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Analytic primality testing (1)

Analytic primality testing.

This paper is really an attempt to learn basic analytic number the-
ory. The thing we might want to do is clarify how the passage from
a small set of modular forms with a lot of invariance to a larger set
with less invariance is purely algebraic. For simplicity the weights
which are considered are really what are usually called the even
weights, and the levels all above 2 (but not requring congruence
subgroups). This is done in sections 1 through 7.

The last section begins to apply such considerations to primality
testing. It is really the elliptic modularity that is used in the last
section, which isn’t discussed in the earlier sections, so the two sec-
tions of this paper are currently unrelated and it should be viewed
as only a working draft of a possible longer paper.

1. Modular forms

The subject of modular forms is old and has been generaliized in
many directions. Therefore it is likely that the theorems which I’ll
state in this section are known already, and may represent a point
of view only.

We’ll follow Dolgachev’s convention of gradings, so the space Mk of
modular forms of weight k will be holomorphic entire functions H→
C satisfying f((az+ b)/(cz+ d)) = (cz+ d)2kf(z) when ad− bc = 1
and on H which are holomorphic at the cusps; and we will not
consider the case when k is a half-integer (although we could do so).

I should also comment, this draft likely has many errors and has not
been checked.

John Atwell Moody
Coventry, July 2015
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If the rule above holds only for matrices

(
a b
c d

)
belonging to a

finite index subgroup Γ ⊂ PSl2(Z) one says that f is ‘modular
of level Γ’, which is weaker than being modular. For each such
group Γ, from the ring ⊕∞k=0Mk(Γ), where Mk(Γ) is the space of
modular forms of weight k and level Γ, the ‘Proj construction’ builds
a compactification X(Γ) of the orbit space Γ \H. That is, if f, g ∈
Mk(Γ) have the same degree, this means that the modularity will
cancel when one considers the rational function f/g; it is a well-
defined function the part of H where g is not zero, and it is invariant
so defines a rational function on a variety which is a compactification
of Γ \H.

The modular forms are much more interesting than the algebraic
curve which results from this process of compactification; and athough
there exist theorems of algebraic geometry (such as Riemann-Roch)
which can actually construct the rational functions; the issue is,
to what extent can one go all the way back, and re-introduce the
modularity factor which had cancelled when one had passed to the
rational function f/g.

I’ll state theorems in the desired direction in this section; it is tempt-
ing to call them propositions as from the standpoint of algebraic ge-
ometry the proofs are trivial, involving no more than observations
once one brings the definitions into the more general setting.
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We’ll begin with the modular curve Γ(2) \H, it is isomorphic to the
complement of C = {0, 1,∞} in P1 ∼= X(2) = X(Γ(2)). Consider
the category of compact connected Riemann surfaces Y over X(2)
where the structure map fY : Y → X(2) is nonconstant and un-
branched away from C. Let MY denote the locally free invertible
sheaf ΩY (log f−1(C)) on Y . Then

1. Theorem. For g : Y → Z in our category (of curves over X(2))
there is a natural isomorphism

g∗MZ →MY .

Proof. This is an easy fact relating logarithmic derivatives with
branched covers; the analagous theorem is also true in higher di-
mensions. Let Mk(Y ) =M⊗k

Y .

2. Theorem. For each Y, letting ΓY ⊂ Γ(2) be the Galois funda-
mental group of Y \ f−1

Y (C), Γ(Y,MkY ) is naturally isomorphic to
the space Mk of modular forms of weight k and level Γ.

Proof. It is certainly well-known that holomorphicity at cusps on
H is equivalent to having at most simple poles at the cusp points
of the compactification. Then it remains to observe that in the
one-dimensional case logarithmic poles are no different than simple
poles.

Let ω0 and ω1 be a basis of the vector spaceM1(2) = Γ(X(2),M1(X(2))).
These are two meromorphic one-forms on P1 with no worse than
simple poles at the three points of C.

3. Theorem. For each Y and any k there is a sequence natural in
Y

0→Mk(Y )→Mk+1(Y )ω0 ⊕Mk+1(Y )ω1 →Mk+2(Y )→ 0.

Proof. This follows from the earlier theorems since it is true for
X(2). Here we could omit the symbols ω0 and ω1 and it would not
change the truth of the statement, however with them in place we
are allowed to interpret Mk+1ωi as two subsheaves of Mk+2 for
i = 0, 1



Analytic primality testing (1)

4. Corollary. For all Y over X(2) and all k the coherent sheaf
Mk(Y ) is generated by global sections belonging to the vector space
Mk(2). In turn these have basis merely the degree k monomials in
ω0 and ω1.

The corollary in principle actually answers the question which we
stated at the beginning: how to reconstruct the modular forms from
rational functions, when in the passage to rational functions the
modularity coefficient has cancelled to 1? The issue is that the
modularity coefficient always comes from that of the invariant dif-
ferential forms ω0, and ω1. These are modular for the entire group
Γ(2). The issue then is the loss of modularity, and this is due to the
fact that during the process of sheafification one multiplies ω0 and
ω1 by functions which are invariant only for the smaller group ΓY .

In other words, the logarithmic forms which are invariant for vari-
ous subgroups Γ actually come from the two logarithmic forms which
are completely invariant for the whole of Γ(2), but in the process of
sheafification one considers linear combinations in which the coeffi-
cients have of course trivial modularity multiplier (they are invari-
ant), but only invariant for the subgroup, not for the whole group.

Before we make this more explicit, let’s consider the consequence for
generating degrees of Kodaira vanishing, or, what may be simpler
merely Serre duality. From the exact sequences we’ve considered,
we obtain passing to global sections, and taking Γ = ΓY ,

0→M0(Γ)→M1(Γ)ω0 ⊕M1(Γ)ω1 →M2(Γ)→ H1(Y,OY )→ 0

0→Mk(Γ)→Mk+1(Γ)ω0 ⊕Mk+1(Γ)ω1 →Mk+2(Γ)→ 0, k ≥ 1

Then for g = genus(Y )

5. Lemma. For each Γ = ΓY ⊂ Γ(2), let x1, .., xα ∈M1 span a com-
plement of the span of ω0, ω1. Then the ring ⊕kMk(Γ) is generated as
M(2) module by x1, ..., xα together with elements y1, ..., yg ∈M2(Γ).
The vector-space relations in M2 are that the two subspaces M1ω0

and M1ω1 intersect in a one dimensional subspace of M2. Likewise
for all k > 2 the vector space relations are that Mk−1ω0 and Mk−2ω1

intersect along a subspace of Mk which is isomorphic to Mk−2.
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Proof. The fact that the sequences are exact for k ≥ 1 follows from
vanishing of H1(Y,ΩY (log f−1

y C)⊗i) for i ≥ 1. The degree of the

relevant divisor is −(i − 1)(2g − 2) − i degree(f−1
Y C). If g > 0 the

first term is not positive and the second term negative. If g = 0 the
second (negative) term dominates the first.

We will calculate α in a minute, and also show that these vetctor
space relations are the Koszul tautologies in a free module, so the
union

{1} ∪ {xj : j = 1, ..., .α} ∪ {yk k = 1, ..., g}
together comprise a free basis for M(Γ) as M(2) module. A bit later
we’ll describe the ring structure.

Since the calculation is similar to what is known as Max Noether’s
construction of generators for a canonical ring, relying on vanishing
theorems, while vanishing theorems for logarithmic differentials in
fact of every exterior degree are also well-known, the calculation
above should be viewed as an application of standard methods.

It is already included in most textbooks that the dimension of the
Mk(Γ) can be calculated by Riemann-Roch. Here we are includ-
ing something about the relations using the ideas that lead into
Riemann-Roch. We can double-check the dimensions by writing,
just when Γ ⊂ Γ(2), that if we write mk = dim(Mk(Γ)) we have

m2 = 2m1 + g − 1

m3 = 2m2 −m1 = 3m1 + 2(g − 1)

m4 = 2m3 −m2 = 4m1 + 3(g − 1)

...

mk = km1 + (k − 1)(g − 1).

This is consistent with mk = k[Γ(2) : Γ]+1−g from Riemann-Roch
if we take m1 = [Γ(2) : Γ] + 1− g.
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The number and degrees of the generators of Mk(Γ) as a free module
over Mk(Γ(2)) follow from these. (They could also be deduced just
from Riemann-Roch and suitable vanishing on Y a now that we
know that there are module generators in just three degrees but let
us proceed more directly.) Letting α, β be the number of module
generators of degree 1 and 2 we have

dimMk(Γ) = k[Γ(2) : Γ] + 1− g

= (k + 1) + αk + β(k − 1)

from which
[Γ(2) : Γ] = 1 + α + β

1− g = 1− β.
Then the genus g is exactly equal to the number of module gen-
erators of degree 2, and α = [Γ(2) : Γ] − 1 − g. Let us state this,

6. Corollary. For Γ ⊂ Γ(2) the ring M(Γ) of modular forms of
level Γ is a free module over M(2) with number of generators in
each degree as follows:

degree 0: 1
degree 1: [Γ(2) : Γ]− (g + 1)
degree 2: g = genus(Y )
degree ≥ 3: 0
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2. Relation with Hodge theory, Galois theory, Poincare
duality

The generators y1, ..., yg are a basis of M2(Y ) modulo its intersec-
tion with the M(2) module spanned by M0(Y ) ⊕M1(Y ) and this
g dimensional vector space is naturally isomorphic to H0,1(Y,C) =
H1(Y,OY ). This is also the ‘anti-holomorphic part’ of H1(Y,C).

