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Abstract

The ergodic second-order approach of entropy gradient maximiza-
tion, applied on the problem of a quantum bosonic system, does not
provide dynamic equations for pure fermionic system. The first-order
dynamic equation results for a system of bosonic and fermionic de-
grees of freedom interacting by a conservation of a common sum of
quantum occupation numbers.

1 Introduction

The entropy gradient maximization was proposed as an alternative formalism
generating the dynamic equations for a closed system with arbitrary degrees
of freedom [8]. It is based on the fundamental principle of the entropy max-
imization of closed system (2nd law of thermodynamics).

It has been demonstrated that this principle applied locally to the in-
finitesimal variation of entropy produces first- and second-order generalized
dynamic equations and leads independently to basic principles of causality
and special relativity. Further developments of this approach are aimed at
recovering all fundamental relationships in physics (including conservation
laws and interaction phenomena), assuming a minimal number of primary
statements. Ideally this should be the only one, equivalent to the second law
of thermodynamics, and the only one basic object governed thereby - the
entropy (or equivalently, the statistical weight).
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Also the formalism has been demonstrated to be a successful and promis-
ing approach for number of other applications.

The primary first-order approach firstly proposed in [8] provides the first-
order dynamics by maximizing the first order entropy variation with one or
more additional relationships - ergodicity conditions. These conditions can
be interpreted as pre-assumed conservation laws [8, 9]. At the same time they
imply a correlation between degrees of freedom , construed in the framework
of the formalism as an interaction. The ergodicity conditions were firstly
introduced on the example of the energy conservation as a relationship for
conserved energy value for a given scalar function on the space of degrees of
freedom q: h(q) = E = const

The extension of the entropy variation to include second-order contri-
butions also implies a corresponding extended formalism based on this ap-
proach. Especially it allows for generating dynamic equations by a condi-
tionless maximization procedure.

This approach has been shown to produce the first order dynamic equa-
tions without demanding the energy conservation and is therefore determined
as a non-ergodic formalism. Some most significant results of this extension
are outlined in the recent report [10], which was devoted to the pure non-
ergodic second-order approach.

The second-order approach for the local entropy gradient maximization
for systems with many degrees of freedom without additional ergodicity con-
ditions, e.g.like conservation laws, provides the first order dynamic equation
and light-like (massless) second order dynamics.

Especially, it has been shown, that the resulting dynamics correspond
to a system of non-interacting degrees of freedom . This appears as long
as the generating functional of entropy variation does not contain entropy
derivatives of order higher than two (the formalism is restricted on the second
order).

Additionally it was demonstrated in [9, 10], that the application of this
approach for the non-ergodic bosonic system leads to physically meaningless
unrestricted growth of all occupation numbers independently of each other.

For the entropy construction of a kind like that considered in [9, 10] all
derivatives of entropy of order higher than two disappear identically, even if
no restrictions on the entropy variation are demanded. Hence, in order to
obtain physically meaningful interactive dynamics, it is necessary to couple
the maximized entropy variation with any ergodicity condition, for instance
a conservation of total bosonic occupation number [9]. This ergodic second-
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order approach was readily demonstrated to generate collective first-order
dynamics, as applied for a bosonic quantum system in terms of occupation
numbers. There both the second order entropy variation and the bosonic
number conservation as the ergodicity have been assumed. The latter is re-
vealed to be the issue of collective interaction between bosonic degrees of
freedom .

In the present note the same approach has been applied to two problems:
I. System of identical fermionic degrees of freedom with the conservation

of the total sum of fermionic occupation numbers;
II. System consisting of one-type bosonic and one-type fermionic degrees

of freedom with the constant total occupation number (conservation of the
total fermion+boson common number).

It will be shown below, that a straightforward application of this approach
for a system of identical fermions in terms of occupation numbers does not
provide any dynamics of a pure fermionic system.

A meaningful dynamics first appear for a system consisting of both fermionic
and bosonic degrees of freedom with an ergodicity condition, which con-
strains both occupation numbers together. A simplest possibility would be
demanding a conservation of a common sum of occupation numbers.

The content of the article is ordered conventionally.
The Section 2 contains the generalized formulation of the second order

approach, providing the local first-order dynamics for bosonic degrees of
freedom and the global first-order dynamics for bosonic and fermionic en-
sembles.

