Solution of Poincare’s vector-field problem

When a meromorphic vector field is given on the projective plane,
a complete holomorphic limit cycle, because it is a closed singular
submanifold of projective space, is defined by algebraic equations.
Also the meromorphic vector field is an algebraic object. Poincare
had asked, is there just an algebraic calculation leading from the
vector field to the defining equations of the solution, without the
mysterious intermediary of the dynamical system.

The answer is yes, that there is nothing more mysterious or wonder-
ful that happens when a complete holomorphic limit cycle is formed
than could have been defined using algebra.

Poincare’s problem may be a precursor of the recent efforts to create
a type of mathematical production line. In that case what he asked
for would have been just an algorithm starting with the vector field
to produce defining equations of the curve. Therefore the problem
is not solved unless one can bound the discrepancy at each singular
point independently of the choice of local analytic germ.

There will be no draft on arXiv due to the history of the arXiv server
at Los Alamos.



Rational relations between eigenvalues

At any singluar point p of the foliation, a generating vector field in a
neighourhood of that point induces an endomorphism of the vector
space m,,/ mf,, in this case a two-dimensional complex vector space.
The set of roots of the characteristic polynomial is an unordered

pair (A1, Ag2).

If Ay # Xy, we can write the system of differential equations in local
coordinates at p in the form
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where f(z,y) and g(x,y) are convergent power series with no term
of degree zero or one. If we were to look at just one term of f(z,y)
of lowest degree r say ex'y’ with i+ j = r, where e is just a complex
number, then we can consider for a different complex number ¢ the
function

T+ ca:iyj ,
and we can try to choose ¢ so that the coefficient of 2%y’ in

E(I + cx'y’) — M(x + ex'y’)

is zero. The coeflicient is
e+ c[(ih +jA2) — A
If
AL # 1A+ J A

then we can set e

(i = DA+ 5A
and in this way change coordinates to remove one of the terms of
the power series f.
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Textbooks use the term resonance to refer to a situation where there
exists any natural numbers i, j with \; = i\{+ A or Ay = 1A+ As.
If resonance does not occur, then it is possible in this way to change
coordinates formally such that the system of differential equations
corresponds to a linear system; moroever this change of coordinates
is in fact analytic [2],[3].

A second way that rational relations between A; and A\, arise is
if we consider the effect of a point blowup on the linear system
of differential equations above, with f(z,y) = g(x,y) = 0. There
results from each such singular point, a pair of singular points, with
unordered eigenvalue pairs (A, Ae — A1) and (A; — A2, A). If the
A; are rationally related we can take them both to be integers (by
replacing a local generating vector field of the foliation by an integer
multiple), and to be relatively prime if we like. If both are positive
and unequal, then of the new pairs one has entries of opposite sign,
and the other has entries both positive but with a smaller maximum
value.

The case of eigenvalues of opposite sign (a saddle) has only finitely
many local analytic germs, and if we by this process chase an infinite
set of analytic germs, we may ignore the new singular point created
at each step with eigenvalues of opposite sign, and the one which
we do not ignore has the eigenvalue pair affected by precisely the
Euclid algorithm for natural numbers, until they become equal. At
this point is where one sees the infinity of solutions of the system
of differential equations ‘fl—f = x; ‘;—gz = y, and at the next step the
singular point disappears, all the leaves through one point resolved
into leaves which cross disjoint points of an exceptional projective

line.



Finally, a third way that rational relations between the \; occur is
if we consider what we mean by an analytic germ of a solution. In
Comments about Hilbert’s 16°th problem I mentioned that it suffices
to solve the Poincare problem if we could find a bound over algebraic
solution germs. Now it turns out that a better class of solution germs
to restrict to, which is strictly larger than the algebraic ones, are the
analytic solution germs which are non-Zariski dense. If we consider
the system of differential equations above with f(x,y) = g(z,y) =0
and A1, Ay non-rationally related, then the general solution depend-
ing on choice of initial conditions is = AeMt,y = Be*? for A, B
constants, and yet this solution is analytically Zariski dense except
for a finite number of values of the ratio [A : B].



The Bendixson, Seidenbert, Dumortier, Camacho, Sad the-
ory

Next let’s explain how one encounters a part of the Bendixson, Sei-
denberg, Dumortier, Camacho, Cano, Sad theory. This had been a
difficulty which was difficult to overcome. If one has a singular foli-
ation of the plane, and a smooth plane curve C, one might wonder,
is it possible by blowing up iteratively singular points of the folia-
tion which are on the proper transform, to arrange that the proper
transform has a smoothly foliated neighbourhood? Here is why the
answer is no.