The dual vector space, under the cup product pairing, is the sub-
space of M1 consisting of the holomorphic one-forms on Y, naturally
isomorphic to the holomorphic part H1,0(Y,C). We can choose our
basis x1, ..., xα (which comprise a basis of M1(Y ) modulo its intersec-
tion with the M(2) span of 1) so that the initial sequence x1, ..., xg
comprises a dual basis of y1, ..., yg. under the cup product pairing in
H1(Y,C). Then by degree by degree we have as M(2) module

M(Y ) ∼= M(2)⊗C (C⊕ C[Γ(2):Γ)]−2g−1 ⊕H1,0(Y,C)⊕H0,1(Y,C))

where the first term C has degree zero and the last H1,0(Y,C) has
degree two.

In the case Γ ⊂ Γ(2) is normal, letting G be the quotient group, we
can define finite-dimensional CG modules

A = C

with trivial G action,

B = Kernel(Ccusps(Y ) → Ccusps(X(2)))⊕H1,0(Y,C),

with action induced by the Galois action on cusps in the first sum-
mand and by the Galois action on the holomorphic part of H1(G,C)
in the second summand, and

C = H0,1(Y,C)

with the Galois action on the antiholomorphic part of cohomology.
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It seems clear (proof not yet written down)

7. Theorem. (fY )∗(OY ) ∼= O(0)⊗A⊕O(−1)⊗B ⊕O(−2)⊗C
as coherent sheaf of CG modules on X(2) = P1.

Also

8. Theorem. There is an equivariant pairing coming from Poincare
duality

fY ∗OY ⊗ fY ∗OY → O(−3)

which induces the perfect pairing between H1,0 and H0,1
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4. Analytic description, first notions

The analytic construction of new generators in M1(Γ) and M2(Γ) as
we mentioned, does not require finding new diferential forms with
more interesting transformation rules than ω0 and ω1. Even the vari-
ous cohomology connecting maps really formalize something elemen-
tary. On the projective line X(2) interpret ω0 and ω1 as sections of
a line bundle; there is one point where each meets the zero section,
and these points are distinct, as the line bundle is isomorphic to the
one whose section sheaf is O(1). Then the sheaf M1 on Y also has
two sections, each with vanishing locus only the inverse image of the
corresponding point of X(2). The complements of the two inverse
images form an open cover of Y and on each part of the open cover
the sheaf M1 restricts to a principal sheaf. The global logarithmic
one forms which are invariant for the subgroup Γ can be calculated
without using any group theory, they are rational sections in any
case and therefore comprise intersection of the rational sections of
the two principal sheaves without poles on the open parts.

In fact the same works for any Mk, although it is needed only for
M1 and M2. It is a matter of repeating what has been said in the
previous paragraph using tensor powers ω⊗k0 and ω⊗k1 in place of ω0

and ω1.

Here is how it will work in a little more detail: The basic elements
ω0, ω1 ∈ M1(Y ) are playing the role of homogeneous coordinates
and also playing the role of forms. From an expression of degree k,
if you divide by ωk0 as a coordinate and multiply by ωk0 as a form,
this factorizes an element Mk(Y ) as a rational function of degree
zero times a form of degree k. It appears at first like it might not
be well defined where the denominator is zero, but you can also do
the same with ω1. The only issue is whether the zero locus intersect.
This can happen in other situations, like in variables [a : b : c] for
the projective plane, a and b are both zero at [0 : 0 : 1]. This is
what is ruled out by Theorem 3, or anyway just by the fact that
[ω0 : ω1] is always well defined.
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The basis of M(Y ) has in total 1 + α + g = [Γ(2) : Γ] elements
(as many as the covering degree), and so a modular form for Γ is
uniquely determined by that many homogeneous polynomials in two
variables (but of degrees k, k − 1, k − 2).

In turn, the patching construction expresses each of these in terms
of the two basic theta functions. Just ordinary multiplication by
a rational function actually does something like the averaging that
happens in Eisenstein series or theta characteristics. Since that
works for every modular function it must be the most general con-
struction.

To finally summarize what is the main lesson: that in constructing
all the modular forms, it is never necessary to use any logarithmic
forms except the original ω0 and ω1 which have invariance for the
whole of Γ(2). And the patching uses coefficient functions invariant
for the smaller group Γ; in the process some invariance is lost. But it
is never necessary to find in any other way, logarithmic forms which
have any interesting transformation group, or are invariant by any
but the largest finite index subgroup of Γ(2). We will describe the
patching explicitly in section 6.

Also note that if one applying these theorems in families of curves,
the initial Theorem 1 will be nearly unchanged, and one will use that
the restrictin of logarithmic differentials along a transverse slice are
logarithmic differentials of lower dimension.

We’ll give an explicit proof of this later:

9. Theorem Let λ denote the usual holomorphic λ function H →
C. Every modular form of any weight k and any level has two expres-
sions, one as an algebraic function of λ(τ) times a power of θ(0, τ)4

and one as an algebraic function of λ(τ) times a power of θ(1
2
, τ)4.

At every point of the modular curve one or the other of the alge-
braic functions is holomorphic; therefore the order of poles of the
corresponding one-forms on the modular curve do not exceed those
of dτ⊗k itself (which has a pole of order k at each cusp).



Analytic primality testing (1)

5. Remarks about cohomology of the Mi(Y )

Let’s explain a little more about the cohomology before proceeding
on. Since RifY ∗ = 0 for i ≥ 1 we may calculate for i, k

H i(Y,Mk(Y )) = H i(X(2), fY ∗Mk).

From the previous results for g = genus(Y )

fY ∗Mk(Y ) ∼= O(k)⊕O(k − 1)⊕α ⊕O(k − 2)⊕g.

with α as before, and therefore for k = 0, 1, 2, ...

dimH0(Y,Mk(Y )) = 1, 2 + α, 3 + 2α + g, 4 + 3α + 2g, ...

while
dimH1(Y,Mk) = g, 0, 0, ...

the latter also makes sense for k = −1,−2,−3, ... giving 2g+α, 3g+
2α + 1, 4g + 3α + 2, ....

The direct sum ⊕∞k=0Mk(Y ) is the pushforward to Y of the sheaf of
functions on the quasiprojective surface L which is the dual line bun-

dle ̂ΩY (log f−1C). We may assemble together the exact sequences
we were considering earlier to a single exact sequence

0→ OL(2Y )→ OL(Y )ω0 ⊕OL(Y )ω1 → OL → 0.

The reason we are allowing poles of degree 2, 1, 0 on Y becomes clear
if we push the sheaves down to X(2) to examine them. Writing the
degrees k = 2, 1, 0 in vertical order on the page

0 →

 O(0)
⊕ O(−1)⊕α
⊕ O(−2)⊕g

 →

 O(1)
⊕ O(0)⊕α
⊕ O(−1)⊕g

ω0 ⊕

 O(1)
⊕ O(0)⊕α
⊕ O(−1)⊕g

ω1 →

 O(2)
⊕ O(1)⊕α
⊕ O(0)⊕g

 → 0

0 →

 O(−1)
⊕ O(−2)⊕α
⊕ O(−3)⊕g

 →

 O(0)
⊕ O(−1)⊕α
⊕ O(−2)⊕g

ω0 ⊕

 O(0)
⊕ O(−1)⊕α
⊕ O(−2)⊕g

ω1 →

 O(1)
⊕ O(0)⊕α
⊕ O(−1)⊕g

 → 0

0 →

 O(−2)
⊕ O(−3)⊕α
⊕ O(−4)⊕g

 →

 O(−1)
⊕ O(−2)⊕α
⊕ O(−3)⊕g

ω0 ⊕

 O(−1)
⊕ O(−2)⊕α
⊕ O(−3)⊕g

ω1 →

 O(0)
⊕ O(−1)⊕α
⊕ O(−2)⊕g

 → 0

Each column is a pushdown from L to Y and each pair of parentheses
contains a pushdown from Y to X(2). The fact that allowed poles
have order 2,1,0 on Y reading left to right creates zeroes on X(2)
of the same order once the sheaves are pushed forward. The g
dimensional cokernel in the top row comes from H1(X(2),O(−2)⊕g)
on the left side.
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The cokernel of the right map after taking global sections is a finite
dimensional graded algebra with basis 1, x1, ..., xα, y1, ..., yg which
results when a term O(i) with i ≥ 0 in the right column sits next
to a term O(i) with i < 0, and otherwise the sequences are exact.
The algebra M(Y ) is a flat deformation over M(2) of this finite
dimensional algebra over C.
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6. Analytic continuation from ring identities

In this section we’ll show in detail how to represent each element
of Mk(Y ) as an analytic function H → C using patching, assuming
two things: that the structure of M(Y ) as a ring is known and
that once the coefficients of a polynomial in one variable are known
analytically so are the roots.

