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1 – Introduction 

 This article is a better version of [1], which in turn was motived by my 

works on Lagrangian and Eulerian descriptions in Euler[2] and Navier-Stokes[3] 

equations, where I used for velocity’s components the relation   

(1.1)  {

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗,

𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡
  

because the construction of the non-linear terms 𝑢1
𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
 in 

these equations was based on the 2nd law of Newton, 𝐹 = 𝑚𝑎, making   

(1.2)  𝑎 =
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
, 

with  

(1.3)    

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1

𝑑𝑦

𝑑𝑡
= 𝑢2

𝑑𝑧

𝑑𝑡
= 𝑢3

 

I now realize that it is possible, or better said, it is necessary for a more 

appropriate modeling of fluids in motion, the simultaneous use of both velocities, 

in the Lagrangian and Eulerian descriptions, in the same equation (Euler equations 

or Navier-Stokes equations), what we will see in section 4. For while, we think in 

each description or formulation separate of the other, i.e., used exclusively, in an 

equation. 
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 The equations (1.3), writing synthetically as 
𝑑𝑥𝑖

𝑑𝑡
= 𝑢𝑖 , with 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦,

𝑥3 ≡ 𝑧, show us that the velocity’s component 𝑢𝑖  is dependent only of coordinate 

𝑥𝑖 , regardless of the values of others 𝑥𝑗 , 𝑗 ≠ 𝑖, justifying the use of (1.1).  

 Following this idea, the original system for 𝑛 = 3 spatial dimension and 

volumetric mass density 𝜌 = 1,  

(1.4)    

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
= 𝜈∇2𝑢1 +

1

3
𝜈∇1(∇ ∙ 𝑢) + 𝑓1

𝜕𝑝

𝜕𝑦
+

𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
= 𝜈∇2𝑢2 +

1

3
𝜈∇2(∇ ∙ 𝑢) + 𝑓2

𝜕𝑝

𝜕𝑧
+
𝜕𝑢3

𝜕𝑡
+ 𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
= 𝜈∇2𝑢3 +

1

3
𝜈∇3(∇ ∙ 𝑢) + 𝑓3

 

can be transformed in  

(1.5)  

{
 
 

 
 

1

𝑢1

𝜕𝑝

𝜕𝑡
+
𝐷𝑢1

𝐷𝑡
= 𝜈(∇2𝑢1)|𝑡 +

1

3
𝜈(∇1(∇ ∙ 𝑢))|𝑡 + 𝑓1|𝑡

1

𝑢2

𝜕𝑝

𝜕𝑡
+

𝐷𝑢2

𝐷𝑡
= 𝜈(∇2𝑢2)|𝑡  +

1

3
𝜈(∇2(∇ ∙ 𝑢))|𝑡 + 𝑓2|𝑡

1

𝑢3

𝜕𝑝

𝜕𝑡
+
𝐷𝑢3

𝐷𝑡
= 𝜈(∇2𝑢3)|𝑡 +

1

3
𝜈(∇3(∇ ∙ 𝑢))|𝑡 + 𝑓3|𝑡

 

thus (1.4) and (1.5) are equivalent systems, according validity of (1.2) and (1.3), 

since that the partial derivatives of the pressure and velocities were correctly 

transformed to the variable time, using 𝜕𝑥 = 𝑢1𝜕𝑡, 𝜕𝑦 = 𝑢2𝜕𝑡, 𝜕𝑧 = 𝑢3𝜕𝑡. The 

nabla and Laplacian operators are considered calculated in Lagrangian 

formulation, i.e., in the variable time. Likewise for the calculation of  
𝐷𝑢

𝐷𝑡
, following 

(1.2), and external force 𝑓, using 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡). The integration of 

the system (1.5) shows that anyone of its equations can be used for solve it, and 

the results must be equals each other, except for a constant of integration. Then 

this is a condition to the occurrence of solutions, if the velocity 𝑢 and external force 

𝑓 are given and the pressure 𝑝 must be calculated.  

 We use the following transformations (omitting the use of |𝑡 , the 

calculation at time 𝑡 of the position (𝑥, 𝑦, 𝑧) of the moving particle): 

(1.6.1)  
𝜕𝑢𝑖

𝜕𝑥𝑗
= {

𝜕𝑢𝑖/𝜕𝑡

𝜕𝑥𝑖/𝜕𝑡
=

1

𝑢𝑖

𝜕𝑢𝑖

𝜕𝑡
, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
 

(1.6.2)  ∇ ∙ 𝑢 = ∑
𝜕𝑢𝑗

𝜕𝑥𝑗
= ∑

1

𝑢𝑗

𝜕𝑢𝑗

𝜕𝑡

3
𝑗=1

3
𝑗=1  

(1.6.3)  ∇𝑖(∇ ∙ 𝑢) =
𝜕

𝜕𝑥𝑖
(
𝜕𝑢1

𝜕𝑥
+
𝜕𝑢2

𝜕𝑦
+
𝜕𝑢3

𝜕𝑧
) =

𝜕

𝜕𝑥𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
=

𝜕/𝜕𝑡

𝜕𝑥𝑖/𝜕𝑡

1

𝑢𝑖

𝜕𝑢𝑖

𝜕𝑡
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                   =
1

𝑢𝑖
2 [−

1

𝑢𝑖
(
𝜕𝑢𝑖

𝜕𝑡
)
2
+
𝜕2𝑢𝑖

𝜕𝑡2
]   

and  

(1.7.1)  
𝜕2𝑢𝑖

𝜕𝑥𝑗
2 = {

1

𝑢𝑖
2 [−

1

𝑢𝑖
(
𝜕𝑢𝑖

𝜕𝑡
)
2
+
𝜕2𝑢𝑖

𝜕𝑡2
]

0, 𝑖 ≠ 𝑗
, 𝑖 = 𝑗 

(1.7.2)  ∇2𝑢𝑖 =
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 =

1

𝑢𝑖
2 [−

1

𝑢𝑖
(
𝜕𝑢𝑖

𝜕𝑡
)
2
+
𝜕2𝑢𝑖

𝜕𝑡2
]  

and thus the system (1.5) can be integrated, finding the pressure 𝑝 on the particle 

in motion.  

 From equations (1.5) to (1.7) it is possible to construct the Euler and 

Navier-Stokes equations in a new Lagrangian description from the respective 

Eulerian description.  Although in the Eulerian description a position (𝑥, 𝑦, 𝑧) 

refers to any position, generally adopted as fixed in time, when we want it to refer 

to a particle motion we arrive at this new Lagrangian description aforementioned. 

 Next, in section 2 we will deduce the equations of Euler, in section 3 we will 

deduce the equations of Navier-Stokes, the section 4 will show a new expression 

for the equations of Euler and Navier-Stokes, with the simultaneous use of the 

Eulerian and Lagrangian formulations (or a correction of the Eulerian 

formulation), and in the section 5 we will give examples of the need to use the new 

equations here deduced, rather than the traditional equations known. 

 The section 6 deals with the issue of breakdown solutions, section 7 on non-

uniqueness of solutions, and section 8, finally, will be our conclusion. 

 Except for sections 2 and 3 we use mass density 𝜌 = 1, otherwise if it is 

necessary replace the pressure 𝑝 by 𝑝/𝜌 and the viscosity coefficient 𝜈 by 𝜈/𝜌. I 

believe that the new equations presented here really need to be accepted, and we 

will have exact solutions found faster for the various applications. 

 

2 – Deduction of Euler equations 

 Many deductions of the Euler (and Navier-Stokes) equations start from the 

assumption that the pressure is a scalar magnitude, equal in all directions at the 

same point. Particularly I do not think this needs to be this way, or rather, I believe 

that the pressure can be a vector entity, rather than a scalar, so there is a vector 

pressure such that  𝑝 = (𝑝1, 𝑝2, 𝑝3), which would make it extraordinarily simple 

to solve the Euler and Navier-Stokes equations. Instead of using the gradient of 𝑝,  

the vector ∇𝑝 ≡ (
𝜕𝑝

𝜕𝑥
,
𝜕𝑝

𝜕𝑦
,
𝜕𝑝

𝜕𝑧
), we should use the vector (

𝜕𝑝1

𝜕𝑥
,
𝜕𝑝2

𝜕𝑦
,
𝜕𝑝3

𝜕𝑧
), and then 
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(2.1)  𝑝𝑖 = ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) + 𝑓𝑖] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0 + 𝜃𝑖(𝑡),  

for 𝑖 = 1, 2, 3, solves the Euler equations, i.e., calculate the components of pressure 

given the velocity and an external force, conservative or not, and an “arbitrary” 

(well behaved, smooth, physically reasonable) function of time 𝜃(𝑡). This will be a 

pressure with independence of path, depending only of the initial and final points, 

(𝑥1
0, 𝑥2

0, 𝑥3
0) and (𝑥1, 𝑥2, 𝑥3) respectively. Without wanting to deepen this subject 

now, we will continue using scalar pressure, at least in general. 

 We will follow the deduction of Landau & Lifshitz[4] and as they we will use 

𝒗 to indicate velocity and bold characters for vectors. They emphasize that  

𝒗(𝑥, 𝑦, 𝑧, 𝑡) is the velocity of the fluid at a given point (𝑥, 𝑦, 𝑧) in space and at a 

given time 𝑡, i.e., it refers to fixed points in space and not to specific particles of the 

fluid; in the course of time, the latter move about in space. The same remarks apply 

to 𝜌 and 𝑝. 

 Let us considerer some volume in the fluid. The total force acting on this 

volume is equal to the integral (the minus signal indicates a compressive force) 

−∮𝑝𝑑𝒇 

of the pressure, taken over the surface bounding the volume. Transforming it to a 

volume integral, we have 

(2.2)  −∮𝑝𝑑𝒇 = −∫𝒈𝒓𝒂𝒅 𝑝 𝑑𝑉. 