The derivation of the dynamical equations in the Sec.2 is followed by
Sec.3 illustrating the dynamics by solutions for several special cases. Some
conceivable physical interpretations are suggested.

The final Section 4 summarizes the observed results and contains a short
subsequent discussion.

2 Dynamical equations

2.1 System of fermionic degrees of freedom

We start with the unrestricted entropy variation on the finite-dimensional
space of fermionic occupation numbers fα as degrees of freedom with di-
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mension F, α = 1, 2, ..., F with the discoupled time reference τ [11]

δSf =
∑
α

Sfαdfα +
1

2

∑
α,β

Sfαfβdfαdfβ +
1

3!

∑
α,β,γ

Sfαfβfγdfαdfβdfγ + ...

+ Sτdτ +
1

2
Sττ + ... (1)

which presumably contains contributions from all-order-derivatives of en-
tropy. However, since the second-order and all higher-order derivatives of
entropy disappear (Appendix A.1), the formalism remains restricted to the
first order approach.

Consequently, it confirms the fact, that fermionic degrees of freedom are
governed by first-order dynamic equations (e.g. of Dirac-type for massive or
Weyl type for massless fermionic fields respectively)

The interaction between fα is provided by the ergodicity condition im-
posed in the form of a global:

F :=
F∑
α=1

fα = const (2)

or a local:
F∑
α=1

dfα = 0 (3)

conservation law. The latter together with the surviving first-order entropy
variation

δSf =
∑
α

Sfαdfα + Sτdτ (4)

leads finally to the conclusion that the direct exchange between fermionic
degrees of freedom in form of a conservation law (3, 2) does not provide any
dynamics.

Again it is in accordance with the fact, that there are no observable
interactions between fermionic fields immediately.

2.2 Boson-fermionic system

As a next step we consider the extended system including both bosonic bi
and fermionic fα occupation numbers as quantum degrees of freedom , with

F := F(f1, f2, ..., fF ) =
F∑
α=1

fα and B := B(b1, b2, ..., bB) =
B∑
i=1

bi

4



total fermionic and bosonic occupation numbers in the present state
{f1, f2, ..., fF ; b1, b2, ..., bB} respectively, where the positive value B can be
arbitrary large,

0 ≤ B < +∞,

while the F is restricted by
0 ≤ F ≤ F.

We can now proceed with the entropy gradient maximization procedure
using the same scenario as for the pure fermionic system above. The formal-
ism starts with the second order entropy variation to be maximized:

δS[bi, fα, τ ] =
∑
i

Sbidbi +
1

2

∑
i,k

Sbibkdbidbk

+
∑
α

Sfαdfα +
1

2

∑
α,β

Sfαfβdfαdfβ (5)

+ Sτdτ +
1

2
Sττdτ

2

An assumption of a conservation of the common total occupation number
provides the additional (ergodicity) condition in a global

F + B =
F∑
α=1

fα +
B∑
i=1

bi = T = const (6)

and a local form
F∑
α=1

dfα +
B∑
i=1

dbα = 0. (7)

The partial derivatives entering in (6) are (Appendix A.1)

Sbj =
B∑
i=0

bi − bj = B − bj; Sbjbk =

{
0, j = k,
1, j 6= k

}
= 1− δjk, (8)

for bosonic and

Sfβ =
F∑
α=0

= F ; Sfαfβ = 1 (9)

for fermionic degrees of freedom .
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Using these results, a straightforward application of the maximization
procedure (Appendix A.2) produces evolution equations for the dynamics of
a single bosonic DoF’s bj:

ḃj :=
dbj
dτ

= −Sττ
Sτ

(
B + F
2B − 1

− bj
)

=
1

Ω

(
T

2B − 1
− bj

)
, (10)

for the entire bosonic ensemble B

Ḃ :=
dB
dτ

=
1

Ω

(
B

2B − 1
T − B

)
(11)

and for the fermionic ensemble F

Ḟ :=
dF
dτ

=
1

Ω

(
− B

2B − 1
F +

B − 1

2B − 1
B
)

(12)

as well.
A generalization of this result for high number j → ∞ of bosonic states

provides the continuous form of this system:

Ω(τ)
d

dτ
b(i) = b̄− b(i)

where the effective bosonic number b̄ : =
1

2
lim
B→∞

1

B

B∫
1

b(j) + f(j) dj;

Ω(τ)
d

dτ

∫
b(j)dj =

1

2

∫
b(j) + f(j) dj; (13)

Ω(τ)
d

dτ

∫
f(j)dj =

1

2

∫
b(j)− f(j) dj;

The former equation describes the dynamics of single bosonic modes, like
a shape expansion (heat equation) or a propagation (wave equation), that
was shown in [9] to be proper for bosonic systems. The latter two equations
determine the global behaviors only of entire ensembles.