Abstractly, for Y = X(Γ) and Γ ⊂ Γ(2), once we take the numbers

α = [Γ(2) : Γ]− (g + 1),

g = genus(Y ),

then any sequence

c0; d1, ..., dα; h1, ..., hg

consisting of polynomials in two variables u0, u1, with

degree(c0) = k

degree(di) = k − 1

degree(hi) = k − 2,

determines, bi-uniquely, an element f of Mk(Y ) which is given

f = c0 + d1x1 + ...+ dαxα + h1y1 + ...+ ygyg,

upon replacing u0, u1 by ω0, ω1. Here 1, x1, ..., xα, y1, ..., yg is the
M(2)-module basis of M(Y ).

Let’s explain how the sequence of polynomials now creates an actual
entire holomorphic function

H→ C

which satisfies the modular identity of weight k and level Γ.

As Γ(2)-invariant forms on the upper half plane, our ω0 and ω1 may
be taken to be

ω0 = θ(0, τ)4dτ

ω1 = θ(
1

2
, τ)4dτ
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The quotient ω1

ω0
is a Γ(2) invariant holomorphic function H → C

which equals1 1− λ(τ), with λ the holomorphic λ function H→ C.
Thus it descends to a meromorphic function on X(2). This amounts
to an isomorphism X(2) → P1. If P1 is considered to have homo-
geneous coordinates [u0 : u1] we may identify this with [ω0 : ω1].

Here is a drawing of λ(τ) = 1− θ(1/2,τ)4

θ(0,τ)4

11 =
eiπτ θ(τ/2,τ)4

θ(0,τ)4
+
θ(1/2,τ)4

θ(0,τ)4
= λ(τ) +

θ(1/2,τ)4

θ(0,τ)4
by Jacobi’s sum formula
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For clarity, let’s use the letters u0, u1 when we are speaking about the
ring M(2) algebraically, so we write M(2) = C[u0, u1] a polynomial
algebra.

Theorem 3 shows that the internal sum

M0(Y )ω0 +M0(Y )ω1 (2)

is locally free. Note that M0(Y ) is the structure sheaf of Y , and it
follows that u0, u1 span the locally free (in fact ample) sheafM1(Y )
of rank one.

Another way of thinking about this is just to say that the ratio [ω0 :
ω1] is well-defined at all points of Y. That is, the inclusion M(2) ⊂
M(Y ) is unlike the inclusion C[u, v] ⊂ C[u, v, w] representing a
rational map P2− → P1 indeterminate at [0 : 0 : 1]. Let

r0 =
f

uk0
∈M(Y )[1/u0]

r1 =
f

uk1
∈M(Y )[1/u1]

Interpret ω0, ω1 then as weighted homogeneous coordinates u0, u1 of
degree one, but only within the degree zero rational functions r0, r1;
and elsewhere write instead

ω⊗k0 = θ(0, z)4k(dτ)⊗k

ω⊗k1 = θ(1/2, z)4k(dτ)⊗k, (3)

so that

r0θ(0, τ)4k = r1θ(1/2, τ)4k (4)

wherever both are defined.
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Removing (dτ)⊗k in passing from (3) to (4) converts invariance to
modularity for the whole of the group Γ(2). Since r0 and r1 are well
defined meromorphic functions on Y they are invariant on H but
only for the action of the smaller group Γ. The product functions
on both sides of equation (4) therefore have modularity of weight k
for the level Γ.

10. Theorem. Local freeness of the internal sum (2) implies that
u0, u1 have no common zeroes on Y as sections ofM1(Y ). Then the
denominators uk0, u

k
1 have no common zero in the locally free sheaf

Mk(Y )of which r0ω
⊗k, r1ω

⊗k are rational sections. Starting with
the left side of (4), interpeting r0 = f

u
degree(f)
0

and r1 = f
u1degree(f)

as

algebraic functions of λ(τ), these have no common poles on bound-
ary points of H lying over cusps of Y, and the same equation (4)
then furnishes an analytic continuation to a modular function of
weight k and level Γ which is holomorphic at the cusps (as is dτ
itself). The corresponding k-fold one-forms rk1θ(1/2, τ)4kdτ⊗k and
rk0θ(0, τ)4kdτ⊗k patch together to comprise well-defined meromor-
phic k-fold one-form on Y (now defined as a meromorphic function
on all cusps) holomorphic everywhere except at the cusps, where
the poles do not exceed those of order dτ⊗k, namely do not exceed
order k at any cusp.

The combination of constructing the ring extension M(2) ⊂ M(Y )
algebraically and then gluing in this manner must be the common
generalization of special methods such as Eisenstein series and theta
characteristics, in their application to constructing modular func-
tions. A more simpe corollary not referring to analytic continuation
or to θ(1/2, τ) is this:

11. Corollary The ring M(Y ) is isomorphic to the ring of functions
f

u
degree(f)
0

θ(0, τ)4 degree(f) : H → C, where we regard f

u
degree(f)
0

as an

‘algebraic function’ of λ(τ). Although the f(λ(τ))

u
degree(f)
0

can have poles

points of the boundary of H lying over the cusps in Y these are
removable in the product f

u
degree(f)
0

θ(0, τ)4 degree(f). The k-fold one-

form rk0θ(0, τ)4kdτ⊗k descends to a one-form on Y with poles at
cusps and any of order larger than k at any cusp are ‘removable.’



Analytic primality testing (1)

12. Remark. For levels which are not above level 2, one may
pass to a subring by a group action. For example, the ring M(1) is
the invariants of the reflection group S3, and because it is a subring
all its elements already have been interpreted as analytic modular
functions on H.

It might be instructive to look at one explicit consequence of the
situation where one has polarized all the Y by logarithmic forms
(compatibly with the transition maps). In terms of our coordinates
u0, u1 we might write

ω0 =
u1

u1 − u0

d(
u0

u1

)

ω1 =
u0

u0 − u1

d(
u1

u0

).

The fact that we can use ω0, ω1 as homogeneous coordinates corre-
sponds to the fact that the ratio between the right sides of these
equations is the same as u0/u1 itself.
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7. The types of Y for each g and c.

The passage from the subgroup Γ ⊂ Γ(2) to the over-ring M(Y ) ⊃
M(X(2)) can be considered to come from the map from cohomology
of a wedge of two circles to K0 of the Riemann sphere

H1(F2, Sd)→ H1(P1, Gl) ⊂ K0(P1) = Z[T, T−1]

with Sd the permutation group and T the class of O(1). The map
is not directly induced by functoriality of cohomology.

Although K0(P1), using only relations from direct sums of vector
bundles, is not a finitely generated free abelian group, the mage of
all the H1(F2, Sd) are all totally contained in the rank 3 free abelian
group

Z + ZT−1 + ZT−2

and a class γ of a connected Riemann surface is sent to

1 + α(γ)T−1 + g(γ)T−2

where α(γ) = d− 1− g(γ) = c− 3 + g(γ) where g(γ) is the genus of
the associated modular curve Y and c is its number of cusps.

Thus

13. Theorem. The class in K0(P1) depends exactly on the num-
ber of cusps and the genus. Two classes γ1, γ2 ∈ H1(F2, S4) of
connected Riemann surfaces H/Γ1 and H/Γ2 map to the same ele-
ment ofK0(P1) if and only if they are homeomorphic (=topologically
isomorphic).

Now there is the issue of going back, starting from the number of
cusps and the genus, to actually build the algebraic structure of all
possible rings M(Y ).
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Here is how it probably works if Γ is normal so we have a Galois
group G = Γ(2)/Γ, and the we assume that we know how the finite
group G acts on three finite dimensional vector spaces which we
defined earlier

A = C with trivial G action,
B = Kernel(CcuspsY → CcuspsX(2)) ⊕ H1,0(Y,C), with action on

the first summand induced by the permutation of cusps, action on
the second induced by the inclusion of the holomorphic part of the
cohomology of Y,
C = H0,1(Y,C), by the induced action on anti-holomorphic co-

homology.

Then

A⊕B ⊕ C ∼= C⊕ [Ccusps−3 ⊕H1,0(Y,C)]⊕H0,1(Y,C)

and we stated in Theorem 7 that the locally free sheaf

A⊗O(0)⊕B ⊗O(−1)⊕ C ⊗O(−2),

on X(2) ∼= P1 is isomorphic to

(fY )∗OY

as a coherent sheaf with G action.

Let V be the rank d vector bundle on P1 with this sheaf of sections.

The dual bundle V̂ → P1 can be described point-by-point as fol-
lows: A point p ∈ P1 has a defining ideal sheaf Ip ⊂ OP1 ; up to
isomorphism Ip ∼= O(−1) though note there is not a natural unique
isomorphism (as O(−1) depends non-functorially on P1 unlike its
square the canonical sheaf). Once p is chosen, the fiber of V over p
is the 1 + α(Y ) + g(Y ) dimensional vector space

fY ∗OY ⊗P1 OP1/I.

A point y ∈ Y such that fY (y) = p gives an evaluation map to the
one-dimensional vectot space OP1/I ∼= C. Thus evaluation at y is a

point of the dual vector bundle V̂ in the fiber over p.