Start with a smooth curve which by analytic choice of coordinates
we can assume is the curve y=0 in the (z,y) plane.

Say that J is a derivation on the plane and d(x), é(y) are relatively
prime and in the maximal ideal of the analytic local ring at the
origin.

The total transform of the z axis in the coordinate charts (z/y,y)
and (z,y/z), in the first one it is just the exceptional divisor and
nothing else.

That is, the exceptional divisor in (z/y,y) coordinates is (z,y) =
(y($),y) = (y) and agrees with the total transform so the proper
transform is empty here, it does not intersect this chart.

So one only looks at (z,y/x) and looks at what happens to the
foliation.

The origin here is the image of the origin in the proper transform of
the = axis, and so for the purposes of considering a neighbourhood
of the proper transform one only is interested in again the maximal
ideal at the origin.

If you write originally 6(x) = P,d(y) = @, then here you get
d(z)=P

5(2) = (+Q — yP) /2"



and the fractional ideal class which controls singularity of the folia-
tion at the point with coordinates (x,y/x) is

(zQ — yP,2°P) = (2Q — x(%)P, 22 P)

Y
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Choose d as small as possible so P, Q were in (z,y)".

Each monomial 2% of lowest total degree so a + b = d gets written

just as Hironaka often mentioned in his paper.
This means that ) and P here are now, viewed as

Oz, (%).x) and P(z, (%)w)

both divisible by x¢, and we can divide through.
Now assume that d does not decrease upon this blowing up.

Since the total degree of P has gone down by d, in the ideal displayed
in equation (1), it must be that the only degree d monomials in P
had been zy?~! and y¢ and none others.

For example if P included the monomial 22y?~2 then the second
entry x P of the fractional ideal above would be

)
P (£
vP(r (D))
which would contain the monomial

$.$2.$

d72.(y )d72
T

and when we divided by 2 we would have
Yya-2
w2

which only has degree d — 1 in coordinates (z, £).



So that we have that the original P is of the form
azy® ' +by? + terms of total degree larger than d

for some complex numbers a, b.

Likewise the first entry of (1)
Y
—p
Q-

if it is to belong to m? for m the maximal ideal of the point of the
blowup, we have to think that in each term, rewriting a monomal
2%® of total degree d
a+b Y \b d/Y\b
x(5) = 2=
Ly =Y

and then dividing by z? had the effect of replacing # by 1 and
replacing y by Z.

We already saw that the lowest degree monomials in P are zy?!
and y?. These become (%)d_1 and (%)d and when we multiply by
(£) here we get the lowest possible total degree monomal being (£)
itself.

This means that the only way the total degree can stay equal to d is
if ) itslelf has only one monomial of degree d, that is y¢ and nothing
else.

So now we can go back to the beginning and put in as extra hy-
potheses that

P(z,y) = ax® 'y + by® + higher order

Q(z,y) = cy® + higher order
Now, of these higher order parts, at least one of them must contain

a monomial that is merely a power of x.

Otherwise P and ) would have a common factor and we could have
divided out without affecting the foliation.



Now the smallest monomial in the highest order terms that is just
a power of z, when we divide by ¢ and repeat this process, that
degree goes down.

This will eventually be smaller than d and we see that d is decreased
unless d = 1. Then it is possible that x itself occurs as one of the
monomials of P, and the process is not guaranteed to decrease d any
further.

In fact we see examples of this when we just take
o(y) = ay, 6(z) = bz
for a, b constants. We have

sEy=-a)

T i

(the number b-a is a difference of two logarithmic derivatives).

The value of d has not gone down since the minimum degree of

bz, (b—a)(¥) in coordinates (z, ¥) is still equal to one.



The case of nonzero linear part

Once the subdegree of P, () is equal to one, if the point p coordina-
tized by x = y = 0 is a fixed point of the vector field, then when we
return to our equations

é(z)=P
5(2) = (¢Q — yP) /2"

we see that the point on the exceptional divisor where (z, %) = (0,0)
is a fixed point if and only if the degree two part of xQ) — yP is a
polynomial multiple of xy. (We can change the choice of point on
the exceptional divisor by replacing y by a linear form ax + y). The
principal multple of (1) which is relevant is its multiple by ™!, and
this is the multiple which occurs if we merely use the lifted vector
field as a generating vector field of the foliation.

That is to say, the lifted vector field is not zero on the whole excep-
tional projective line, and it is not necessary to make a change in
the generating vector field of the foliation.