Hence we see that the fluid surrounding any volume element  𝑑𝑉exerts on that 

element a force  –𝑑𝑉 𝒈𝒓𝒂𝒅 𝑝. In other words, we can say that a force  −𝒈𝒓𝒂𝒅 𝑝 

acts on unit volume of the fluid.  

 See that an equality similar to Gauss's law was used with the previous 

acceptance of scalar pressure. The same equality, with equal reason, could be 

rewritten, using a vector pressure 𝒑 = (𝑝1, 𝑝2, 𝑝3), as  

(2.3)  −∮𝒑𝑑𝑓 = −∫(
𝜕𝑝1

𝜕𝑥
,
𝜕𝑝2

𝜕𝑦
,
𝜕𝑝3

𝜕𝑧
)𝑑𝑉, 

i.e., without assuming that 𝑝1 = 𝑝2 = 𝑝3 = 𝑝 and with the convention that 𝒑 is a 

resultant vector of pressures applied on a volume element 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 centered 

at point (𝑥, 𝑦, 𝑧) and time 𝑡.   

 Continuing Landau & Lifshitz, we can now write the equation of motion of a 

volume element in the fluid by equating the force –𝒈𝒓𝒂𝒅 𝑝 to the produt of the 

mass per unit volume (𝜌) and the acceleration  𝑑𝒗/𝑑𝑡: 
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(2.4)  𝜌 𝑑𝒗/𝑑𝑡 = −𝒈𝒓𝒂𝒅 𝑝. 

 The derivative 𝑑𝒗/𝑑𝑡 which appears here denotes not the rate of change of 

the fluid velocity at a fixed point in space, but the rate of change of the velocity of a 

given fluid particle as it moves about in space. This derivative has to be expressed 

in terms of quantities referring to points fixed in space. To do so, we notice that the 

change 𝑑𝒗 in the velocity of the given fluid particle during the time 𝑑𝑡 is composed 

of two parts, namely the change during 𝑑𝑡 in the velocity at a point fixed in space, 

and the difference between the velocities (at the same instant) at two points 𝑑𝒓 

apart, where 𝑑𝒓 is the distance moved by the given fluid particle during the time 

𝑑𝑡. The first part is (𝜕𝒗/𝜕𝑡)𝑑𝑡, where the derivative 𝜕𝒗/𝜕𝑡 is taken for constant 

𝑥, 𝑦, 𝑧, i.e., at the given point in space. The second part is 

(2.5)  𝑑𝑥
𝜕𝒗

𝜕𝑥
+ 𝑑𝑦

𝜕𝒗

𝜕𝑦
+ 𝑑𝑧

𝜕𝒗

𝜕𝑧
= (𝑑𝒓 ∙ 𝒈𝒓𝒂𝒅)𝒗. 

Thus 

(2.6)  𝑑𝒗 = (𝜕𝒗/𝜕𝑡)𝑑𝑡 + (𝑑𝒓 ∙ 𝒈𝒓𝒂𝒅)𝒗, 

or, dividing both sides by  𝑑𝑡, 

(2.7)  
𝑑𝒗

𝑑𝑡
=

𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ 𝒈𝒓𝒂𝒅)𝒗. 

Substituting this in (2.4), we find 

(2.8)  
𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ 𝒈𝒓𝒂𝒅)𝒗 = −

1

𝜌
𝒈𝒓𝒂𝒅 𝑝; 

it was first obtained by L. Euler in 1755. 

 If the fluid is in a gravitational field, an additional force 𝜌𝒈, where 𝒈 is the 

acceleration due to gravity, acts on any unit volume. This force must be added to   

the right-side of equation (2.4), so the equation (2.8) takes the form 

(2.9)  
𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ 𝒈𝒓𝒂𝒅)𝒗 = −

𝒈𝒓𝒂𝒅 𝑝

𝜌
+ 𝒈. 

 Using the vector pressure, the correspondent to equation (2.9), with a 

generic density of external force 𝒇 (not only gravitational), is 

(2.10)  
𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ 𝒈𝒓𝒂𝒅)𝒗 = −

1

𝜌
(
𝜕𝑝1

𝜕𝑥
,
𝜕𝑝2

𝜕𝑦
,
𝜕𝑝3

𝜕𝑧
) + 𝒇, 

therefore a new kind of Euler’s equation, and whose integration does not involve 

major difficulties. 

 It is interesting observe that Batchelor[5] wrote (chap. 3.3) “The simple 

notion of a pressure acting equally in all directions is lost in most cases of a fluid in 
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motion”, thus shown that the imposition or acceptation of a pressure equal in the 

three rectangular coordinates is, in fact, something fragile, possibly not true in the 

nature, for fluids in motion. 

  

3 – Deduction of Navier-Stokes equations 

 Among several deductions of the equations of Navier-Stokes, we will choose 

the one described in Richardson[6](1950), for its brevity, simplicity and 

understanding. 

 Richardson firstly makes his deduction of the Euler equations (Acad. Berlin, 

1755), 

(3.1)  

{
 
 

 
 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
+𝑊

𝜕𝑈

𝜕𝑧
= 𝑋 −

1

𝜌

𝜕𝑝

𝜕𝑥

𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
+𝑊

𝜕𝑉

𝜕𝑧
= 𝑌 −

1

𝜌

𝜕𝑝

𝜕𝑦

𝜕𝑊

𝜕𝑡
+ 𝑈

𝜕𝑊

𝜕𝑥
+ 𝑉

𝜕𝑊

𝜕𝑦
+𝑊

𝜕𝑊

𝜕𝑧
= 𝑍 −

1

𝜌

𝜕𝑝

𝜕𝑧

 

where the velocity of fluid is (𝑈, 𝑉,𝑊), the external force (on unit mass) is 

(𝑋, 𝑌, 𝑍), the pressure is 𝑝 and the volumetric density of mass is 𝜌. 

 The equations are constructed from the statement of Newton’s Second Law 

of Motion, i.e., that the total force acting on a particle is the product of its mass and 

acceleration. 

 If  𝑥, 𝑦, 𝑧 are the rectilinear co-ordinates of a small cube of the material 

(density 𝜌) of volume 𝛿𝑣, �̈�, �̈�, �̈� the components of its acceleration and  𝑋, 𝑌, 𝑍of 

forces on unit mass, let  𝑋𝑝, 𝑌𝑝, 𝑍𝑝 be the components of the external forces acting 

normally on the three surfaces of area  𝛿𝑆 due to the differences of pressure (Fig. 

1).   

 
Fig. 1 – Force on fluid element. 
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Setting aside the frictional forces for the moment (which resulting in Navier-Stokes 

equations), we have these conditions of equilibrium: 

(3.2)  {

𝜌�̈�𝛿𝑣 = 𝑋𝜌𝛿𝑣 + 𝑋𝑝𝛿𝑆

𝜌�̈�𝛿𝑣 = 𝑌𝜌𝛿𝑣 + 𝑌𝑝𝛿𝑆

𝜌�̈�𝛿𝑣 = 𝑍𝜌𝛿𝑣 + 𝑍𝑝𝛿𝑆
 

 In place of  𝑋𝑝, 𝑌𝑝, 𝑍𝑝 we shall insert the pressure gradients in the 

corresponding directions, i.e. 

(3.3)  

{
 
 

 
 𝑋𝑝 ∙ 𝛿𝑆 =

𝜕𝑝

𝜕𝑥
∙ 𝛿𝑣

𝑌𝑝 ∙ 𝛿𝑆 =
𝜕𝑝

𝜕𝑦
∙ 𝛿𝑣

𝑍𝑝 ∙ 𝛿𝑆 =
𝜕𝑝

𝜕𝑧
∙ 𝛿𝑣

  

For (3.3), in an ideal fluid, the pressure acts equally in all directions in the interior 

and at right angles to any surface presented to it. Then 𝑋𝑝, 𝑌𝑝, 𝑍𝑝 are each derived 

from 𝑝, the mean hydrostatic pressure at the point in the fluid circumscribed by 

the cube. 

 Substituting in (3.2) we get 

(3.4)  

{
 
 

 
 𝜌�̈� = 𝜌𝑋 −

𝜕𝑝

𝜕𝑥

𝜌�̈� = 𝜌𝑌 −
𝜕𝑝

𝜕𝑦

𝜌�̈� = 𝜌𝑍 −
𝜕𝑝

𝜕𝑧

 

 These equations are not suited to direct application since the quantities 

𝑥, 𝑦, 𝑧 appear in them at once as dependent and independent variables. There are 

two ways of adapting them to suit experimental observation. We can ask ourselves, 

“At a given point, what fluid occupies the element of space subsequently?” or, 

“Where does a given particle find itself as times goes on?” The first attitude 

corresponds to that of a fixed observer, the second to that of an observer who 

moves with the general velocity of the medium. 