Analytic primality testing (1)

14. Theorem. The vector bundle V̂ → P1 includes a Galois in-
variant multi-section of order k, which spans V̂ at every fiber except
above 0, 1,∞. The (normalization of) the the multisection is isomor-
phic to Y .

From the multi-section we can get back the holomorphic modular
functions H→ C like this:

The algebaic curve Y has that every unramified fiber F is linearly
equivalent to KY + f−1(C) for C = 0, 1,∞.

It can be polarized either way (it doesn’t matter) and the corre-
sponding graded ring is M(Y ).

From M(Y ) which contains u0, u1 we have that by assigning u1/u0

to the lambda function λ : H− → C we can for each element f of
Mk write

(
f

uk0
)θ(0, z)4k

and the first term is a rational function of λ(τ), the second a holo-
morphic function H → C, and the product is modular of weight k
and level Γ, and all but order k poles at the cusps are removable as
it equals

(
f

uk1
)θ(1/2, z)4k

whenever both are defined.

The issue is then finding all the G invariant multisections of V̂ → P1

if there is more than one. There is likely a G invariant singular

foliation of V̂ (the flat connection on the complement of {0, 1,∞})
which has these as the compact (smooth) leaves.
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8. Primality tests

The integer lattice points (x, y) satisfying x, y ≥ 1, m − 1
2
≤ xy ≤

m + 1
2

correspond to divisors of m, for any natural number m ≥ 1.

The number of divisors is equal to 1
2πi

times the value of the contour
integral along a path surrounding the same finite set of points, of
the logarithmic derivative of any holomorphic function with suitable
domain of definition and which has a simple zero at each such lattice
point.

Except for the choice of path of integration, the fundamental theo-
rem of calculus indicates that the logarithmic derivative integrates
to zero; choosing which points the path should wind around is iden-
tical to adding 1 for each point.

We transform such a path into a straight line by the conformal
transformation of squaring a complex number. Intepret x, y as the
real and imaginary coordinate in the complex plane. The divisors
of a number m are bijective with the square Gaussian integers with
imaginary part 2m, and so using the principal square root function
(with values in the upper half plane) write the series involving the
(third) Jacobi theta function

θ(
√
z + (

i+ 1

2
), i) =

∞∑
n=−∞

e2πin(
√
z+( i+1

2
))−πn2

=
∞∑

n=−∞

(−1)ne−πn(n+1)e2πin
√
z (1)

Because θ(z + ( i+1
2

), i) has a simple zero at each Gaussian integer,
we have

15. Proposition. The logarithmic derivative of (1) integrated
from −∞ to −1/2 along a horizontal line at imaginary level t has
a discontinuous jump when t passes 2m of magnitude equal to 2πi
times the number of divisors of m which are strictly less than

√
m.

The smallest jump, by only a value of 2πi, occurs if and only if m
is prime or a square of a prime.
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The integral can of course only be taken along the interval [−m2,−1/2],
and if the sum is taken only from −m − 1 to m + 1 there results
a finite trigonometric expression which likely has the zeroes only
slightly displaced, and the change of the value of the integral be-
tween two half-integer values of t should still determine the number
of divisors of m less than

√
m to the nearest integer.
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Lefshetz numbers of modular curves

This note is to provide some evidence for some of the poorly proven
remarks in analytic primality testing; it seems easiest if we organize
our thinking in terms of this problem: Suppose we are given an ar-
bitrary finite two-generator group G = 〈g, h〉 with fixed generators.
This corresponds to a Galois modular2 curve fY : Y → P1 branched
over at most {0, 1,∞} with g, h, (gh)−1 the monodromy transfor-
mations corresponding to disjoint based loops about these points.
Then each element x ∈ G is an automorphism of Y and the problem
is to determine the Lefshetz number of the automorphism x.

The following theorem is elementary, but we’ll give a proof not re-
lying on either the classical (transcendental) topology or the etale
topology.

1. Theorem. The Lefshetz number of each such automorphism x
is equal to the number of fixed cusps of x minus the number of fixed
points in a general fiber of the finite covering map fY .

An arbitrary modular curve of level Γ ⊂ Γ(2) is determined by such
a group G and a choice of subgroup H ⊂ G. The group G arises as
the reduction of Γ(2) modulo the intersection of the conjugates of Γ
while Γ is the inverse image of H.

From this cursory observation we can determine at least the genus of
the modular curve H \Y corresponding to each choice of H, and one
might expect that with finer analysis one could approach two known
theorems, the Taniyama conjecture that any elliptic curve with ra-
tional j invariant has for some N a branched cover by X0(2N), the
case when G ⊂ SL2(Z/2NZ) is the finite group of g so that g − 1
has even entries and H ⊂ G the upper triangular subgroup, and
the Belyi theorem which says that any curve Y which is genuinely
one-dimensional (defined over a number field) arises from some such
arithmetic Γ without the requirement of containing a congruence
subgroup.

2Let’s call a curve ‘modular’ even if the arithmetic group Γ contains no congruence sub-
group
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Let’s begin by comparing the residue map for X(2) = P1 with the
same map for Y. Although we’re talking about one-forms with sim-
ple poles, we’ll continue our convention of referring to these as
logarithmic poles since most of what we’ll say has a higher di-
mensional analogue. Using our earlier notation, so M(Y ) is the
sheaf ΩY (log f−1

Y C) with C = {0, 1,∞}, Mk(Y ) = M(Y )⊗k, and
Mk(Y ) = Γ(Y,Mk(Y )).

The map fY : Y → P1 induces the commutative diagram

ΩP1(log C) → OC
↓ ↓

ΩY (log f−1
Y C) → OfY −1C

which we write in other notation

M(P1) → C3

↓ ↓
M(Y ) → Cc

with c the number of cusps. The kernel of each horizontal residue
map is just the holomorphic forms in each case.

Taking global sections and passing to the cokernels of the vertical
maps (since there are no nonzero global holomorphic one-forms on
P1) gives the exact sequence of finite-dimensional CG modules

0→ H1,0(Y,C)→ M1(Y )

M1(2)M0(Y )
→ IG/〈g〉 ⊕ IG/〈h〉 ⊕ IG/〈gh〉 → 0

where IG/〈h〉 is the augmentation kernel of the addition map
C[G/〈h〉]→ C. Here we use standard notation M1(2) for M1(X(2))
with X(2) the modular curve we’re calling P1. So that we can inter-
pret the global holomorphic forms on Y with at most logarithmic
poles on C to be modular forms of weight 1 (using Dolgachev’s
numbering convention) modulo those of level Γ(2).

Note that this is consistent with our earlier calculation for the di-
mension of M1(Y )

M1(2)M0(Y )
as what we called α = g + c− 3, and we had

stated without proof that the group action should be thus.
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If we now add H0,1 to the first and second term of the exact se-
quence we have of course by the Dolbeault decomposition and by
our previous calculations involving M2

0→ H1(Y,C)→ M2(Y )

M2(2)M0(Y ) +M1(2)M1(Y )
⊕ M1(Y )

M0(Y )M1(2)

→ IG/〈g〉 ⊕ IG/〈h〉 ⊕ IG/〈gh〉 → 0.

If we now add a copy of H0,0(Y,C)⊕H1,1(Y,C)⊕M0(Y ) ∼= C⊕C⊕C
to the middle term and the last term, the last term becomes a
permutation module and there is the exact sequence

0→ H1,0(Y,C)⊕H0,1(Y,C)

→ M2(Y )

M2(2)M0(Y ) +M1(2)M1(Y )
⊕ M1(Y )

M0(Y )M1(2)
⊕M0(Y )⊕H0,0(Y,C)⊕H1,1(Y,C)

→ C[G/〈g〉]⊕ C[G/〈h〉]⊕ C[G/〈gh〉]→ 0

we can interpret the last term as the (global sections of) Of−1
Y (C).

If we choose any point p ∈ X(2) which is not a cusp, we have the
equivariant isomorphism of finite dimensional vector spaces, writing
C as the reduction of M(2) modulo its augmentation ideal, since
the ring of modular forms M(Y ) is a free module over M(2), with
sections of number 1, α, g in degree 0, 1, 2, and since the group action
lifts from the projective curve Y to the ring M(Y ) by naturality of
logarithmic differentials and equivariance of cusps, we have C =

M(2)
M1(2)⊕M2(2)⊕M3(2)⊕... so

M(Y )⊗M(2)C ∼=
M2(Y )

M2(2)M0(Y ) +M1(2)M1(Y )
⊕ M1(Y )

M0(Y )M1(2)
⊕M0(Y ).

Thus, the three terms in the exact sequence involving the letter M
aount to the same as

Of−1
Y (p) = (fY ∗OY )p

under the free and transitive Galois action on f−1
Y p.
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(The same argument might be found more theoretically, not depend-
ing on graded rings of modular forms, by choosing finding a G invari-
ant half-canonical divisor 1

2
K and considering that the same vector

space is equivariantly isomorphic also to Γ(Y,OY (f−1
Y p+ 1

2
K)). ac-

tion which is generically merely a free and transitive action.)

In any case now we our G equivariant exact sequence becomes

0→ H1(Y,C)→ H0(Y,C)⊕H2(Y,C)⊕Of−1
Y (p) → Of−1

Y (C) → 0, (1)

withOf−1
Y (p) the finite-dimensional permutation representation based

on the general fiber f−1
Y (p) and Of−1

Y (C) the finite-dimensional per-

mutation representation on the set of cusps of Y.

