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“Enter into his gates with thanksgiving, and into his courts with praise: be thankful unto him, and bless his name.” -
Psalmos 100:4.

ABSTRACT. In this paper, I demonstrate one new infinite product representation for cosine
function, one new power series representation for tangent function and amazing identities
involving radical.

1. INTRODUCTION

In this paper, I prove the new infinite product representation for cosine function given by
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the power series representation for tangent function
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and identity
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among others.

2. COSINE FUNCTION: THE INFINITE PRODUCT

2.1. New Infinite Product Representation for Cosine Function.

Theorem 1. If |z|<— then
(2n — 1)4(n* — 5n222 + 42%)
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where cos (z) denotes the cosine function.

Proof. In [1, p.12], I have the Euler’s infinite product representation for sine function

sin (rz me <1—) eC. (1)

In [1, p.13], again, I have the Euler’s infinite product representation for cosine function

cos mH< 2%1) )ze@. (2)

I well know the trigonometric identity
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cos (mz) = . 3
(m2) 8 cos?( T )sin?(57) ®)




2 NEw INFINITE PRODUCT REPRESENTATION FOR COSINE FUNCTION AND POWER SERIES REPRESENTATION FOR

TANGENT FuNcTION

From (1), (2) and (3), it follows that

(2n — 1)4(n* — 5n222 + 42%)
cos H {16 [(2n —1)2 —22)2(4n? — 22)2 |’

which is the desired result. O

Example 2. Using the above formula, I obtain the identities, for z=1/20,9/20,1/30 and 3 /40,

as follows,
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3. TANGENT FuNcCTION: THE POWER SERIES

3.1. New Power Series Representation for Tangent Function.

Theorem 3. If z€ C, then

tan (72) = _ZZ 64n° — 72n° + n*(18 — 8422) +108n%2° — 3n222(522 +9) + 826
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where tan (z) denotes the tangent function.

Proof. Differentiating the equation of the Theorem 2 logarithmically with respect to z, I have the
desired result. 0

Example 4. Using the above formula, I obtain the identities, for z=1/5 and 1/8, as follows,
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4. INFINITE PRODUCTS FOR TRIGONOMETRIC AND HYPERBOLIC FUNCTIOSN

4.1. Infinite Products Representations for Cosine and Hyperbolic Cosine Functions.

I leave as easy exercises



Exercise 1. Prove that, for z € C,

and
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