Some possible application scenarios of the discrete model for special cases
can be considered in this context.
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3 Examples

The dynamical equations

dB
dτ

=
1

Ω

(
B

2B − 1
T − B

)
(14)

dF
dτ

=
1

Ω

(
− B

2B − 1
F +

B − 1

2B − 1
B
)

(15)

can be rewritten in a standard matrix form for a simple linear dynamical
system with two DoF’s {B, F} :

d

dτ

[
B
F

]
=

1

Ω(2B − 1)

[
−(B − 1) B

B − 1 −B

] [
B
F

]
, (16)

with the singular matrix. This means, the system is effectively 1-dimensional
(since B + F = const )

Some special cases of the ensemble dynamics defined by the equation(16)
are considered below. They also could allow for an appropriate physical
interpretation.

3.1 Vacuum state

For the trivial case of a pure fermionic world with no bosonic states,

B = 0, that also implies B = 0

the equations (37 - 39) result merely in

dB
dτ

=
dF
dτ

= 0

with a solution
F(τ) = F(0) = const.

But since B = 0 such states are physically non-observable.
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3.2 Single bosonic state

An extension of the model by one bosonic state

B = 1,

which can be occupied by an arbitrary positive number B, produces a simple
dynamical system

dB
dτ

=
1

Ω
F (17)

dF
dτ

= − 1

Ω
F (18)

with the solutions
F(τ) = F(0)e−

1
Ω
τ

B(τ) = B(0) + F(0)Ω
(

1− e−
1
Ω
τ
)

describing a natural exponential decay of the fermionic ensemble into the
single bosonic mode.

3.3 Symmetric ensemble

The next trivial case is the system with equal numbers of bosonic and
fermionic modes,

F(τ) = B(τ) =
T
2

(19)

The equations (38, 39) then become

dT
dτ

=
1

2B − 1
T , dT

dτ
= − 1

2B − 1
T

with the trivial constant solution,

dT
dτ

= 0, T = const.
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3.4 Large bosonic ensemble

An increasing number of bosonic states

B →∞,

which corresponds to

dB
dτ

=
1

2Ω
(F − B)

dF
dτ

= − 1

2Ω
(F − B) . (20)

Surprisingly, this arranges for stabilizing the fermionic occupation number,
since the solution of (20)

F(τ)− B(τ) = [F(0)− B(0)] e−
1

2Ω
τ

exponentially approaches the equilibrium symmetric (”supersymmetric”) state
with

F(τ) = B(τ), τ →∞

Thus, the boson-fermionic dynamics possesses an asymptotic limit corre-
sponding to the stabilizing fermionic ensemble in a bosonic environment.
This phenomena could for example be considered as stable leptons, which
are stabilized through the interaction with an infinite photonic background.

3.5 Discrete bosonic & fermionic ensembles

The question of a special interest is to investigate the case where all degrees
of freedom are integers, since the model is aimed to reproduce a structure of
quantum state space.

To this end we recall, that both numbers of states B,F and all total
occupation numbers of ensembles F ,B are generally considered to be integers,

B, F, B, F (0 ≤ F ≤ F ) ∈ N,

as well as change steps of all degrees of freedom , the time reference τ
including,

dF , dB, dτ ∈ Z.
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Then the equations (38-39) for an integer value N of bosonic states,
B = N and a minimal change step

−dF = dB = 1 (21)

transform to two identical relations

2N − 1 = NF − (N − 1)B (22)

−(2N − 1) = −NF + (N − 1)B (23)

(Ω = 1 for simplicity) with a strongly restricted discrete spectrum of admis-
sible solutions. E.g. for N = 8 the corresponding equation

8F − 7B = 15

is first satisfied by the couple of numbers

F = 8; B = 7.