It follows then that once the action fixes a point p and acts by a
nonzero linear transformation on m,,/ mf), then once the vector field
is lifted to the blowup of p, and a fixed point ¢ on the exceptional
divisor is chosen which is fixed by the lifted vector field, the linear
transformation of m,/ mg that results depends only on the original
linear transformation of m,/ mf,. It can be calculated by replacing
the vector field with a linear vector field.



Note on the coordinate-free approach

In ‘on resolving vector fields’ I mentioned (and that this would be
true also on a singular variety, and for foliations of any dimension)
that we can describe the singularities of the lifted foliation using first
principal parts. In this case, starting with p the origin in the plane,
we consider two coherent sheaves, both invertible after blowing up
m = m, and both generated by global sections; these are (z,y) and
the pullback modulo torsion of the second exterior power of the first
principal parts of m which is

(z,y)*(6(x),8(y)) + (x6(y) — yd(x))
= (2%0(x), 2%0(y), 2yd(x), zyd(y), y*0(x), y*6(y), 26 (y) — yd(x)).
The difference (ratio)
(z,y) " (26(x),2*6(y), zyd (), zyd (y), y*0(x), y*6(y), 6 (y) — yd(x))

with e taken as large as possible so that the sheaf of fractional ideals
is an actual ideal sheaf (contained in the structure sheaf) is the
defining ideal sheaf of the singular subscheme of the lifted foliation.
The difference (ratio) is not in general generated by global sections.
This all remains true in the analytic setting.

In the main case under consideration here, where (§(z),d(y)) =
(x,y), we have e = 2 and the ideal sheaf is

(z,y) + (z,y) *(xd(y) — yd(x)).

When z6(y) —yd(x) describes a pair of arcs meeting at the origin be-
fore blowing up, the ideal sheaf above describes the two points where
the exceptional divisor (defined by the ideal sheaf (z,y)) meets with
the union of the proper transform of these arcs.
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The Euclid algorithm

Now that we’ve seen the three ways rational ratios of eigenvalues
arise in the subject, and the reduction to the linear case, let’s look
back at the Euclid algorithm. A previous section shows that when
the linear transformation of m,,/ mg is not identically zero, the vector
field acts in a neighbourhood of the exceptional divisor associated to
p by a flow with isolated fixed points and no pole. This means that
the lifted vector field remains a generating vector field of the folia-
tion. That is, the action on m,/ mg for ¢ a fixed point on the excep-
tional divisor mapping to p depends only on the action on m,/ mf,,
and is independent of the terms in any power series expansion of
the vector field coefficient besides the linear terms. The action on
my /mg is the same as if power series representations of P,() had
been replaced by their linear parts before blowing up. Another way
of saying this is that since the coefficients of % and a% cannot de-
velop a common divisor in passing from coordinates such as (x,y)
to coordinates such as (z,y/x), the effect on nonlinear monomials in
the coefficients of a generating vector field of the foliation a substitu-
tion to increase the degree, and nonlinear monomials never become
linear. If the eigenvalues are rationally related and the generating
vector field is chosen to make them integers, the ideal in the ring of
integers generated by the eigenvalues is unaffected by passage from

p to gq.

Once we arrive at A, Ay not both zero for every singular point, by
point blow-ups, if [\ : Ag] is not rational, it is not resonant and we
can linearize; of the infinity of analytic solution germs only finitely
many are non-Zariski-dense.

In the case when the Jordan form of the action on m,/ m}% is not the
semisimple type, there can only be finitely many solutions.

The remaining three cases are those described in Ilyashenko and
Yakovenko’s book [2] as resonant saddle, resonant node, and res-
onant saddle-node. For the resonant saddle, it is still true, as for
any saddle, that it does not have infinitely many analytic solution
germs.
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Although we cannot always linearize the remaining two cases, Sei-
denberg’s argument [1] in both cases amounts to observing, as we’ve
observed above the independence of the linear terms from the non-
linear terms. That is, the action on m,/ mg for ¢ a fixed point on
the exceptional divisor mapping to p depends only on the action on
my/ mf), and is independent of the terms in any power series expan-
sion of the vector field coefficient besides the linear terms.

In both the remaining two cases of A, Ao both positive integers
(which includes the resonant node case), and the case of (1,0), the
saddle-node case the eigenvalue pair is affected by Euclid’s algorithm
just the same as happens as for the linear case; point blowups reduce
to a single case with infinitely many analytic germs, the case of (1, 1).