 Mathematically, the first question can be put thus: “What function of  𝑥, 𝑦, 𝑧 

and 𝑡 are the velocity components 𝑈(= �̇�), 𝑉(= �̇�), 𝑊(= �̇�)?” We proceed to 

retain 𝑥, 𝑦, 𝑧 as independent variables but eliminate their dependent aspects to 

obtain 

(3.5)  
𝑑2𝑥

𝑑𝑡2
=

𝑑𝑈

𝑑𝑡
=

𝜕𝑈

𝜕𝑡
+
𝜕𝑈

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+
𝜕𝑈

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
+
𝜕𝑈

𝜕𝑧
∙
𝑑𝑧

𝑑𝑡
, etc. 

which with (3.4) resolve into the Eulerian equations (3.1). 
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 Answering to the first question, Richardson says that the second form of our 

question (“Where does a given particle find itself as times goes on?”) can be 

translated thus: “What functions of time and place are those co-ordinates – let 

them be  𝑎, 𝑏, 𝑐 – which characterize a given particle?” To answer this, we get rid of 

𝑥, 𝑦, 𝑧 as independent variables but retain them where dependent and arrive at the 

Lagrangian (Mem. Acad. (Berlin), 1781) form of the equations of motion: 

(3.6)  

{
 
 

 
 (

𝜕2𝑥

𝜕𝑡2
− 𝑋)

𝜕𝑥

𝜕𝑎
+ (

𝜕2𝑦

𝜕𝑡2
− 𝑌)

𝜕𝑦

𝜕𝑎
+ (

𝜕2𝑧

𝜕𝑡2
− 𝑍)

𝜕𝑧

𝜕𝑎
+

1

𝜌

𝜕𝑝

𝜕𝑎
= 0

(
𝜕2𝑥

𝜕𝑡2
− 𝑋)

𝜕𝑥

𝜕𝑏
+ (

𝜕2𝑦

𝜕𝑡2
− 𝑌)

𝜕𝑦

𝜕𝑏
+ (

𝜕2𝑧

𝜕𝑡2
− 𝑍)

𝜕𝑧

𝜕𝑏
+

1

𝜌

𝜕𝑝

𝜕𝑏
= 0

(
𝜕2𝑥

𝜕𝑡2
− 𝑋)

𝜕𝑥

𝜕𝑐
+ (

𝜕2𝑦

𝜕𝑡2
− 𝑌)

𝜕𝑦

𝜕𝑐
+ (

𝜕2𝑧

𝜕𝑡2
− 𝑍)

𝜕𝑧

𝜕𝑐
+

1

𝜌

𝜕𝑝

𝜕𝑐
= 0

 

As we known, the form due to Euler is, however, more generally used. 

 Now let us introduce the frictional forces. We define the coefficient of 

viscosity, 𝜂, as the force per unit area of two parallel laminae of fluid unit distance 

apart, measured across the direction of flow. Thus, if  𝑈 and 𝑈 + 𝛿𝑈 (Fig. 2) are the 

velocities (in the direction of  𝑥) at two planes  𝛿𝑦 apart, the force per unit area on 

the fluid in either plane is  𝜂 ∙ 𝜕𝑈/𝜕𝑦, i.e., the product of the coefficient of viscosity 

and the velocity gradient perpendicular to the direction of flow. If  𝐴, 𝐵 and 𝐶 are 

such laminae, each of area 𝑆, 𝐴 exerts a force on 𝐵 equal to  −𝜂 ∙ 𝜕𝑈/𝜕𝑦 ∙ 𝑆; 𝐶 exerts 

a force on 𝐵 equal to  𝜂 ∙ (𝜕𝑈/𝜕𝑦 + 𝜕2𝑈/𝜕𝑦2 ∙ 𝛿𝑦) ∙ 𝑆, so that the net force on 𝐵 is 

(3.7)  𝜂 ∙
𝜕2𝑈

𝜕𝑦2
∙ 𝛿𝑦 ∙ 𝑆 =

𝜂

𝜌
∙ 𝛿𝑚 ∙

𝜕2𝑈

𝜕𝑦2
= 𝜂 ∙ 𝛿𝑣 ∙

𝜕2𝑈

𝜕𝑦2
      

where  𝛿𝑚 is the mass of fluid between 𝐴 and 𝐵 and 𝛿𝑣 is the respective volume. 

The factor 𝜂/𝜌, written 𝜈, which we shall often require, is called the kinematic 

(coefficient of) viscosity. (It should be noted that it is here assumed that  𝜂 is 

constant for a given fluid, invariable with 𝜕𝑈/𝜕𝑦, but a more general proof also is 

made posteriorly in [6], here omitted.) 

 
Fig. 2 – Action of fluid friction.   

 In the general case, the total viscous force on an element of mass  𝑚 due to 

the component  𝑈 will be 
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  𝜂 ∙ 𝛿𝑣 ∙ (
𝜕2𝑈

𝜕𝑥2
+
𝜕2𝑈

𝜕𝑦2
+
𝜕2𝑈

𝜕𝑧2
) 

written shortly  𝜈𝑚∇2𝑈. This force must be added to those on the right-hand side 

of the equations we have already derived (Euler equations), resulting in the 

equations ascribed to Navier (Mem. Acad. Sci. (Paris), 1822) and Stokes (Camb. 

Trans., 1845), 

(3.8)  

{
 
 

 
 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
+𝑊

𝜕𝑈

𝜕𝑧
= 𝑋 −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 ∇2𝑈

𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
+𝑊

𝜕𝑉

𝜕𝑧
= 𝑌 −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 ∇2𝑉

𝜕𝑊

𝜕𝑡
+ 𝑈

𝜕𝑊

𝜕𝑥
+ 𝑉

𝜕𝑊

𝜕𝑦
+𝑊

𝜕𝑊

𝜕𝑧
= 𝑍 −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 ∇2𝑊

 

with 𝜈 = 𝜂/𝜌 the (kinematic) viscosity coefficient. 

 Confirming the difficulty of the Lagrangian description of the Euler and 

Navier-stokes equations, based on [7], the Navier-Stokes equations without 

external force and with volumetric mass density 𝜌 = 1 are, describing the velocity 

as (𝑢1, 𝑢2, 𝑢3) and the spatial coordinates as (𝑥1, 𝑥2, 𝑥3),   

(3.9.1)  
𝜕2𝑋𝑖

𝜕𝑡2
= −∑

𝜕𝐴𝑗

𝜕𝑥𝑖

𝜕𝑝

𝜕𝑎𝑗
+3

𝑗=1  

   + ∑ ∑ ∑ (
𝜕2𝐴𝑙

𝜕𝑥𝑘𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑎𝑙
+

𝜕𝐴𝑗

𝜕𝑥𝑘

𝜕𝐴𝑙

𝜕𝑥𝑘

𝜕2𝑢𝑖

𝜕𝑎𝑗𝜕𝑎𝑙
)3

𝑙=1
3
𝑘=1

3
𝑗=1 , 

(3.9.2)  
𝜕𝐴𝑗

𝜕𝑥𝑖
≡

𝜕

𝜕𝑥𝑖
𝑋𝑗(𝑥𝑛, 𝑡)|𝑥𝑛=𝑋𝑛(𝑎𝑚,𝑠|𝑡), 

where 𝑎𝑚 is the label given to the fluid particle at time 𝑠. Its position and velocity 

at time 𝑡 are, respectively, 𝑋𝑛(𝑎𝑚, 𝑠|𝑡) and 𝑢𝑛(𝑎𝑚, 𝑠|𝑡). The respective deduction of 

these equations we will omit, but the reader can consult [7] for more details. 

 

4 – A new form of Euler and Navier-Stokes equations 

 The Eulerian (equations (3.1) and (3.8)) and Lagrangian (equations (3.6) 

and (3.9)) forms are not the unique possible equations for description of fluids. 

Other equation for modeling of fluids is possible, based on them, with the great 

advantage of linearity. It is what we will show in this section. 

 The system (1.3), for the sake of mathematical rigor, needs to be replaced 

by 
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(4.1)    

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1(𝑡)

𝑑𝑦

𝑑𝑡
= 𝑢2(𝑡)

𝑑𝑧

𝑑𝑡
= 𝑢3(𝑡)

 

emphasizing that the velocity components that appear as the time derivative of the 

coordinate (𝑥, 𝑦, 𝑧) are legitimate functions of time, i.e., can be considered as 

representative of the Lagrangian description, 𝑢𝑖(𝑡), unlike the derivatives of 𝑢𝑖  in 
𝜕𝑢𝑖

𝜕𝑡
, 
𝜕𝑢𝑖

𝜕𝑥𝑗
, ∇ ∙ 𝑢 and ∇2𝑢𝑖 , that are in the Eulerian description, function of  (𝑥, 𝑦, 𝑧, 𝑡).  

 Representing the Eulerian velocity and respective components with the 

letter E indicated as upper index, and the corresponding Lagrangian components 

with the letter L, the system (1.4) is rewritten as 

(4.2)   

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢1
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢1
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢1
𝐸

𝜕𝑧
= 𝜈∇2𝑢1

𝐸 +
1

3
𝜈∇1(∇ ∙ 𝑢

𝐸) + 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢2
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢2
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢2
𝐸

𝜕𝑧
= 𝜈∇2𝑢2

𝐸 +
1

3
𝜈∇2(∇ ∙ 𝑢

𝐸) + 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3
𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢3
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢3
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢3
𝐸

𝜕𝑧
= 𝜈∇2𝑢3

𝐸 +
1

3
𝜈∇3(∇ ∙ 𝑢

𝐸) + 𝑓3

 

being the pressure 𝑝 and external force 𝑓 implicitly defined in the Eulerian 

description. A more concise notation for (4.2) is simply, for 𝑖 = 1, 2, 3, 

(4.3) 
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼1

𝜕𝑢𝑖

𝜕𝑥
+ 𝛼2

𝜕𝑢𝑖

𝜕𝑦
+ 𝛼3

𝜕𝑢𝑖

𝜕𝑧
= 𝜈∇2𝑢𝑖 +

1

3
𝜈∇𝑖(∇ ∙ 𝑢) + 𝑓𝑖 , 

where 𝑝, 𝑓𝑖 , 𝑢 and 𝑢𝑖  are in Eulerian description and 𝛼𝑖 = 𝛼𝑖(𝑡) in Lagrangian 

description, i.e., 𝛼𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, with the radius vector 𝑟 = (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧) 

function of time and indicating a motion of a specific particle of fluid starting from 

position (𝑥1
0, 𝑥2

0, 𝑥3
0) ≡ (𝑥0, 𝑦0, 𝑧0). 