The next solutions are

F = B = 15,

F = 22; B = 23,

F = 29; B = 31,

and so on.
It means, the discrete topology of the state space (21) forms an another

discrete structure of the ”space-time” represented by {F , B; τ}.
In framework of this statement, an existence of stable confined systems

could be explained simply by the only existence of discrete states with integer-
numbered bosonic and fermionic modes with a fixed number of bosonic states
N . Among the non-observable case

N = 1 : F = 1; B = 0,

we have further:
N = 2 : F = 2; B = 1,

N = 3 : F = 3; B = 2.

These discrete sets of states with a small fermionic number could be in-
terpreted, for example, as a two-quark meson confined by one gluon or a
three-quark baryon confined by two gluons.
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4 Discussions and Conclusions

In the present note, the basic principles of the entropy gradient maximization
(EGM) approach have been applied to derive a dynamics and dynamical
equations for statistical system on the quantum level like [13, 9]The EGM-
procedure was elaborated in previous applications [8] - [12] for systems of
continuous statistical degrees of freedom .

For a quantum system of identical units the occupation number was con-
sidered as the the appropriate degree of freedom.

Since the pure non-ergodic approach in the second order EGM formalism
describes only systems of non-interacting degrees of freedom , the additional
(ergodiciy) condition is needed to generate an interaction.

In a framework of the second order formalism, the interaction can be
induced simply by adding a common conservation law as a constraint.

The conservation of the total occupation number has been chosen to be a
conservation law generating the interaction in a pure bosonic system [9] and
in a fermionic and a mixed statistical systems as well. Some obvious physical
facts has been reproduced consistently:

The trivial result is, firstly, that a pure fermionic system cannot have a
proper dynamics. A dynamics appears due to interaction with an adjoined
bosonic system. Nevertheless the simple model with only one there conserva-
tion law still does not determine a local dynamics for single fermionic modes
but rather an evolution of an entire fermionic ensemble interacting with a
bosonic one. The dynamics of single bosonic degrees of freedom still remains
similar to that of pure bosonic system.

The next important conclusion is that the mixed boson-fermionic sys-
tem possesses an asymptotic stability and is therefore non- controversal to
describe the physical world. In particular it follows, that the statistically sta-
blest asymptotic state is the ”supersymmetric” state - the boson-fermionic
equilibrium.

Some further appropriate results of the model are among others:
- The scenario of an infinite ”bosonic bath” offers the option to consider

bounded fermionic systems (e.g. multi-electron state like an electron-shell
of an atom) as some stable states of multi-fermionic ensembles, interacting
with an infinite bosonic background (photons).

- The existence of stable discrete states for small fermionic numbers
bounded by small bosonic numbers allows for an interpretation of elementary
confined structures as algebraically discrete states for generically integer-
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valued degrees of freedom .
Finally, it is worth mentioning the remarkable issue of the resulting dy-

namics: only bosonic degrees of freedom reveal the local dynamics which is
able to produce expanding and propagating modes. This fact is in accordance
with the conventional interpretation of bosons as mediators of interactions
between fermionic states.

5 Outlooks

The further aims of the approach outlined above are to reproduce the struc-
ture of fundamental dynamical equations of matter: of Maxwell type for
massless vector bosonic, of Dirac type for massive fermionic and of Schrödinger
/ Klein-Gordon type for massive scalar fields.

This would mean, that the physics of quantum world can be reformulated
taking the arbitrary high-dimensional space of statistical degrees of freedom
for a basis. It’s worth remarking, in this regard, there is still no geometric
(configuration) space in this approach.

It would be expected, that the structure of the physically observable
space arises as a low-dimensional reduction of higher level on the primary
high- dimensional space of statistical degrees of freedom .

A Mathematical Supplement

A.1 Partial derivatives of entropy

The statistical weight of the state vector of occupation numbers ni is given
combinatorially by

Wni =
(n1 + n2 + ...+ nN)!

n1!n2!...nN !
=

(
N∑

i=−N
ni

)
!

N∏
i=−N

ni!

(24)

and the related additive entropy is the logarithm of W - the discrete bosonic
entropy :

S[ni] = lnWni = ln

(
N∑

i=−N

ni

)
!−

N∑
i=−N

lnni! (25)
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In the continuum limit at very large numbers ni factorials are replaced
by Gamma-functions:

S[n(i)] = lnWn(i) = ln Γ

[
N∑

i=−N

n(i)

]
−

N∑
i=−N

ln Γ[n(i)] (26)

For the both cases (25 - 26) one obtains for partial derivatives (Sec. Ap-
pendix):

Sni =
∑
i

ni − ni; Snink = 1;Snini = 0

By using the continuation of

d

dn
n! = lim

n→∞

(n+ 1)!− n!

