
ically in terms of the Old SP-patterns in the given SP-multiple-alignment.
In each case, there is an implicit merging or unification of SP-patterns or
parts of SP-patterns that match each other, as described in [72, Section 3.5]
and [74, Section 4.1].

• With multiple alignments in bioinformatics, all the sequences (of DNA bases
or amino-acid residues etc) have the same status. In general, the aim in cre-
ating multiple alignments in bioinformatics is to develop ones with relatively
large values for some kind of measure related to the numbers of symbols that
are brought into line.

In the SP-multiple-alignment shown in Figure 15, one New SP-pattern is shown
in row 0 and Old SP-patterns, drawn from a repository of Old SP-patterns, are
shown in rows 1 to 9, one SP-pattern per row. By convention, the New SP-
pattern(S) is always shown in row 0 and the Old SP-patterns are shown in the
other rows, one SP-pattern per row.

In this example, the New SP-pattern is a sentence and the SP-patterns in rows
1 to 9 represent grammatical structures including words. The overall effect of
the SP-multiple-alignment is to ‘parse’ or analyse the sentence into its constituent
parts and sub-parts, with each part marked with a category like ‘NP’ (meaning
‘noun phrase’), ‘N’ (meaning ‘noun’), ‘VP’ (meaning ‘verb phrase’), and so on.

With SP-multiple-alignments in the SP system, as with multiple alignments in
bioinformatics, the process of finding ‘good’ SP-multiple-alignments is too complex
for exhaustive search, so it is normally necessary to use heuristic methods—which
means that it is normally not possible to guarantee that the best possible SP-
multiple-alignment has been found, but it is normally possible to find SP-multiple-
alignments that are good enough for practical purposes.

At the heart of SP-multiple-alignment is a process for finding good full and
partial matches between SP-patterns, described quite fully in [72, Appendix A].
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0 f o r t u n e f a v o u r s t h e b r a v e 0

| | | | | | | | | | | | | | | | | | | | | |

1 | | | | | | | Vr 6 f a v o u r #Vr | | | | | | | | | 1

| | | | | | | | | | | | | | | | | |

2 | | | | | | | V 7 Vr #Vr s #V | | | | | | | | 2

| | | | | | | | | | | | | | | | |

3 | | | | | | | VP 3 V #V NP | | | | | | | | #NP #VP 3

| | | | | | | | | | | | | | | | | | |

4 N 4 f o r t u n e #N | | | | | | | | | | | | 4

| | | | | | | | | | | | | |

5 NP 2 N #N #NP | | | | | | | | | | | | 5

| | | | | | | | | | | | | |

6 S 0 NP #NP VP | | | | | | | | | | #VP #S 6

| | | | | | | | | |

7 | | | | N 5 b r a v e #N | 7

| | | | | | |

8 NP 1 D | | | #D N #N #NP 8

| | | | |

9 D 8 t h e #D 9

Figure 15: The best SP-multiple-alignment produced by the SP computer model
with a New SP-pattern representing a sentence to be parsed and a repository
of user-supplied Old SP-patterns representing grammatical categories, including
words. Reproduced with permission from Figure 2 in [76].

C.2 Unsupervised learning in the SP system

Unsupervised learning in the SP system is outlined in [79, Appendix A.4] and
described more fully in [74, Section 5] and [72, Chapter 9]. As with the building
of SP-multiple-alignments, unsupervised learning in the SP system uses heuristic
techniques so that, normally, it is not possible to guarantee that the best possible
result has been found.

C.3 Strengths and potential of the SP system

The strengths and potential of the SP system, in the representation of diverse kinds
of knowledge, in diverse aspects of intelligence, and in the seamless integration of
diverse kinds of knowledge and diverse aspects of intelligence in any combination,
is summarised in [79, Appendix B] with pointers to where fuller information may
be found.

C.4 SP-neural

The SP system, including the concept of SP-multiple-alignment with ICMUP,
suggests how aspects of intelligence may be realised in a ‘neural’ version of the SP
theory, SP-neural expressed in terms of neurons and their interconnections [76].

An important point here is that SP-neural is quite different from the kinds of
‘artificial neural network’ that are popular in computer science, including those
that provide the basis for ‘deep learning’ [51]. And learning in the SP system is
fundamentally different from deep learning in artificial neural networks.
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It is relevant to mention here that [77, Section V] describes thirteen problems
with deep learning in artificial neural networks and how, with the SP system, those
problems may be overcome.

The SP system also provides a comprehensive solution to a fourteenth problem
with deep learning—“catastrophic forgetting”—meaning the way in which new
learning in a deep learning system wipes out old memories. A solution has been
proposed in [33] but it appears to be partial, and it is unlikely to be satisfactory
in the long run.

C.5 Distinctive features and advantages of the SP system

Distinctive features and advantages of the SP system are described quite fully in
[77] and outlined in [79, Appendix A.6].

C.6 Potential benefits and applications of the SP system

Potential benefits and applications of the SP system are summarised in [79, Ap-
pendix A.7] with pointers to relevant publications.
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