This argument currently represents a rather vague interpolation be-
tween sheaves and their global sections; nevertheless it seems to be
correct in a few examples. For X(2) itself it says that the Euler
characteristic should be the number of cusps minus the covering
degree; this is 3− 1 = 2.

In the course of the proof, we saw that the augmentation ideal IG
of G contains a direct sum of a copy of the holomorphic and anti-
holomorphic one-forms (though the embedding of antiholomorphic
one-forms is as a complex vector subspace), and the quotient of IG
modulo both is the direct sum of the augmentation subspace of the
three orbits of G on the cusps of Y, or if you like it is the vector
space spanned by cusps modulo the three-dimensional G-invariant
subspace.

From this it is easy to determine in a uniform way the genus of mod-
ular curves corresponding to subgroups H ⊂ G, as we may obtain
the direct sum of holomorphic and antiholomrorphic one-forms of
the corresponding modular curve as the H invariant subspace of the
kernel of the map from IG to the linear span of the cusps. The image
of IG is always anyway a complement of the three dimensional space
of G invariant linear combinations of cusps.
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Just to repeat this,

2. Theorem. There is a (real) vector space isomorphism between
the direct sum of the holomorphic and anti-holomorphic one-forms
of the modular curve corresponding to H ⊂ 〈g, h〉 and the complex
vector subspace of the augmentation ideal IG ⊂ CG consisting of
the H invariant elements of the inverse image under the residue map
from IG to the vector space based on the cusps of the modular curve
corresponding to H = 1, of the vector subspace of dimension three
based on the three G orbit sums.

Here we have very crudely allowed ourselves to decompose and twist
what should really be nicely symmetrical vector bundles in order to
be able to talk about global sections. Really for an elliptic curve a
basic holomorphic one-form and a basic antiholomorphic one-form
correspond to basic generators for summands of fY ∗OY and as we
have seen, the dual of the vector bundle V which has this sheaf of
sections contains Y itself as a multisection (perhaps after needing
to normalize).

There might be a possibility to prove the Lefschetz formula in the
ordinary way, by the Lefshetz fixed point theorem. However, one
would need to explain why cusps count positively while points of a
G orbit count negatively.

Example. Consider a degree two cover of X(2) branched at 0, 1
and follow this by a degree two cover branched at 0, 1 and the two
copies of∞. Let x of order two generate the Galois automorphism of
the second cover. Then g has four fixed cusps and no fixed general
point, so the Lefschetz trace of the action on the elliptic curve is
4. On the other hand the identity element fixes four cusps and four
general points, having then Lefshetz trace 0.

We can use the Lefshetz trace calculation to identify the genus of
each subgroup of our Galois group G = C2 × C2.

In fact the theorem below is true of any finite two-generator group
〈g, h〉 and therefore for any modular curve of level higher than two
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3. Theorem. For H ⊂ 〈g, h〉 with 〈g, h〉 finite, the genus of the
corresponding modular curve is equal to 1 minus half the average
number of fixed cusps plus half the average number of fixed points
in a general fiber of the branched cover (where the average is taken
over the elements of H).

The interesting thing about this theorem is that the exact sequence
(1) provides two proofs. If we use the fact that the number of H
orbits on cusps and a general fiber is in each case the average trace,
the equation says that the genus of X is 1 minus half the number of
cusps plus half the covering degree of X → P1, which calculates the
transcendental Euler characteristic of X. But if we use the fact (1)
that 1− 1

2
L(h) is the trace of h acting on holomorphic one-forms of

Y , the average calculates the dimension of the space of H invariant
holomorphic one-forms, which are the holomorphic one-forms on X.

Remark. As is easily seen from the theorem above, or directly, the
genus of H \Y is thus determined from only G,H, g, h. It is 1 minus
one-half of the average over x ∈ H of the number of y ∈ G such that
yxy−1 ∈ 〈g〉 minus one half the average over x ∈ H of the number of
y ∈ G such that yxy−1 ∈ 〈h〉 minus one-half the average over x ∈ H
of the number of y ∈ G such that yxy−1 ∈ 〈gh〉 plus one-half the
average over x ∈ H of the number of y ∈ G such that yxy−1 ∈ 〈1〉.

This seems reminiscent of calculations involving triangle groups,
though it applies to any Fgroup Γ of finite index in Γ(2), being
the inverse image of H under Γ(2)→ Γ(2)/Γ(Y ) = G.

The last number calculated is just one-half of the index [G : H].

Now that the value of the Lefshetz trace on Y gives the correct
values of the genus of X, we have some confidence in the correctness
of the previous results. The sequel will consider actions of Galois
automorphisms and rational points.
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Grothendieck sections and rational points of modular curves

Let’s continue our convention of calling a ‘modular curve’ a quotient
Γ \ H for Γ arithmetic, and we’ll consider the case when Γ ⊂ Γ(2)
contained in the free group of rank two which expresses H as the
universal cover of P1 \ {0, 1,∞}. Reducing modulo the intersection
of the conjugates of Γ the inclusion Γ ⊂ Γ(2) becomes an inclusion
H ⊂ 〈g, h〉 of a subgroup of a two-generator finite group, and cor-
respondingly there is the Galois cover Y → X with X = H \ Y.
In the previous note we made an exact sequence equivariant for the
continuous H action

0→ H1(Y )→ H0(Y )⊕H2(Y )→ OfY −1p → OfY −1C → 0

for p any chosen point of P1 and C ⊂ P1 the set of cusps viewed as
ideal points.

Suppose now that we have chosen a number field K Galois over
Q so that we may interpret a suitably symmetric form of Y as a
scheme flat of finite type over the integers OK , and an embedding or
‘complex place’ OK ⊂ C through which we may recover the complex
manifold which we previously called Y as the set of complex points
Y (C) of the scheme Y.

Now the group AutP1(Z)(Y ) of automorphisms over the integer pro-
jective line acts on Y and surjects onto the Galois groupGal(K/Q) =
Aut(OK). Thus the group AutP1(Z) mixes up geometric and arith-
metic automorphisms in a single group extension. The aim now is
to make a different exact sequence which is sufficiently natural that
it is equivariant for AutP1(Z)(Y ).

Remark. The isomorphism types of Z forms of Y correspond to
conjugacy types of liftings of the Galois action along the surjection
Y → OK , equivalently conjugacy classes of splittings of the group
extension

1→ G→ AutP1(Z)(Y )→ Gal(K/Q)→ 1.

Each corresponding section group ⊂ AutP1(Z)(Y ) mapping isomor-
phically to Gal(K/Q) determines a Z form of Y , however the group
H need not act on the Z-form, and we cannot recover a Z-form of
X from a single Z form of Y.
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If a, b are coprime integers, there is an associated integer point [a : b]
of the projective line P1.

Define M(Y ) which we’ll also call ΩY (log fY
−1C)0 to be the sub-

sheaf f−1
Y ΩP1

Z
(log C) ⊂ ΩY (log fY

−1C). It is an invertible sheaf

over Y which in turn is flat over OK . As before, we let Mk(Y ) =
Γ(Y,M⊗k) for k = 0, 1, 2, ... and in case Y = X(2) we write Mk(2) =
Mk(X(2)).

For example, when OK = Z we have that M1(2) ∼= Z ⊕ Z, and we
define the function

P1(Z)→M1(2)/{1,−1}

[a : b] 7→ bω0 − aω1

and we interpret the integers a, b as being elements of OK .

Recall that if u0, u1 are homogeneous coordinates on P1 we may
write the one forms with logarithmic poles on 0, 1,∞ as

ω0 =
u1

u1 − u0

d(
u0

u1

)

ω1 =
u0

u0 − u1

d(
u1

u0

)

and these lift to the one forms

θ(0, τ)4dτ

θ(1/2, τ)4dτ

on the upper half plane. Thus we may also consider this map as as-
signing to each integer point of the projective plane a Γ(2) invariant
one-form on H which is holomorphic at the cusps.

This one-form, when pulled back to Y, has simple zeroes as a one-
form on the fiber of Y → P1 over p. More precisely, if we choose
OK large enough that each point of the fiber is defined over OK ,
then this one-form defines the affine subscheme whose coordinate
ring modulo its Z-torsion, normalizes to a cartesian product of one
copy of OK for each geometric (complex) point in the inverse image
of p under fY : Y → P1.
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By attaching a sign arbitrarily to the image of p, each integer point
of P1 determines then an element of M1(2) ⊂ M1(Y ) which we’ll
call γ(p). Under the map

M1(Y )→ Hom(M1,M2)

we then have

1. Theorem Associated to each rational point of p ∈ P1 \{0, 1,∞}
is a natural exact of coherent sheaves on Y

0→ ΩY (log f−1
Y C)0 γ(p)→ (ΩY (log f−1

Y C)0)⊗2 → Of−1p → 0,

equivariant for the action of AutP1(Z)(Y ).