1
= n!n

we can generalize this result for Gamma-function as

d

dn
Γ(n) = nΓ(n),

and
d

dn
lnn! = n,

d

dn
ln Γ(n) = n.

Then we obtain for a bosonic case ni = bi:

∂

∂bk
S[b(i)] =

∂

∂bk

{
ln Γ

[
B∑
i=0

b(i)

]
−

B∑
i=

ln Γ[n(i)]

}
=

B∑
i=0

b(i)− b(k) (27)

and

S[b(i)]bkbk =
∂2

∂bk∂bk

[
B∑
k=0

b(k)− b(i) = 0

]
; (28)

S[b(i)]bkbl =
∂2

∂bk∂bl

[
B∑
k=0

b(k)− b(i) = 1

]
, k 6= l, (29)

finally rewritten for further usage as:

Sbj =
B∑
i=0

bi − bj = B − bj; Sbjbk =

{
0, j = k,
1, j 6= k

}
= 1− δjk. (30)
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In a fermionic case ni = fα, obeying

fα = {0 or 1}; fα! = 1, (31)

the same formulas (24 25 26) are used. The denominator in (24) disappears
due to (31),

Wfα = (f1 + f2 + ...+ fF )! =

(
F∑
α=0

fα

)
!, (32)

and the corresponding entropy reads

S[fα] = ln

[(
F∑
α=0

fα

)
!

]
. (33)

Applying the formulas for partial derivatives of entropy (27,29) provides:

Sfβ =
F∑
α=0

= F ; Sfαfβ = 1. (34)

A.2 Maximization of the entropy variation

The maximization of (6) with the additional condition (7), adjoined by the
Lagrange multiplier λ

δλS[bi, fα, τ ] = δS[bi, fα, τ ] + λ

(
F∑
α=1

dfα +
B∑
i=1

dbα

)
results in two conditions of extrema

F∑
i=1

dfiSbibkdbi + Sbk + λ = 0,

F∑
α=1

Sfαfβdfα + Sfβ + λ = 0.

A summation over the total number of degrees of freedom with partial deriva-
tives of S substituted by (30 - 34) provides after the primer performance:

B − bj +
∑
k

dbk − dbj + λ = 0

F +
∑
α

dfα + λ = 0. (35)
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The latter can be rewritten in terms of bk by means of (7) as

F −
∑
k

dbk + λ = 0

The elimination of λ (by subtraction of equations from each other),

B − F − bj + 2
∑
k

dbk − dbj = 0

and the repeated summation over bosonic degrees of freedom j

B(B − F)− B + 2B
∑
k

dbk −
∑
j

dbj

results after a suitable simplification in∑
k

dbk =
BF − B(B − 1)

2B − 1
,

dbj = B − F − bj + 2
∑
k

dbk = B − F − bj + 2
BF − B(B − 1)

2B − 1
.

Together with

dτ = − Sτ
Sττ

:= Ω(τ) (36)

for the discoupled time reference, we arrive at the dynamic equation for single
bosonic DoF’s bj:

ḃj =
dbj
dτ

= −Sττ
Sτ

(
B + F
2B − 1

− bj
)

=
1

Ω

(
T

2B − 1
− bj

)
(37)

Furthermore, with summing over all bosonic modes bj again, we obtain the
equation for the entire bosonic ensemble B

Ḃ :=
dB
dτ

=
1

Ω

(
B

2B − 1
T − B

)
(38)

For fermionic degrees of freedom the formalism provides no dynamics for
single fermionic modes dfα, since differentials dfα in (35) appear only as a
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sum over the ensemble. The only dynamics of the entire fermionic ensemble
can be obtained. Starting again with∑

α

dfα + F + λ = 0

B − bj −
∑
α

dfα − dbj + λ = 0

and proceeding in the same way as above for bosonic modes, we arrive finally
at

dF +
B

2B − 1
F +

1−B
2B − 1

B = 0

which produces together with (36) the dynamic equationfor the fermionic
ensemble F

Ḟ :=
dF
dτ

=
1

Ω

(
− B

2B − 1
F +

B − 1

2B − 1
B
)

(39)

The total balance of the ensemble

Ṫ =
d

dτ
(F + B) = 0

remains in accordance with (7).
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