 The equations (4.2) and (4.3) shows us that the nonlinear form disappear, 

facilitating the obtaining of its solutions, transforming when ∇ ∙ 𝑢 = 0 into a linear 

and second-order partial differential equation of elliptic type, already well-

studied[8]. If 𝜈 = 0 (Euler equations) we have equations of first order, obviously, 

which is also widely studied[9]. We realize that for each possible value of  𝛼𝑖 it is 

possible to obtain different values of 𝑢𝑖 , and reciprocally, i.e., there is not an one-

one correspondence between 𝛼𝑖 and 𝑢𝑖 , thus it is convenient choose more easy 

time functions for the 𝛼𝑖(𝑡), provided that compatible with the physical problem to 

be studied. 
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 Nevertheless, even though it is very interesting to study other mathematical 

solutions for the original system (1.4) or the new system (4.2), I understand that 

the final conclusion made in [2] and [3] remains valid: it is possible to exist 

velocities in the Eulerian formulation that do not correspond to a real movement of 

particles of a fluid, according to the Lagrangian formulation. When I wrote this the 

first time I did not have the equations (4.2) and (4.3), deduced later in [1], but if it 

is true (as it is) that we should have (1.3) and (4.1) for a motion of fluid particle, 

then 𝑥𝑖  and its respective velocity 𝑢𝑖  are closely related, and the initial use of (1.1) 

in section 1 is valid. This is an excellent question to be examined with examples, 

which we will see in the next section. 

 But even when the relationship (1.1) is not required, a general solution for 

the new Euler equations (𝜈 = 0)  

(4.4)  
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼1

𝜕𝑢𝑖

𝜕𝑥
+ 𝛼2

𝜕𝑢𝑖

𝜕𝑦
+ 𝛼3

𝜕𝑢𝑖

𝜕𝑧
= 𝑓𝑖   

or 

(4.5)  
𝜕𝑝

𝜕𝑥𝑖
+
𝐷𝑢𝑖

𝐷𝑡
= 𝑓𝑖, 

in the case which the pressure 𝑝 and external force 𝑓 = (𝑓1, 𝑓2, 𝑓3)  are given and 

the velocity 𝑢 = (𝑢1, 𝑢2, 𝑢3) is calculated, is  

(4.6)  𝑢𝑖 = 𝑢𝑖
0 + ∫ (𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
)

𝑡

0
𝑑𝑡,   

using   

(4.7)  
𝐷𝑢𝑖

𝐷𝑡
=

𝐷𝑢𝑖
𝐸

𝐷𝑡
= 𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
. 

𝑢𝑖
0 is the component 𝑖 of the initial velocity.  

 So here we conclude that the new Euler equations always have solution 

when the pressure and external force are given (or chosen) and the integration in 

(4.6) is possible, for 𝑖 = 1, 2, 3. Boundaries conditions must be in accordance with 

the solution (4.6).   

 In special, when 𝑓𝑖 −
𝜕𝑝

𝜕𝑥𝑖
 is a function without temporal dependence the 

solution (4.6) is  

(4.8)  𝑢𝑖 = 𝑢𝑖
0 + (𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
) 𝑡, 

which is an exact solution and it is relatively fast and easy to simulate 

computationally.   
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5 – Numerical verification of physically reasonable solutions 

 Of a point of view purely mathematical, it is not necessary to have the 

adoption of (1.1). It is possible forgotten that the Euler and Navier-Stokes 

equations have something relation with motion of fluids, liquids or gases, and 

accept that they are just equations of high level and difficulty of Pure Mathematics, 

but in this section we want to keep the bond or link between theses equations and 

the motion of fluids, and thus the use of (1.1) is born and can be used, as we will 

see. 

 If a particle (or some volume) of fluid has the movement governed 

according to the position vector 𝑟 = (𝑥, 𝑦, 𝑧), with a temporal dependency 

𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡),  then the respective velocity of this particle (or 

volume) of fluid is 𝑢 =
𝑑𝑟

𝑑𝑡
= (

𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
), also, a priori, dependent of time 

(except if all three derivatives are equal to constant). 

 The first equation of (1.1),  

(5.1)  
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗, 

is valid when we intend to follow the movement of a particle (or group of particles 

in a small volume) because in a mechanical movement we have by definition 

(5.2)  𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
,  

i.e., the component 𝑖 of velocity is dependent only of component 𝑖 of position, 

which is obvious, then we have 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, according we saw in section 1.    

 From equation (5.2) we conclude that 𝑑𝑥𝑖 = 𝑢𝑖𝑑𝑡, or 

(5.3)  𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡,  

the second equation of (1.1). 

 Thus we emphasize that if it is not necessary to have some particle or group 

of particles in the elementary volume 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 in position (𝑥, 𝑦, 𝑧) at time 𝑡 

then the use of (1.1), or (5.1) and (5.3), can be ignored, and we will have a problem 

purely mathematical. 

 Even if there is some bond or link between the coordinates, as 𝑥2 + 𝑦2 +

𝑧2 = 𝑅2 and 𝑥�̇� + 𝑦�̇� + 𝑧�̇� = 0 in a circular motion of constant radius 𝑅, the 

relation (5.2) is still true, by definition, and we do not need despise (5.1), a 

calculation facilitator, except if the external force is intrinsically dependent of the 
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more than one spatial coordinate in at least one of the three orthogonal directions 

and we have ∇𝑝 ≠ 𝑓. 

 We will check now the use of the relations (4.1), 

(5.4)    

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1(𝑡)

𝑑𝑦

𝑑𝑡
= 𝑢2(𝑡)

𝑑𝑧

𝑑𝑡
= 𝑢3(𝑡)

 

origin of the fundamental difference between the traditional equations and the 

new equations presented here. In fact, when we use and distinguish in a same 

equation the Eulerian 𝑢𝐸  and Lagrangian 𝑢𝐿 velocities the use of (1.1) is of 

secondary importance.  

§ 1 

 Be the example 1 

(5.5)  

{
 
 

 
 𝑥 = 𝑡,

𝑑𝑥

𝑑𝑡
= 1 = 𝑢1

𝐿,
𝐷𝑢1

𝐿

𝐷𝑡
= 0

𝑦 = 2𝑡,
𝑑𝑦

𝑑𝑡
= 2 = 𝑢2

𝐿 ,
𝐷𝑢2

𝐿

𝐷𝑡
= 0

𝑧 = 3𝑡,
𝑑𝑧

𝑑𝑡
= 3 = 𝑢3

𝐿,
𝐷𝑢3

𝐿

𝐷𝑡
= 0

 

in fact a movement of real acceleration equal to zero,  
𝐷𝑢1

𝐿

𝐷𝑡
=

𝐷𝑢2
𝐿

𝐷𝑡
=

𝐷𝑢3
𝐿

𝐷𝑡
= 0. 

 Suppose that the introduction of external force, internal frictional forces 

and internal pressure generated a solution for velocity, in the Eulerian formulation, 

such that, for example,  

(5.6)  

{
 
 

 
 𝑢1

𝐸 = 𝑥,
𝐷𝑢1

𝐸

𝐷𝑡
=

𝐷𝑥

𝐷𝑡
=

𝐷𝑡

𝐷𝑡
= 1

𝑢2
𝐸 = 𝑦,

𝐷𝑢2
𝐸

𝐷𝑡
=

𝐷𝑦

𝐷𝑡
=

𝐷(2𝑡)

𝐷𝑡
= 2

𝑢3
𝐸 = 𝑧,

𝐷𝑢3
𝐸

𝐷𝑡
=

𝐷𝑧

𝐷𝑡
=

𝐷(3𝑡)

𝐷𝑡
= 3

  

 The acceleration as used in the Euler and Navier-Stokes equations is 

(5.7)  

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
=

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢1
𝐸

𝜕𝑧
= 𝑥, 𝑥(𝑡) = 𝑡 ≢ 1

𝐷𝑢2
𝐸

𝐷𝑡
=

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢2
𝐸

𝜕𝑧
= 𝑦, 𝑦(𝑡) = 2𝑡 ≢ 2

𝐷𝑢3
𝐸

𝐷𝑡
=

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢3
𝐸

𝜕𝑧
= 𝑧, 𝑧(𝑡) = 3𝑡 ≢ 3
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i.e., the use of the expression according to the traditional Euler and Navier-Stokes 

equations generates a wrong value for the value of the acceleration 
𝐷𝑢𝐸

𝐷𝑡
.  

 By other side, using the correct form of the new Euler and Navier-Stokes 

equations, according (4.2), we have 

(5.8)  

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
=

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢1
𝐸

𝜕𝑧
= 1

𝐷𝑢2
𝐸

𝐷𝑡
=

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢2
𝐸

𝜕𝑧
= 2

𝐷𝑢3
𝐸

𝐷𝑡
=

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢3
𝐸

𝜕𝑧
= 3

 

therefore the correct and expected result conform (5.6) for the acceleration 
𝐷𝑢𝐸

𝐷𝑡
, 

but with the disagreement  
𝐷𝑢𝐸

𝐷𝑡
≠

𝐷𝑢𝐿

𝐷𝑡
. 

§ 2 

 Be now the example 2  

(5.9)  

{
 
 

 
 𝑥 = 𝑥0 + 𝑢0𝑡 + 𝑓

𝑡2

2
,
𝑑𝑥

𝑑𝑡
= 𝑢0 + 𝑓𝑡 = 𝑢1

𝐿 ,
𝐷𝑢1

𝐿

𝐷𝑡
= 𝑓

𝑦 = 𝑦0 + 𝑣0𝑡 + 𝑔
𝑡2

2
,
𝑑𝑦

𝑑𝑡
= 𝑣0 + 𝑔𝑡 = 𝑢2

𝐿 ,
𝐷𝑢2

𝐿

𝐷𝑡
= 𝑔

𝑧 = 𝑧0 +𝑤0𝑡 + ℎ
𝑡2

2
,
𝑑𝑧

𝑑𝑡
= 𝑤0 + ℎ𝑡 = 𝑢3

𝐿,
𝐷𝑢3

𝐿

𝐷𝑡
= ℎ

 

for constants 𝑥0, 𝑦0, 𝑧0, 𝑢0, 𝑣0, 𝑤0, 𝑓, 𝑔, ℎ, a movement of constant acceleration 

(𝑓, 𝑔, ℎ). 