Proof. We’ve defined Mk(Y ) as a subsheaf of ΩY (log f−1
Y C) such

that the first three theorems of note 1 remain true. The sequence
follows with the rightmost term twisted by twice the fiber, and it
is natural (equivariant) for the group action. We will see later that
there is a τ(p) so that the divisor of the rational function γ(p)/τ(p)
consists of f−1

Y (p) plus a disjoint component, so Of−1
Y p is isomorphic

to a twist by any power of M1(Y ). The isomorphism is equivariant
for automorphisms over P1 since γ(p) and τ(p) are induced from P1

therefore so is the sequence shown. Note that

The sheaf O(1) makes sense on the integer projective plane; tak-
ing global sections in the theorem and applying Leray’s spectral
sequence gives

2. Corollary. For each integer point p ∈ P1 \ {0, 1,∞} is the
AutP1(Z)(Y )-equivariant exact sequence of finitely-generatedOK mod-
ules

0→M1(Y )
γ(p)→ M2(Y )→ OfY −1p → T → 0

where the T is a submodule of the torsion moduleH1(P1
Z, fY ∗fY

∗O(1)).

3. Corollary. For each such p there is a structure on M2(Y )
γ(p)M1(Y )

of

an ideal in OfY −1p such that for each section V ⊂ AutP1(Z)(Y ) →
Gal(K/Q) the integer points of the corresponding Z form of Y which
lie over p are bijective with the V fixed points of the V action on

the indedomposable idempotent elements of M2(Y )
γ(p)M1(Y )

⊗Z Q.
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To see that the ranks at least of the relevantOK modules are correct,
we can use that

rankOK (M2) = 3 · 1 + 2 · α + 1 · g

rankOK (M1) = 2 · 1 + 1 · α + 0 · g
with α as we defined earlier. Then the difference is

1 + α + g

which indeed is the branched covering degree of Y over P1.

Remark. As we know, M2(Y ) it contains ω0M1(Y ) and ω1M1(Y )
(which intersect along ω0ω1M0(2) = ω0ω1OK) and the quotient is
isomorphic to H1(Y,OY ) which is an OK module of rank g. The
choice of rational point p amounts to choosing a primitive element
(integer basis element) of the lattice spanned by ω0, ω1, and then we
may assume γ(p) = ω2 and that we are reducing modulo the span of
M1(Y )ω1. There is then the AutP1(Z)(Y ) equivariant exact sequence

0→ OK →M1(Y )→ Of−1p → H1(Y,OY )→ 0.

This can be used to re-derive our Lefshetz formula, but here the
naturality is over Z. We have seen that the relation between this
natural exact sequence and the underlying ring structure of Of−1p

determines in principle the integral points of Y lying over p.
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Integer points of modular curves

One lesson we’ve learned so far is that instead of considering Ga-
lois automorphisms, Galois modules and invariants, it seems nicer
to merely work naturally over P1

Z even while considering modular
curves which may not be defined over Z. That is to use naturality.

Let’s start again in another attempt to describe the integer points
of modular curves.

Let’s begin with some generalities which were introduced in ‘Easy
things which number theorists know.’ We’ll state this a little more
geometrically than before, and only describing, on a divisor on a
curve flat and finite over P1

Z, those integer points which happen to
be scheme theoretically isolated

1. Theorem. Let E be a one dimensional scheme irreducible, flat
and finite over P1

Z. Let D be a Cartier divisor on E. Let V → E
be the line bundle with section sheaf O(−D) (when D might have
embedded components, this means the defining ideal sheaf of D)
and consider E ⊂ V to be the zero section. Let z be the global
section (unique up to multiplication by units) of the line bundle
with section sheaf O(D) whose zero-locus is D itself. Then

z ∈ Γ(E,OE(D)) ⊂ Γ(V,OV )

so we can view z as a global section of the structure sheaf of V. Note
that set-theoretically, the zero locus of z in V is the union of E and
the inverse image of D under the bundle projection V → E. Write

dz ∈ Γ(V,ΩV (log E)(−E)) ⊂ Γ(V,ΩV ).

Then the integer points of D which are scheme theoretically isolated
from all others, are those which are disjoint from the support of

Λ2(ΩV (log E)(−E))
OV dz

) ⊂ V.

Proof. Restricting ΩV (log E)(−E) along the inclusion which we’ll
call i : V → E of the zero section, the pullback i∗ΩV (log E)(−E)
is just PE(O(D)), and the restriction of dz is what we have called
∇(z), a global section of first principal parts of O(D).
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It is not generally true that this section belongs to the kernel in the
exact sequence

0→ ΩE(D)→ P(O(D))→ O(D)→ 0

but it maps to an element of the kernel in the exact sequence that
arises upon applying j∗, where j denotes the inclusion of the zero
set of the section s of O(D) into E. And so we have a well-defined
element which we might still call

∇(z) ∈ j∗(ΩE(D)).

The definition of this element involves an E3 differential and is de-
scribed in ‘Easy things.’ Let’s repeat that here; note in the present
context Y = Spec(Z) can be ignored. We have the diagram of exact
sequences

0 → ΩE/Y (D) → PE/Y (OE(D)) → OE(D) → 0
↑ ↑

0→ OE∇(z) → OEz → 0
↑ ↑
0 0

The corollary 8 of ‘Easy things’ says that when we take the cokernel
of this upward map of rows and pull back along j : D → E we obtain
in the middle place PD/YOD(D). Homologically speaking, when we
pull back the cokernel sequence we get a non exact sequence with
kernel T orOE1 (OD(D),OD). This is is the same as T orOE1 (OD,OD)
twisted by OE(D), and so it is a copy of the trivial sheaf OD. Thus
we obtain

0→ OD → j∗ΩE/Y (D)→ PD/Y (OD(D))→ OD(D)→ 0.

And the exact diagram
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The exact diagram implies a natural ‘serpent lemma’ or ‘E3 differ-
ential’ which is an isomorphism from the copy of OD on the lower
right to the one in the upper left.

Before applying j∗, we had that OE∇(z) embeded as a subsheaf
of OE(D), once we apply j∗ the image of the copy of this sheaf in
j∗PD/Y (OD(D)) is the same as the image OD of the Tor term, which
is the kernel of j∗ΩE/Y (D)→ PD/Y (OD(D)).
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Here we are taking Y = Spec(Z) and the various sheaves of dif-
ferentials are the absolute differentials. We just now obtained the
term PE(OE(D)) by restricting (=pulling back in the coherent sheaf
sense) the sheaf ΩV (log E)(−E) to E, and now further applying j∗

means that we’ve further restricted to D. The diagram shows that
reducing j∗P(OE(D)) by the image of dz yields a (split) extension
of OD(D) by the O(D) tensor the cokernel of the inclusion of the
conormal sheaf of D in E. Thus the second exterior power restricts
to zero on precisely those components where the conormal embed-
ding is an isomorphism. These are the components of D such that
the Kahler differentials of D restrict to zero; and thus they must be
both scheme-theoretically isolated and rational (=integer) points.

A more careful analysis could also incude considerations of rational
points which are allowed to have scheme-theoretic intersections, but
we are not considering that today.

Now let’s return to the situation where we have a finite index sub-
group Γ ⊂ Γ(2) and X = Γ \ H the corresponding modular curve.
We take E = X now, and rather than relying on any Galois theory,
let us make the bold assumption that X is defined over Z and let
fX : X → P1 now denote a Z form which we assume is flat.

Let p ∈ X(2) \ {0, 1,∞} be an integer point. We choose integers
a, b so that p = [−b : a], or, to be more clear, so that p is the zero
locus of

aω0 + bω1 ∈M1(2)

viewed as a global section of the locally free sheaf M1(2) of one-
forms on X(2) with logarithmic poles at the three cusps.

We take fX : X → X(2) the natural branched covering map, and
we take D = f−1

X p. Since fX is flat OD is a free abelian group.
All irreducible components of D are one-dimensional and map onto
Spec(Z). The number of these will be less than the branched cov-
ering degree if not all are copies of Spec Z.

As before we define the Z form M(X) = f ∗xM(2). If we write

γ(p) = aω0 + bω1 ∈M1(2) ⊂M1(X)

then the principal ideal in the ring of modular forms M(Y ) is a
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defining ideal for a graded homogeneous coordinate ring for the di-
visor D. More precisely, when we were working over Q there was is
the module isomorphism

Mk(X)

Mk−1(X)γ(p)
→ OD

for any k ≥ 2. Now over Z the cokernel is contained in the finite
abelian group T ⊂ H1(P1

Z, fX∗fX
∗O(1)) and is still zero for k >> 0.

let’s assume this works for k ≥ 2 for simplicity

At this point we need to deal with either second exterior powers or
that E3 differential; let’s choose the latter. So we know there is an
element which we call

∇(aω0 + bω1) ∈ j∗ΩX(D)

and while it is a little difficult to describe which element it is, there
is the exact sequence of OD modules (note D is affine)

0→ OD∇(aω0 + bω1)→ j∗ΩX(D)→ ΩD → 0.

Note that the rightmost term is initially ΩD(D) however twisting
has no effect (we’ll see later that a divisor defined by cω0 + dω1 is
equivalent to D and scheme theoretically disjoint from D).