Note that one further point blow-up desingularizes the vector field
and each leaf through the origin becomes a leaf meeting the excep-
tional divisor at one point.
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Preliminary idea of the proof

Let me first give a preliminary idea of the proof, which is not quite
what we will use. It is to consider a pretend case when we can use
a transverse arc to ‘capture’ analytic arcs.

What I would mean by ’capturing’ arcs is to construct using a an
analytic arc B (isomorphic to C) an analytic parametrization of all
but finitely many of the analytic solution germs in a neighbourhood
U of a singular point. Assuming that each leaf in U meets B at no
more than one point, one can consider the hypersurface

HcBxU

which is the set of pairs consisting of a point b of the arc B together
with a point x € U which belongs to the leaf in U which meets B.

One can embed H in the algebraic variety which results by blowing
up a suitable ideal sheaf supported on the singular point of the
foliation. It is a singular, in general non-normal surface, but one in
which the lifted leaves are all disjoint, and the singular point has
been blown up to a compactification of the parameter space which
is an irreducible component of the one-dimensional singular locus of
the non-normal surface.

Instead of performing an equivariant divisorial simplification of each
analytic solution germ separately one can begin with by blowing up
B x U along the singular locus of the non-normal surface H, that is,
the closure of the parameter space B, and then perform a divisorial
simplification by blowing up curves where propEr\PLansform of H is

non-normal-crossing to arrive at a proper map B X U — B x U such
that the inverse image of H is a divisor with a discrete and therefore
finite non-normal-crossing locus. For each curve which is blown up,
letting 7 : C' — B be the map to the parameter space, the support
on B of the cokernel of 7*Qp — (¢ is also a finite set. By deleting
from B both finite sets, the remaining points of B parametrize arcs
for which the discrepancy coefficient of each exceptional component

of B x U — B agrees with the corresponding discrepancy coefficient
of the induced divisorial simplification of the arc itself. Therefore
by calculating these, and also directly the ones for the finitely many
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omitted leaves, one finds the upper bound for the number m; in
Comments about Hilbert’s 16°th problem for the ¢’th singular point,
and if d is the degree of poles minus zeroes of a chosen vector field
which induces the foliation, then all complete holomorphic limit
cycles of degree larger than

s

1 3
- 4§ D — 2 2
5 9+ (m; )(m; )+d—|—2

i=1
are found by rational integration.

We see that if this is to work, the compactification of B can only be
a Riemann sphere. For, the non-normal hypersurface H admits a
locally projective map to the smooth surface U, and therefore must
be dominated by a result of a sequence of point blowups starting
from U. Then the exceptional locus of H — U is dominated by a
disjoint union of projective lines and must itself be a projective line
by Luroth’s theorem.
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The actual proof.

What we will do is almost the same as the idea above, but we
actually will arrange that H is normal, and the transverse arc which
we’ll use is not actually going to be an arc in P2, but rather in
a partial resolution. We can assume that we begin with either a
resonant node or a resonant saddle-node. Then the partial resolution
of Seidenberg’s paper in either case (either theorem 8b (bis) or 10b
(bis) ) gives an exceptional divisor including one copy of P! which
meets all but finitely many of the arc germs which originally pass
through the singular point, now consisting of arcs.

One of the arcs meeting this P! may be exceptional, and not actu-
ally correspond to an arc in the projective plane. If we delete the
intersection point, the remaining portion of the Riemann sphere is
a copy of C in the partial resolution. The whole of this copy of C
maps to the one singular point we are considering in P2, all the arcs
meeting this copy of C map to embedded arcs in P? and correspond
to all but finitely many of the solution germs through the singular
point.

We choose a small neighbourhood U of our singular point, and define
H to be the variety consisting of a point of U together with a point
of P!. This is taken to be the intersection point with C C P! if the
lifted leaf meets a point of C and otherwise the point at infinity.
Thus H is a hypersurface in P! x U and we perform the divisorial
simplification as we described earlier, blowing up first within P! x U
the reduced structure of P! x p for p our singuar point, and then
successively blowing up any any choice of curve along which the

total transform of H in P! x U is generically non-normal-crossing,
until no such curves remain.
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The infinity of solution germs described by the divisorial simplifica-
tion share a finite number of discrepancy coefficients (those which
arise during the divisorial simplification), and the finite number of
omitted non-Zariski dense analytic solution germs give rise to a fur-
ther finite set of discrepancy coefficients. All entire holomorphic
limit cycles whose degree then exceeds the bound above can be
found by rational integration and according to Poincare may be
ignored. The remainder belong to an algebraic family of curves of
known bounded degree and the condition of which are solutions of
the system of differential equations is again also then algebraic.
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