 Suppose again that the introduction of external force, internal frictional 

forces and internal pressure generated a solution for velocity, in the Eulerian 

formulation, such that, for example,  

(5.10)  

{
 
 

 
 𝑢1

𝐸 = 𝑢0 + 𝑓𝑡,
𝐷𝑢1

𝐸

𝐷𝑡
= 𝑓

𝑢2
𝐸 = 𝑣0 + 𝑔𝑡,

𝐷𝑢2
𝐸

𝐷𝑡
= 𝑔

𝑢3
𝐸 = 𝑤0 + ℎ𝑡,

𝐷𝑢3
𝐸

𝐷𝑡
= ℎ

  

without dependence of spatial position and with 𝑢𝐸 = 𝑢𝐿 . 

 The acceleration as used in the Euler and Navier-Stokes equations is 
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(5.11)  

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
=

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢1
𝐸

𝜕𝑧
=

𝜕𝑢1
𝐸

𝜕𝑡
= 𝑓 

𝐷𝑢2
𝐸

𝐷𝑡
=

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢2
𝐸

𝜕𝑧
=

𝜕𝑢2
𝐸

𝜕𝑡
= 𝑔

𝐷𝑢3
𝐸

𝐷𝑡
=

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢3
𝐸

𝜕𝑧
=

𝜕𝑢3
𝐸

𝜕𝑡
= ℎ 

  

i.e., this time the use of the expression according to the traditional Euler and 

Navier-Stokes equations generates a correct value for the acceleration 
𝐷𝑢𝐸

𝐷𝑡
 because 

there is no dependence of position. 

 Besides this, using the correct form of the new Euler and Navier-Stokes 

equations, according (4.2), we have 

(5.12)  

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
=

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢1
𝐸

𝜕𝑧
=

𝜕𝑢1
𝐸

𝜕𝑡
= 𝑓 

𝐷𝑢2
𝐸

𝐷𝑡
=

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢2
𝐸

𝜕𝑧
=

𝜕𝑢2
𝐸

𝜕𝑡
= 𝑔

𝐷𝑢3
𝐸

𝐷𝑡
=

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢3
𝐸

𝜕𝑧
=

𝜕𝑢3
𝐸

𝜕𝑡
= ℎ

 

therefore the correct and expected result conform (5.10) for the acceleration 
𝐷𝑢𝐸

𝐷𝑡
, 

this time with the agreement  
𝐷𝑢𝐸

𝐷𝑡
=

𝐷𝑢𝐿

𝐷𝑡
. 

§ 3 

 We will next use the solution (4.6) of (4.5), 

(5.13)  𝑢𝑖 = 𝑢𝑖
0 + ∫ (𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
)

𝑡

0
𝑑𝑡,  

solution of the new Euler equations, for the special and easier case that 𝑓𝑖 =
𝜕𝑝

𝜕𝑥𝑖
,  

i.e., the external force is conservative, a gradient field, being the pressure its 

respective potential, and   

(5.14)  𝑢𝑖 = 𝑢𝑖
𝐸 = 𝑢𝑖

0,
𝐷𝑢𝑖

𝐸

𝐷𝑡
=

𝜕𝑢𝑖
𝐸

𝜕𝑡
= 0, 

and with 

(5.15)  

{
 
 

 
 𝑥 = 𝑥0𝑒

−𝑡 ,
𝑑𝑥

𝑑𝑡
= −𝑥0𝑒

−𝑡 = 𝑢1
𝐿 ,

𝐷𝑢1
𝐿

𝐷𝑡
= 𝑥0𝑒

−𝑡

𝑦 = 𝑦0𝑒
−𝑡 ,

𝑑𝑦

𝑑𝑡
= −𝑦0𝑒

−𝑡 = 𝑢2
𝐿 ,

𝐷𝑢2
𝐿

𝐷𝑡
= 𝑦0𝑒

−𝑡

𝑧 = 𝑧0𝑒
−𝑡 ,

𝑑𝑧

𝑑𝑡
= −𝑧0𝑒

−𝑡 = 𝑢3
𝐿 ,

𝐷𝑢3
𝐿

𝐷𝑡
= 𝑧0𝑒

−𝑡
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for constants 𝑥0, 𝑦0, 𝑧0, a movement of contraction from (𝑥0, 𝑦0, 𝑧0) to (0, 0, 0), with 

𝐷𝑢𝐿

𝐷𝑡
= (𝑥0, 𝑦0, 𝑧0)𝑒

−𝑡.  

 The acceleration as used in the traditional Euler and Navier-Stokes 

equations is 

(5.16) 

 

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
= (

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢1
𝐸

𝜕𝑧
) |𝑡 = (𝑢1

0 𝜕𝑢1
0

𝜕𝑥
+𝑢2

0 𝜕𝑢1
0

𝜕𝑦
+𝑢3

0 𝜕𝑢1
0

𝜕𝑧
) |𝑡 

𝐷𝑢2
𝐸

𝐷𝑡
= (

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢2
𝐸

𝜕𝑧
) |𝑡 = (𝑢1

0 𝜕𝑢2
0

𝜕𝑥
+𝑢2

0 𝜕𝑢2
0

𝜕𝑦
+𝑢3

0 𝜕𝑢2
0

𝜕𝑧
) |𝑡

𝐷𝑢3
𝐸

𝐷𝑡
= (

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢3
𝐸

𝜕𝑧
) |𝑡 = (𝑢1

0 𝜕𝑢3
0

𝜕𝑥
+𝑢2

0 𝜕𝑢3
0

𝜕𝑦
+𝑢3

0 𝜕𝑢3
0

𝜕𝑧
)  |𝑡

 

which shows us the possibility of being valid 
𝐷𝑢𝑖

𝐸

𝐷𝑡
≠ 0 with 

𝜕𝑢𝑖
𝐸

𝜕𝑡
= 0.  

 Being necessary in this case that  
𝐷𝑢𝑖

𝐸

𝐷𝑡
=

𝜕𝑢𝑖
𝐸

𝜕𝑡
= 0, for 𝑖 = 1, 2, 3, we have 

(5.17)  

{
 
 

 
 𝑢1

0 𝜕𝑢1
0

𝜕𝑥
+𝑢2

0 𝜕𝑢1
0

𝜕𝑦
+𝑢3

0 𝜕𝑢1
0

𝜕𝑧
= 0

𝑢1
0 𝜕𝑢2

0

𝜕𝑥
+𝑢2

0 𝜕𝑢2
0

𝜕𝑦
+𝑢3

0 𝜕𝑢2
0

𝜕𝑧
= 0

𝑢1
0 𝜕𝑢3

0

𝜕𝑥
+𝑢2

0 𝜕𝑢3
0

𝜕𝑦
+𝑢3

0 𝜕𝑢3
0

𝜕𝑧
= 0 

 

which is valid, for example, for initial velocities such that 

(5.18)  𝑢𝑖
0 = 𝑘𝑖𝜙𝑖(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧),  

with 

(5.19)  𝑘1𝜙1𝑎 + 𝑘2𝜙2𝑏 + 𝑘3𝜙3𝑐 = 0,  

𝑘𝑖 , 𝑎, 𝑏, 𝑐 real numbers, 𝜙𝑖: ℝ → ℝ differentiable functions, for 𝑖 = 1, 2, 3. If the 

condition of incompressibility ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0 is required in the resolution of a 

given problem then it is also necessary that 

(5.20)  𝑘1𝜙1
′𝑎 + 𝑘2𝜙2

′𝑏 + 𝑘3𝜙3
′ 𝑐 = 0, 

always satisfied when (5.19) is true. 

 With the correct form of the new Euler and Navier-Stokes equations we 

have, using (5.14), 
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(5.21) 

 

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
= (

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢1
𝐸

𝜕𝑧
) |𝑡 = (𝑢1

𝐿 𝜕𝑢1
0

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢1
0

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢1
0

𝜕𝑧
) |𝑡 = 0 

𝐷𝑢2
𝐸

𝐷𝑡
= (

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢2
𝐸

𝜕𝑧
) |𝑡 = (𝑢1

𝐿 𝜕𝑢2
0

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢2
0

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢2
0

𝜕𝑧
) |𝑡 = 0

𝐷𝑢3
𝐸

𝐷𝑡
= (

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢3
𝐸

𝜕𝑧
) |𝑡 = (𝑢1

𝐿 𝜕𝑢3
0

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢3
0

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢3
0

𝜕𝑧
) |𝑡 = 0

 

which also has by solution, for example, 

(5.22)  𝑢𝑖
0 = 𝑘𝑖𝜙𝑖(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧),  

supposing 𝜙𝑖: ℝ → ℝ differentiable functions and 𝑘𝑖 , 𝑎, 𝑏, 𝑐 real numbers, for 

𝑖 = 1, 2, 3, but this time with 

(5.23)  𝑎 𝑢1
𝐿(𝑡) + 𝑏 𝑢2

𝐿(𝑡) + 𝑐 𝑢3
𝐿(𝑡) = 0, 

or equivalently  

(5.24.1) 𝑢1
𝐿(𝑡) = −

1

𝑎
(𝑏 𝑢2

𝐿(𝑡) + 𝑐 𝑢3
𝐿(𝑡)), 𝑎 ≠ 0, 

(5.24.2) 𝑢2
𝐿(𝑡) = −

1

𝑏
(𝑎 𝑢1

𝐿(𝑡) + 𝑐 𝑢3
𝐿(𝑡)), 𝑏 ≠ 0, 

(5.24.3) 𝑢3
𝐿(𝑡) = −

1

𝑐
(𝑎 𝑢1

𝐿(𝑡) + 𝑏 𝑢2
𝐿(𝑡)), 𝑐 ≠ 0, 

for all 𝑡 ≥ 0, or all 𝜙𝑖′ are constants. For that ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0 it is necessary also 

be valid (5.20) or all 𝜙𝑖  need be constant. 