Let’s make two simplifying assumptions in the expectation that later
we’ll remove them with a more precise formulation. Assume that
ΩX happens to be locally free, and the inclusion f−1

X ΩP1
Z(log C) →

ΩX(log f−1
X C) happens to be an isomorphism (we called the sub-

sheaf ΩX(log f−1
X C)0). Then D is linearly equivalent to KX+fX

−1C
giving fX

−1C the structure of reduced divisor (ignoring multiplic-
ities) the sheaf ΩX(D) is isomorphic to OX(2KX + fX

−1C) which
is also isomorphic to M2(X)(−f−1C); that is, we have an exact
sequence of sheaves on X

0→ ΩX(D)→M2(X)→ OredfX
−1C → 0

By what we’ve said, the sheaf on the right already has the reduced
structure but we’ve written the superscript red to be completely
clear about this.
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The sheaf ΩX(D) is acyclic (since D is effective) and this gives by
passing to global sections

0→ Γ(X,ΩX(D))→M2(X)→ OredfX
−1C → 0

Thus our element
∇(aω0 + bω1)

can be interpreted as an element of M2(X), a modular form of level
X and weight 2, which maps to zero under what we might call the
‘second residue map’ from M2 to the reduced structure sheaf of the
cusps of X.

Now let’s see whether the residue map

ΩX(D)→ j∗j
∗ΩX(D)

is surjective on global sections. It is not since the kernel ΩX is not
acyclic, and neither is the other

We must twist our locally free sheaves by D+fX
−1Cred = 2D−KX .

We have

0→ j∗(OX(2D−KX))∇(aω0+bω1)→ j∗(ΩX(2D+fX
−1Cred))→ ΩD → 0.

Note that ΩX(2D + fX
−1Cred) ∼= M3(X) while OX(2D − KX) is

the kernel of M2(X)→ ΩX .

Since the twisting is high enough now we can pass to global sections;
we have Γ(X,ΩX(2D−KX)) is the kernel of a map M2(X)→ S1(X)
with S1 the cusp forms of weight one. Now

j∗(ΩX(2D + fX
−1Cred)) ∼=

Γ(X,OX(3D))

Γ(X,OX(2D)γ(p)

∼=
M3(X)

M2(X)γ(p)
.

And

j∗(OX(2D −KX)) ∼=
Γ(X,OX(2D −KX))

Γ(X,OX(f−1
X Cred))

.
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Recall that

γ(p) = aω0 + bω1 ∈M1(2) ⊂M1(X)

and it occurs because the relevant inclusion is the same as multipli-
cation by γ(p) in the ring of modular forms of level X.

In the calculations above the term ∇(aω0 + bω1) is not contained in
the set of parentheses immediately following j∗. The main technical
difficulty with this approach is that this element does not come from
a global section of ΩX(D) until after applying j∗.

From this, we obtain then the presentation of ΩD(−KX) initially as
an abelian group from the exact sequence

Γ(X,OX(2D −KX))→ M3

M2γ(p)
→ ΩD(−Kx)→ 0.

We have already seen that for k ≥ 2 Mk

Mk−1γ(p)
is a copy of OD, its

normalization is a cartesian product of rings of integers of number
fields. In fact, the ring structure comes merely from introducing the
following two relations into the ring of modular forms M(X),

aω0 + bω1 = 0

cω0 + dω1 = 1

where c, d are chosen so that ad− bc = 1.

Under this map, M3(X)
M2(X)γ(p)

maps isomorphically onto OD, and the

whole ring thus maps onto OD, and all the ring relations in OD
are the ones implied by the fact that the reduction map is a ring
homomorphism.

The only slightly mysterious ingredient here is that the map

Γ(X,OX(2D −KX))→ OD = M3(X)/M2(X)γ(p)

is induced by the element∇(aω0+bω1), coming from that connecting
homomorphism.
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Anyway, we can state, for X a Z-form of a level above X(2) and
M(X) the corresponding Z-form of the ring of modular forms,

2. Therorem. Assume ΩX(log f−1
X C) is equal to the locally free

subsheaf ΩX(log f−1
X C))0, and that the torsion abelian group T is

zero. Let p = [−b, a] be an integer point of the projective line not
equal to 0, 1, or ∞. Then

i) For γ(p) = aω0 + bω1 with ω0, ω1 ∈ M1(2) as before, letting

D ⊂ X be the inverse image of p, the abelian group M3(X)
M2(X)γ(p)

maps isomorphically onto the image OD of M(X) when the
ring relations

aω0 + bω1 = 0

cω0 + dω1 = 1

are introduced into the ring M(X) with c, d chosen so that
1 = ad− bc.

ii) There is an element ∇(aω0 + bω1) (in the first principal parts
of OX(D)) which induces a map

Γ(X,OX(2D −KX))→ M3(X)

M2(X)γ(p)
∼= OD

whose image is an ideal. The cokernel of this map is the twisted
Kahler differentials ΩD(−KX).

Remark. The indices k in the Mk should be multlied by 2 to
obtain the more standard numbering, so what we call M3(X) is
more usually called M6(X). Note well that all the above refers to a
Z form X and a Z form M(X).

Remark. For removing the simplifying hypotheses we may use the
fact that any normalization or partial normalization map h (more
generally any locally projective birational map of integral schemes)
commutes with first principal parts modulo torsion in the sense
P(h∗J)/torsion ∼= h∗P(J)/torsion for J rank one coherent.
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Conclusion about modular forms

The conclusion of this sequence of notes about modular forms has
to really only be an acknowledgement. Maybe it is now or never to
write such a thing; there is no cable to charge this laptop, and the
wi-fi signal is far away and weak, miles away for some reason. It
is never any shame anyway if the actual content of a paper is just
wrong, while also including an acknowledgement; but one should
understand that this particular paper was written in five minutes,
to say something that now seems easy about the Maths; but about
how Maths is actually formulated, something deeper, relying also on
an idea not many years ago by an undergraduate student who was
here.

Three people from Queen Mary College have never had any ac-
knowledgement from me, one is Charles Leedham-Green, we had
conversations about logic, which went something like my claiming
to have found the fastest-growing class of functions, and him even-
tually replying with something which in an obvious way could be
increased, a detail left undone as idiotic as he could find.

Another is Peter Kropholler, I remember him sitting with a pint of
beer with the chairman Roxburgh, when my time there was coming
to an end, saying ‘No one proves a great theorem, and then nothing
for four or five years, and then proves another.’ At the time I was
privately angry, not recognizing the subtle way he had thus given
me credit for his work, and a challenge to face the future.

Another is Robert Wilson, whom I hadn’t met before, but had been
there at Queen Mary, coming to Warwick last year to give a talk
about his ideas about physics, the standard model, and recent theo-
ries in cosmology. This was intentionally incompetent (intentionally
not making any connection with his work in Lie algebras), pretend-
ing to be superstitious, finding exact coincidences to many decimal
places between ratios between constants in particle physics, and the
number of days of the year, the effects of the moon on the earth, say-
ing things along the lines that these relations between fundamental
constants are caused by the tides. I haven’t yet completely taken on
board all the things which he has been saying; nor know who will.
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My comments about modular forms were in answer to Cremona,
Loeffler, Zerbes, Bruin, and Bartel at Warwick. The origin of an
idea is a look, an expression during a conversation or passing in the
hallway, in a very specific context among ambient conversations and
ideas. When people say that there is a natural transformation be-
tween such and such, this is not to say that there is a pre-ordained
transformation. But one can get enough confidence to assert some-
thing. The point is supposed to be that anyone can do that, people
do it all the time, and there was once something like that, which
was called the algebraic deRham theorem.

An integer form X of a modular curve has associated to it a topolog-
ical space X(C). The algebraic deRham theorem might come from
Deligne wanting to solve a basic question of his advisor, or might be
a common property as it is explained in Griffiths and Harris’ book.
Let’s suppose that X is absolutely irreducible too, which I think
means that Γ(X,OX) = Z.

The ‘ordinary’ or Eilenberg-Steenrod cohomology ofX\cusps, where
cusps is the finite set of cusps of X, is the cohomology of the
sheaf of locally constant functions from X(C) \ cusps to the in-
tegers, also called the ‘simplicial’ or ‘singular’ cohomology, denoted
H i(X(C) \ cusps, Z). But it is known that this has an algebraic
definition too.

If we revert to the older numbering of modular forms, this finitely-
generated abelian group when i is 1 should be the same as what is
known as

M2(X)⊕ M4(X)

M2(2)M2(X) +M4(2)M0(X)

where Mk(X) is modular forms of weight k and level X, as long as
the group or ‘level’ of X is a subgroup of the congruence subgroup
Γ(2).

There is also another finitely-generated abelian group associated to
X, this one depends on a choice of a rational (=integral) non-cusp
point p ∈ X(2) = X(Γ(2)), and it is the underyling abelian group
of the structure sheaf of the inverse image of p under the branched
covering map fX : X → P1.
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And this is a free abelian group of rank one smaller. Moreover we
can just say that there is a natural map of abelian groups

H1(X(C) \ cusps,Z)→ Of−1
X p,

which has a kernel free abelian of rank one.

In the case when fX is the identity, so X = X(2), this kernel is a
rank one subgroup of a rank two lattice, as H1(X(2) \ cusps, Z) is
a free abelian group of rank two.