 According to the solution (5.22) and for the chosen movement given by 

(5.15), the condition (5.23) imposes that 

(5.25.1) 𝑥0 = −
1

𝑎
(𝑏 𝑦0 + 𝑐 𝑧0), 

(5.25.2) 𝑦0 = −
1

𝑏
(𝑎 𝑥0 + 𝑐 𝑧0), 

(5.25.3) 𝑧0 = −
1

𝑐
(𝑎 𝑥0 + 𝑏 𝑦0), 

respectively if 𝑎 ≠ 0, 𝑏 ≠ 0, 𝑐 ≠ 0, therefore each initial position of a specific 

particle or group of particles need to obey the previous condition, in this case: 

initial positions on a plane for each family of coefficients (𝑎, 𝑏, 𝑐). 

 Note that the Lagrangian solution is what governs the movement of fluids, 

or rather, explains what happens in the fluid, with respect to velocity. We can 

choose many different 𝜙 functions for Eulerian solution of 𝑢𝐸 , but the individual 

motion of the particles or group of particles is the same with each prefixed choice 

of 𝑢𝐿 . Thus, it is unnecessary to choose complicated initial velocities in the Eulerian 
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formulation when the movement in the Lagrangian formulation is simpler, at least 

when the external force is a conservative field. 

 § 4 

 In this present case we will analyze the same Lagrangian solution in (5.15), 

but now with time dependent Eulerian solution, i.e., with some or all 
𝜕𝑢𝑖

𝐸

𝜕𝑡
≠ 0. Again  

with ∇𝑝 = 𝑓 and  
𝐷𝑢𝐸

𝐷𝑡
= 0, the Lagrangian solution is 

(5.26)  

{
 
 

 
 𝑥 = 𝑥0𝑒

−𝑡 ,
𝑑𝑥

𝑑𝑡
= −𝑥0𝑒

−𝑡 = 𝑢1
𝐿 ,

𝐷𝑢1
𝐿

𝐷𝑡
= 𝑥0𝑒

−𝑡

𝑦 = 𝑦0𝑒
−𝑡 ,

𝑑𝑦

𝑑𝑡
= −𝑦0𝑒

−𝑡 = 𝑢2
𝐿 ,

𝐷𝑢2
𝐿

𝐷𝑡
= 𝑦0𝑒

−𝑡

𝑧 = 𝑧0𝑒
−𝑡 ,

𝑑𝑧

𝑑𝑡
= −𝑧0𝑒

−𝑡 = 𝑢3
𝐿 ,

𝐷𝑢3
𝐿

𝐷𝑡
= 𝑧0𝑒

−𝑡

 

for constants 𝑥0, 𝑦0, 𝑧0, a movement of contraction from (𝑥0, 𝑦0, 𝑧0) to (0, 0, 0), with 
𝐷𝑢𝐿

𝐷𝑡
= (𝑥0, 𝑦0, 𝑧0)𝑒

−𝑡.  

 We have in this case for Eulerian representation in the traditional meaning 

(5.27)  

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
= (

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢1
𝐸

𝜕𝑧
) |𝑡 = 0

𝐷𝑢2
𝐸

𝐷𝑡
= (

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢2
𝐸

𝜕𝑧
) |𝑡 = 0

𝐷𝑢3
𝐸

𝐷𝑡
= (

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐸 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐸 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐸 𝜕𝑢3
𝐸

𝜕𝑧
) |𝑡 = 0

 

 Choosing for respective solution 

(5.28)  𝑢𝑖
𝐸 = 𝑘𝑖𝜙𝑖(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑡),  

with 𝜙𝑖: ℝ → ℝ differentiable functions and 𝑘𝑖 , 𝑎, 𝑏, 𝑐 real numbers, for 𝑖 = 1, 2, 3, 

we have 

(5.29)  𝑘1𝜙1𝑎 + 𝑘2𝜙2𝑏 + 𝑘3𝜙3𝑐 + 𝑑 = 0,  

otherwise all 𝜙𝑖  are constants. If the condition of incompressibility ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 =

0 is required in the resolution of a given problem then it is also necessary that 

(5.30)  𝑘1𝜙1
′𝑎 + 𝑘2𝜙2

′𝑏 + 𝑘3𝜙3
′ 𝑐 = 0, 

always satisfied when (5.29) is true. 

 With the correct form of the new Euler and Navier-Stokes equations we 

have 
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(5.31)  

{
 
 

 
 
𝐷𝑢1

𝐸

𝐷𝑡
= (

𝜕𝑢1
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢1
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢1
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢1
𝐸

𝜕𝑧
) |𝑡 = 0 

𝐷𝑢2
𝐸

𝐷𝑡
= (

𝜕𝑢2
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢2
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢2
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢2
𝐸

𝜕𝑧
) |𝑡 = 0

𝐷𝑢3
𝐸

𝐷𝑡
= (

𝜕𝑢3
𝐸

𝜕𝑡
+𝑢1

𝐿 𝜕𝑢3
𝐸

𝜕𝑥
+𝑢2

𝐿 𝜕𝑢3
𝐸

𝜕𝑦
+𝑢3

𝐿 𝜕𝑢3
𝐸

𝜕𝑧
) |𝑡 = 0

 

which also has by solution, for example, 

(5.32)  𝑢𝑖
𝐸 = 𝑘𝑖𝜙𝑖(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑡),  

for 𝜙𝑖: ℝ → ℝ differentiable functions, 𝑘𝑖, 𝑎, 𝑏, 𝑐 real numbers, 𝑖 = 1, 2, 3, but this 

time with 

(5.33)  𝑎 𝑢1
𝐿(𝑡) + 𝑏 𝑢2

𝐿(𝑡) + 𝑐 𝑢3
𝐿(𝑡) + 𝑑 = 0, 

or equivalently  

(5.34.1) 𝑢1
𝐿(𝑡) = −

1

𝑎
(𝑏 𝑢2

𝐿(𝑡) + 𝑐 𝑢3
𝐿(𝑡) + 𝑑), 𝑎 ≠ 0, 

(5.34.2) 𝑢2
𝐿(𝑡) = −

1

𝑏
(𝑎 𝑢1

𝐿(𝑡) + 𝑐 𝑢3
𝐿(𝑡) + 𝑑), 𝑏 ≠ 0, 

(5.34.3) 𝑢3
𝐿(𝑡) = −

1

𝑐
(𝑎 𝑢1

𝐿(𝑡) + 𝑏 𝑢2
𝐿(𝑡) + 𝑑), 𝑐 ≠ 0, 

for all 𝑡 ≥ 0, or all 𝜙𝑖′ are constants. For that ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0 it is necessary also 

be valid (5.30) or all 𝜙𝑖  need be constant. 

 According to the solution (5.32) and for the chosen movement given by 

(5.26), the condition (5.33) imposes that 

(5.35.1) 𝑥0 = −
1

𝑎
(𝑏 𝑦0 + 𝑐 𝑧0 − 𝑑),  

(5.35.2) 𝑦0 = −
1

𝑏
(𝑎 𝑥0 + 𝑐 𝑧0 − 𝑑), 

(5.35.3) 𝑧0 = −
1

𝑐
(𝑎 𝑥0 + 𝑏 𝑦0 − 𝑑), 

respectively if 𝑎 ≠ 0, 𝑏 ≠ 0, 𝑐 ≠ 0, therefore each initial position of a specific 

particle or group of particles needs to obey the previous condition, in this case: 

initial positions on a plane for each family of coefficients (𝑎, 𝑏, 𝑐, 𝑑). 

 Note that a solution in the Lagrangian description may correspond to two 

(or even more) solutions in the Eulerian description, for example, a steady-state 

solution as well as a non steady-state solution, so it is convenient to look for, or 

pre-define, simpler formats for Eulerian solutions. 
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§ 5 

 Lastly, we will see the new Navier-Stokes equations. As the Lagrangian 

description governs the movement of particles or group of particles, while the 

Eulerian description is a kind of complicating of the real (or approximate, say) 

behavior of fluids, at least when the external force is conservative and the pressure 

is its potential (∇𝑝 = 𝑓), we will try an Eulerian solution for velocity using (1.1), 

i.e., given 𝑢𝐿 = (𝑢1
𝐿 , 𝑢2

𝐿 , 𝑢3
𝐿) we will use the form 

(5.36)  𝑢𝑖
𝐸 = 𝑢𝑖

𝐸(𝑥𝑖 , 𝑡) = 𝜙𝑖(𝑥𝑖)𝜑𝑖(𝑡)         

in the equation 

(5.37)  
𝐷𝑢𝑖

𝐸

𝐷𝑡
= 𝜈 ∇2𝑢𝑖

𝐸 +
1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢𝐸), 

with 

(5.38)  
𝐷𝑢𝑖

𝐸

𝐷𝑡
=

𝜕𝑢𝑖
𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢𝑖
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢𝑖
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢𝑖
𝐸

𝜕𝑧
 

and ∇ ∙ 𝑢𝐸  without specific value, thus 

(5.39)  𝜙𝑖(𝑥𝑖)𝜑𝑖
′(𝑡) + 𝑢𝑖

𝐿(𝑡)𝜙𝑖
′(𝑥𝑖)𝜑𝑖(𝑡) =

4

3
𝜈 𝜙𝑖′′(𝑥𝑖)𝜑𝑖(𝑡),           

an ordinary differential equation, for 𝑖 = 1,2,3, supposing 𝜙𝑖  and 𝜑𝑖 differentiable 

and continuous functions how much is needed. 

 By the superposition principle we can also add solutions, 

(5.40)  𝑢𝑖
𝐸 = 𝑢𝑖

𝐸(𝑥𝑖 , 𝑡) = ∑ 𝑢𝑖𝑗
𝐸 (𝑥𝑖 , 𝑡)

∞
𝑗=1 = ∑ 𝜙𝑖𝑗(𝑥𝑖)𝜑𝑖𝑗(𝑡)

∞
𝑗=1 , 

and then 

(5.41)  𝜙𝑖𝑗(𝑥𝑖)𝜑𝑖𝑗
′ (𝑡) + 𝑢𝑖

𝐿(𝑡)𝜙𝑖𝑗
′ (𝑥𝑖)𝜑𝑖𝑗(𝑡) =

4

3
𝜈 𝜙𝑖𝑗′′(𝑥𝑖)𝜑𝑖𝑗(𝑡),           

but the better use of (1.1) is when we give completely the Lagrangian and Eulerian 

solutions for velocity (i.e., a choose obeying the required initial and boundary 

conditions as well as the compressibility condition) and the external force is 

conservative, such that,  

(5.42)  {
𝑝 = ∫ (−

𝐷𝑢𝐸

𝐷𝑡
+ 𝜈 ∇2𝑢𝐸 +

1

3
𝜈 ∇(∇ ∙ 𝑢𝐸) + 𝑓) ∙ 𝑑𝑙

𝐿

𝑢𝑖
𝐸 = 𝑢𝑖

𝐸(𝑥𝑖 , 𝑡)
 

for  𝑖 = 1, 2, 3, i.e., the pressure is the unique function which we do not have a 

priori and need be calculated, while the choose components of velocities have the 
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necessity to be logically consistent with the problem in question. In section 6 we 

will see again this solution.   

 We now will make the Eulerian solution even easier than (5.36) by 

removing the dependence of time, 

(5.43)  𝑢𝑖
𝐸 = 𝑢𝑖

𝐸(𝑥𝑖) = 𝜙𝑖(𝑥𝑖), 

with 

(5.44)  
𝐷𝑢𝑖

𝐸

𝐷𝑡
= 𝑢1

𝐿 𝜕𝑢𝑖
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢𝑖
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢𝑖
𝐸

𝜕𝑧
= 𝜈 ∇2𝑢𝑖

𝐸 +
1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢𝐸), 

∇ ∙ 𝑢𝐸  with free value, and so 

(5.45)  𝑢𝑖
𝐿(𝑡)𝜙𝑖

′(𝑥𝑖) =
4

3
𝜈 𝜙𝑖′′(𝑥𝑖) 

or 

(5.46)  𝑢𝑖
𝐿(𝑡) =

4

3
𝜈
𝜙𝑖
′′(𝑥𝑖)

𝜙𝑖
′(𝑥𝑖)

= 𝑐𝑖, 

a spatial solution which obviously cannot varies in time and for this reason it is 

necessary that the function 𝑢𝑖
𝐿(𝑡) is a real constant 𝑐𝑖. The solution is exponential 

in relation to coordinate 𝑥𝑖: 

(5.47)  𝑢𝑖
𝐸 = 𝜙𝑖(𝑥𝑖) = 𝑘𝑖𝑒

3𝑐𝑖 𝑥𝑖/4𝜈 , 

which in fact solves (5.44) for 𝑘𝑖 ,  𝑐𝑖, 𝜈 > 0 real constants. 

 Note that although (5.47) is an unlimited spatially function if 𝑐𝑖 > 0, the 

respective Lagrangian solution 𝑢𝑖
𝐿(𝑡) = 𝑐𝑖, a motion of constant velocity, is well 

behaved, smooth and limited, for all position and all 𝑡 ≥ 0. Then this is another 

case (as in § 1) in that we have a regular motion in the time in Lagrangian 

description but with possibility of an unlimited solution in Eulerian description. By 

other side, if 𝑐𝑖 < 0  the respective component 𝑢𝑖
𝐸 decreases with position, which 

also is not compatible with the respective motion of those particles or group of 

particles, but nevertheless it is a possible solution in Eulerian description.     

 Also note that in each of the examples in this section, in general we have 

𝑢𝐿(𝑡) ≠ 𝑢𝐸(𝑥, 𝑦, 𝑧, 𝑡), except if 𝑡 = 0 and 𝑥 = 𝑥0, 𝑦 = 𝑦0, 𝑧 = 𝑧0 is the initial 

position, or some specific set of positions (𝑥, 𝑦, 𝑧) and (𝑥0, 𝑦0, 𝑧0) at time 𝑡 (in 

special, 𝑥 = 𝑥(𝑡, 𝑥0), 𝑦 = 𝑦(𝑡, 𝑦0), 𝑧 = 𝑧(𝑡, 𝑧0) according defined in the respective 

Lagrangian description) or if  𝑢𝐸  is not dependent of  position (as in § 2),  so by the 

chain rule the correct form of the total acceleration 
𝐷𝑢𝐸

𝐷𝑡
 in a particle of fluid (or 

elementary volume 𝑑𝑉 or group of particles) is 
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(5.48)  
𝐷𝑢𝐸

𝐷𝑡
=

𝜕𝑢𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢
𝐸

𝜕𝑧
, 

because we have in general 

(5.49)  𝑢1
𝐿 𝜕𝑢

𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢
𝐸

𝜕𝑧
≠ 𝑢1

𝐸 𝜕𝑢
𝐸

𝜕𝑥
+ 𝑢2

𝐸 𝜕𝑢
𝐸

𝜕𝑦
+ 𝑢3

𝐸 𝜕𝑢
𝐸

𝜕𝑧
. 

We are using implicitly the initial position (𝑥0, 𝑦0, 𝑧0) in the Lagrangian 

description 𝑢𝐿(𝑡) as constant, although it has the same meaning as in 

𝑢𝐿(𝑡, 𝑥0, 𝑦0, 𝑧0).  

 

6 – The question of the breakdown solutions 

 Without passing through the Lagrangian formulation, given a velocity 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) at least two times differentiable with respect to spatial coordinates and 

one respect to time and an integrable external force 𝑓(𝑥, 𝑦, 𝑧, 𝑡), perhaps the better 

expression for the solution of the equation (1.4) is 

(6.1)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝑆 ∙ 𝑑𝑙
𝐿

+ 𝜃(𝑡) = ∑ ∫ 𝑆𝑖𝑑𝑥𝑖
𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

  𝑆 = (𝑆1, 𝑆2, 𝑆3), 

  𝑆𝑖 = −(
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) + 𝜈(∇2𝑢𝑖) +

1

3
𝜈(∇𝑖(∇ ∙ 𝑢)) + 𝑓𝑖 , 

supposing possible the integrations and that the vector 𝑆 = − [
𝜕𝑢

𝜕𝑡
+ (𝑢 ∙ ∇)𝑢] +

𝜈∇2𝑢 +
1

3
𝜈∇(∇ ∙ 𝑢) + 𝑓 is a gradient function, where it is necessary that 

(6.2)  
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
. 

This is the development of the solution of (1.4) for the specific path 𝐿 going 

parallely (or perpendicularly) to axes 𝑋, 𝑌 and 𝑍 from (𝑥1
0, 𝑥2

0, 𝑥3
0) ≡ (𝑥0, 𝑦0, 𝑧0) to 

(𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧), since that the solution (6.1) is valid for any piecewise 

smooth path 𝐿. We can choose 𝑃1
0 = (𝑥0, 𝑦0, 𝑧0), 𝑃2

0 = (𝑥, 𝑦0, 𝑧0),  𝑃3
0 = (𝑥, 𝑦, 𝑧0) for 

the origin points and 𝑃1 = (𝑥, 𝑦0, 𝑧0), 𝑃2 = (𝑥, 𝑦, 𝑧0),  𝑃3 = (𝑥, 𝑦, 𝑧) for the 

destination points. 𝜃(𝑡) is a generic time function, physically and mathematically 

reasonable, for example with 𝜃(0) = 0 or adjustable for some given condition. 

Again we have seen that the system of Navier-Stokes equations has no unique 

solution, only given initial conditions, supposing that there is some solution. We 

can choose different velocities that have the same initial velocity and also result, in 

general, in different pressures. 
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 The remark given for the system (1.5), when used in (1.4), leads us to the 

following conclusion: the integration of the system (1.4), confronting with (1.5), 

shows that, except for a constant or free term of integration, respectively 

𝐴(𝑦, 𝑧, 𝑡), 𝐵(𝑥, 𝑧, 𝑡) and 𝐶(𝑥, 𝑦, 𝑡), anyone of its equations can be used for solve it, 

and the results must be equals each other, if the velocity 𝑢 and external force 𝑓 are 

given and the pressure 𝑝 must be calculated. Then again this is a condition to the 

occurrence of solutions, otherwise there is not any solution, which shows to us the 

possibility of existence of “breakdown” solutions, as defined in [10]. 

 By other side, using the first condition (1.1), 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, due to 

Lagrangian formulation, where 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, the original system (1.4) is simplified as 

(6.3)  

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
=

4

3
𝜈
𝜕2𝑢1

𝜕𝑥2
+ 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑦
=

4

3
𝜈
𝜕2𝑢2

𝜕𝑦2
+ 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3

𝜕𝑡
+ 𝑢3

𝜕𝑢3

𝜕𝑧
=

4

3
𝜈
𝜕2𝑢3

𝜕𝑧2
+ 𝑓3

 

where 𝑢𝑖  is a function only of the respective 𝑥𝑖  and 𝑡, but not 𝑥𝑗  if 𝑗 ≠ 𝑖. When it is 

required the incompressibility condition, ∇ ∙ 𝑢 = (
𝜕𝑢1
𝜕𝑥
+
𝜕𝑢2
𝜕𝑦
+
𝜕𝑢3
𝜕𝑧
) = 0, then the 

constant 
4

3
 in (6.3) should be replaced by 1. 

 If the external force has potential, 𝑓 = ∇𝑉, then the system (6.3) has 

solution 

(6.4)  𝑝 = ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 + 𝑓𝑖] 𝑑𝑥𝑖

𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡) 

      = 𝑉 + ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 ] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

𝑉 = ∫ 𝑓 ∙ 𝑑𝑙
𝐿

, which although similar to (6.1) has the solubility guaranteed by 

the special functional dependence of the components of the vector 𝑢, i.e., 

𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡), with 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, supposing 𝑢, its derivatives and 𝑓 integrable 

vectors. In this case the vector 𝑆 described in (6.1) is always a gradient function, 

i.e., the relation (6.2) is satisfied. Note that if 𝑓 is not an irrotational or gradient 

vector, i.e., if it does not have a potential, then the system (6.3), with 𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡), 

it has no solution, the case of “breakdown” solution in [10]. 

 When the incompressibility condition is imposed (∇ ∙ 𝑢 = 0) we have, using 

(1.1), a small variety of possible solutions for velocity, of the form  
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(6.5)  𝑢𝑖(𝑥𝑖 , 𝑡) = 𝐴𝑖(𝑡)𝑥𝑖 + 𝐵𝑖(𝑡),   

𝐴𝑖 , 𝐵𝑖 ∈ 𝐶
∞([0,∞[), with 

(6.6)  𝐴1(𝑡) + 𝐴2(𝑡) + 𝐴3(𝑡) = 0, 

if the coordinates 𝑥1, 𝑥2, 𝑥3 are independent of each other. In this case it is valid 

∇2𝑢 = 0, i.e., the system of equations has a solution for velocity independent of 

viscosity coefficient, equal to Euler equations, and except when 𝑢 = 0 (for some or 

all 𝑡 ≥ 0) we have always ∫ |𝑢|2
ℝ3

𝑑𝑥𝑑𝑦𝑑𝑧 → ∞, the occurrence of unbounded 

or unlimited energy, which is not difficult to see.  

 Another class of solutions 𝑆 for velocity gives more possibility for the 

construction of the components of velocity 𝑢𝑖 , but maintains a bond between 

𝑥1, 𝑥2, 𝑥3 and 𝑡 such that 

(6.7) 𝑆 = {(𝑢1, 𝑢2, 𝑢3); 𝑢𝑖 ∈ 𝐶
1(ℝ × ℝ0

+), (𝑥1, 𝑥2, 𝑥3, 𝑡) ∈ ℝ
3 ×ℝ0

+, ∇ ∙ 𝑢 = 0}, 

where ℝ0
+ = [0,∞[, and there is a scalar function 𝜑3 with 𝑥3 = 𝜑3(𝑥1, 𝑥2, 𝑡) or 

similarly 𝑥1 = 𝜑1(𝑥2, 𝑥3, 𝑡) or 𝑥2 = 𝜑2(𝑥1, 𝑥3, 𝑡). The dependence between 

𝑥1, 𝑥2, 𝑥3 and 𝑡 is necessary for that ∇ ∙ 𝑢 = 0 in these points (𝑥1, 𝑥2, 𝑥3) at each 

time 𝑡, forming a surface or manifold which is the domain of the solutions and 

which varies in time.  

 Being correct that (1.1) and (4.1) can be used, which we saw in section 5, 

the solution (6.4) for pressure must therefore be replaced by 

(6.8)  𝑝 = ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 + 𝑓𝑖] 𝑑𝑥𝑖

𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡) 

      = 𝑉 + ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 ] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0

3
𝑖=1 + 𝜃(𝑡) 

      = 𝑉 + ∑ [𝑝𝑖(𝑥𝑖 , 𝑡) − 𝑝𝑖(𝑥𝑖
0, 𝑡)]3

𝑖=1 + 𝜃(𝑡), 

where 𝛼𝑖 = 𝛼𝑖(𝑡) is the component 𝑖 of the velocity in Lagrangian description of a 

particle of fluid in motion, 𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡) is the component 𝑖 of the velocity in 

Eulerian description, 𝑝𝑖(𝑥𝑖 , 𝑡) = ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 ] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0  and the 

other meanings already given previously in this article. As we have already seen, 

when it is required the incompressibility condition then the constant 
4

3
 in (6.8) 

should be replaced by 1 and the general solution (6.5) for velocity with the 

condition (6.6) remains valid, if the coordinates 𝑥1, 𝑥2, 𝑥3 are independent of each 

other, as well as (6.7) with possible dependence between 𝑥1, 𝑥2, 𝑥3 and 𝑡. 
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7 – The non-uniqueness of solutions 

 The new equations presented here have clearly non-unique solutions (when 

there is at least one solution) in the following sense: 

1) For the same initial Eulerian velocity, indicated as 𝑢0, we can propose different 

velocities in the Lagrangian description, 𝑢𝐿 , to compose the new equations, also 

with possibility of collisions between the particles belonging to the different 

movements described by each 𝑢𝐿 . This can result in a rather chaotic Eulerian 

solution for velocity, in fact many velocities for a same point, and consequently 

also for the pressure, if it has not previously been chosen. 

2) When we analyze the uniqueness of solutions (𝑢𝐸 , 𝑝) bearing in mind that the 

Lagrangian velocity 𝑢𝐿 is predetermined, if only the initial velocity 𝑢0 is given we 

have the non uniqueness of the pair (𝑢𝐸 , 𝑝) because we can construct many 

possible and different velocities 𝑢𝐸 , as 𝑢𝐸 = 𝜑(𝑡)𝑢0 + 𝜏(𝑡), 𝜑(0) = 1, 𝜏(0) = 0, and 

the pressure will be given by (6.8), where we are supposing the use of (1.1), i.e., 

𝑢𝑖
𝐸 = 𝑢𝑖

𝐸(𝑥𝑖 , 𝑡), with 
𝜕𝑢𝑖

𝐸

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗. Note that in this case we have ∇ × 𝑢𝐸 = 0 and 

the equation has solution, again with many possible pressures.           

3) If is given a boundary condition of type 𝑢𝐸|𝜕𝑆 = 𝑢𝜕 (Dirichlet condition), with 

𝑢𝜕 ∈ 𝐶∞(ℝ3 × [0,∞)) and 𝑢𝜕(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝑢0, then we can use the solution for 

velocity as 𝑢𝐸 = 𝑢𝜕 and also we have the non uniqueness of the pair (𝑢𝐸 , 𝑝), 

because for the pressure to be unique it needs to be known the values of 

𝑝1(𝑥0, 𝑡), 𝑝2(𝑦0, 𝑡), 𝑝3(𝑧0, 𝑡), i.e., the pressure is dependent of the values of 

𝑥0, 𝑦0, 𝑧0, and moreover 𝜃(𝑡), according (6.8). Naturally, the velocities 𝑢𝜕 and 𝑢0 

must, themselves, obey to the new equations of Euler and Navier-Stokes, 𝑢𝜕 for 

𝑡 ≥ 0 and 𝑢0 for 𝑡 = 0.          

 

8 – Conclusion   

 In fact we saw two problems in Euler and Navier-Stokes equations, not only 

one: 

1) the pressure is (or may be) a vector, which was viewed briefly in sections 2 and 

3 during the deductions of these equations; 

2) the nonlinear characteristic of these equations is not correct for modeling of 

motion of fluids, because the use of chain rule in 
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
 implies that 𝑢1 =

𝑑𝑥

𝑑𝑡
, 𝑢2 =

𝑑𝑦

𝑑𝑡
 and 𝑢3 =

𝑑𝑧

𝑑𝑡
 are time functions only, without 

spatial dependence, which we viewed in section 4. 
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 We propose a new form for the Euler and Navier-Stokes equations, where 

there is a simultaneous use of Euler and Lagrangian descriptions in a same 

equation, i.e., for 𝑖 = 1, 2, 3, 

(8.1) 
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼1

𝜕𝑢𝑖

𝜕𝑥
+ 𝛼2

𝜕𝑢𝑖

𝜕𝑦
+ 𝛼3

𝜕𝑢𝑖

𝜕𝑧
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖 , 

where 𝑝, 𝑓𝑖 , 𝑢 and 𝑢𝑖  are in Eulerian description and 𝛼𝑖 = 𝛼𝑖(𝑡) in Lagrangian 

description, i.e., 𝛼𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, according equation (4.3). Of this manner the nonlinear 

form of these equations disappear, replacing it by linear equations, a second-order 

equation of elliptic type if 𝜈 > 0 or first order equation if 𝜈 = 0.  

 Obviously, using the vector nature of pressure the equation (8.1) needs to 

be modified to 

(8.2) 
𝜕𝑝𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑡
+ 𝛼1

𝜕𝑢𝑖

𝜕𝑥
+ 𝛼2

𝜕𝑢𝑖

𝜕𝑦
+ 𝛼3

𝜕𝑢𝑖

𝜕𝑧
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖 . 

In (8.1) it is still necessary to have a resultant conservative field, a gradient vector,   

specifically for the integrable vector 𝑆 = (𝑆1, 𝑆2, 𝑆3), with  

(8.3) 𝑆𝑖 = (𝜈∇
2𝑢𝑖+

1

3
𝜈
𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢)+𝑓

𝑖
) − (

𝜕𝑢𝑖
𝜕𝑡
+𝛼1

𝜕𝑢𝑖
𝜕𝑥
+𝛼2

𝜕𝑢𝑖
𝜕𝑦
+𝛼3

𝜕𝑢𝑖
𝜕𝑧
), 

whereas in equation (8.2) this is no longer necessary. 

 In section 4 we conclude that the new Euler equations always have solution 

when the pressure and external force are given (or chosen) and the integration in 

(4.6), which is the mentioned solution,   

(8.4)  𝑢𝑖 = 𝑢𝑖
0 + ∫ (𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
)

𝑡

0
𝑑𝑡, 

is possible, for 𝑖 = 1, 2, 3. Boundaries conditions must be in accordance with this 

solution.   
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