And the identification of the rational point p with the rank one
sublattice, or perhaps with the map itself which has that rank one
sublattice as its kernel, is there, and a generator of the free abelian
group of rank one is a modular form of weight two and level X(2),
which also then has any level above 2. Under one choice of the
identification, if p = [−b : a] with a, b relatively prime, then this
modular form is

γ(p) = aω0 + bω1.

Here we can think of ω0 and ω1 as basic global sections of the sheaf
of one-forms on X(2) = P1 allowed simple poles (=logarithmic poles
since this is the one dimensional situation) on the three cusps.

Somehow, in terms of homogeneous coordinates u0, u1 these also can
be written

ω0 =
u1

u1 − u0

d(
u0

u1

)

ω1 =
u0

u0 − u1

d(
u1

u0

).

If we think of these as analytic functions H → C satisfying modu-
larity of weight two they are

ω0 = θ(0, τ)4

ω1 = θ(1/2, τ)4,

and we append dτ if we want to think of the lifted one-forms on H
itself.

So that a rational point of the projective line determines such an
analytic function.
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The class of a point in the projective line, in the cohomology of the
compact complex manifold, can be identified with the isomorphism
type of the torsor for the sheaf of one-forms, which consists of one-
forms with a pole of residue exactly one at that point. This torsor
is sometimes directly related to the (1, 1) form, in the notions of
Kodaira, in this case describing the projective embedding which is
the identity map.

That residue can be thought of as being a generator of the infinite
cyclic quotient group that arises when we reduce H1(P1 \ cusps, Z)
modulo the sublattice of rank one through γ(p).

That is, we can think of the sheaf Op as the free module of rank
one consisting of all such residues, it is the image of the residue map
from one forms with (logarithmic) poles at p and arbitrary poles
and zeroes elsewhere, with kernel the one forms which do not have
a pole at p.

When we pass to thinking about X instead of just X(2), we can
think of the coincidence

covering degree = rank H1(X \ cusps, Z)− 1

as coming from the fact it is still true on X that we have this residue
map. The point here is that M2(X) modulo γ(p) in the modular
forms is the same as

M2(X)τ(p) modulo M0(X)γ(p)τ(p).

Here
τ(p) = cω0 + dω1

with c, d chosen such that ad− bc = 1.

The choices of c, d are parametrized by Z analagous to the integers
and the point at infinity on the boundary of the Poincare disk.

Now, we know that

M4(X) =
M2(X)γ(p)⊕M2(X)τ(p)

M0(X)γ(p)τ(p)
⊕H1(X,OX)
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or rather that it contains the first factor naturally with quotient
being the second factor, so a splitting of the filtration describes
such a direct sum decomposition.

The correspondence between modules over a graded ring and coher-
ent sheaves can be made nice by thinking about graded modules as
equivariant coherent sheaves on an affine variety, and here we are
seeing that the even degree part of the ring M(X) modulo the ele-
ment γ(p) is the coordiate ring of the fiber over p, this is the reduced
fiber when p is not one of the three cusps.

If we think of γ(p) = aω0 +bω1 as a section of the sheaf of one forms
on X with at most simple (=logarithmic) poles at the points of the
fiber over p, and think of this as sections in the sense of sections of
a vector bundle, then this section has a first principal part ∇(γ(p)),
a global section of first principal parts, and by reducing modulo
γ(p) and pulling back to the fiber we obtain a global section of first
principal parts on the fiber. This happens to belong to the kernel of
the map to the sheaf itself and can be interpreted as the restriction
to the fiber of one forms with logarithmic poles.

Now, this is a little complicated but we can see through it! The
line bundle is the one whose sections sheaf is isomrphic to one forms
with at most simple (=logarithmic) poles on the cusps. But now we
are taking sections which have simple (=logarithmic) poles on the
fiber.

Remember that I said that the residues at the fiber, which comprise
the quotient of H1(X \cusps, Z) modulo that line in the lattice, are
allowed to be residues of functions which can have arbitrary poles
and zeroes away from the fiber. Here then we are allowed to have
those poles at the cusps, because the fiber is disjoint from the cusps
in X(C) so contains no cusp in X.
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The principal parts bundle is a rank two vector bundle, and ∇(γ(p))
is not contained in the sub bundle which is one forms with poles
allowed on the fiber. But when we restrict to the fiber it does end
up belonging to that sub bundle for principal parts on the fiber.
This is talking about how we have a principal different element for
that ring of (perhaps not normal) integers.

From these considerations there is now an action, in principle de-
termined by the structure of the ring M(X), by which ∇(γ(p)) can
act on the quotient abelian group H1(X(C) \ cusps, Z)/(Zγ(p)).

I have said other things, like about how X itself in the complex
sense is a leaf of a foliated vector bundle, and so-on, and these are
not really connected to what we have here. But what we have here
is that there is an action L by which L(∇γ(p)) is a matrix acting
on this quotient group.

I am purposely being adventurous now and imagining somehow, in
analogy with the Weil conjectures, that we should lift of L to an
endomorphism L1 of H1(X(C) \ cusps, Z); let L0 be the induced
action on Zγ(p) which I write as M0(X)γ(p) = H0(X(C)\cusps, Z),
we have that Li assigns an integer matrix once a cohomology basis
is chosen, to each cohomology group, and we are contriving that the
determinant det(L) is a ratio of two determinants. Then

Theorem.

1∏
i=0

det(Li(∇γp))(−1)i =
1∏m

j=1 disc(Oj/Z)

where disc means discriminant and Oj is the structure ring of the
j’th connected component of the scheme theoretic fiber of X over
p, and m is the number of connected components.

The left side we’ve written looking like a multiplicative Lefshetz
character; when the theorem implies that the points p where its
absolute value is 1 are exactly those points above which the points
of X are scheme-theoretically disjoint rational (=integer) points.
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And

| [R : Of−1
X p]

2

1∏
i=0

det(Li(∇γp))(−1)i |= 1

if and only if all C points above p are rational, where Of−1p ⊂ R =∏s
k=1Of−1

X p/Pk, with P1, ..., Ps the minimal prime ideals and s the

number of irreducible components.

In the case when X is suituably Galois, all the Oi are isomorphic.
Then the left side as a function of p precisely determines the set of
rational non-cusps of X.

To give an algebraic formula for the left side would amount to con-
sidering the graph of the map from X to P1, and residues on the
graph. This can obviously be done if the ring structure of M(X) is
known. We’ve given a Lefshetz formula for the second factor on the
left side. For the first factor, under the relations γ(p) = 0, τ(p) = 1

the whole of M(X) retracts isomorphically to M4(X)
M2(X)γ(p)

which be-

comes the affine coordinate ring of the fiber over p and determines
this factor too.

The dependence on the level Γ may not be a Σ0 formula; any al-
gebraic or topological formalism is meant to be only an allegory.
For example, the fact that modular forms are complex analytic en-
tities means that the search for rational points can take place in the
domain of analytic number theory. Though that was clear at the
outset too.
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Outline geometric proof of Mordell’s conjecture

We begin with an absolutely irreducible complete (projective) curve
X defined over the rationals, equivalently over the integers. Let g
be the genus of X. Mordell’s (proven) conjecture is the statement
that if g > 1 then X has only finitely many rational points.

Belyi’s theorem implies, even more generally just from the fact that
X is legitimately one-dimensional, that we can choose a map f :
X → P1 branched over the three points, which we can take to be
{0, 1,∞} under an automorphism of P1

C. Therefore we can represent
X as a ‘modular curve’ with respect to some finite index subgroup of
Γ(2). We can use this at a final stage of the proof, where it implies
that f − c = 2g − 2 where f is the degree of the branched cover
and c the number of cusps (ignoring multiplicity). We will make the
assumption that f can be chosen with a number of nice properties.
Our aim is not to present a useful proof, but rather to present a
geometric proof with very restrictive hypotheses.

Under our very restrictive hypotheses, we’ll actually show that X
has no noncuspidal rational points whatsoever. That is, that the
rational points are a subset of the fibers containing critical points of
f. I do not pretend to have actually guessed where the rational points
are, and most likely for most X there is no function f satisfying all
our hypothesis. When there are are no functions f satisfying all
the hypotheses, one should weaken the hypotheses while admitting
finitely many noncuspidal rational points. The exceptions which
are admitted in removing our very strong hypotheses until sucn an
f is found to exist are known to be finite in number only because
Mordell’s conjecture has been previously proven.

Remark. The composite f with Belyi’s maps [x : z] 7→ [(x
a
)a(y

b
)b :

( z
c
)c] for P1 itself, with x+y = z, a+b = c, which transform rational

points over [a : c] to cusps, actually shows that proving the existence
of such an f is abstractly equivalent to proving Mordell’ conjecture.
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Let X be a Riemann surface. Choose a map f : X → P1
C branched

over three points, which we label {0, 1,∞} according to an auto-
morphism of P1. Suppose the lifted algebraic structure on X has
a Z form, and choose one integer structure. Here are our seven
hypotheses.

i) (all critical points of f are rational) Critical points of f cor-
respond to spectra of rings of algebraic integers, and let’s just
assume that each is a copy of Spec(Z). This assumption applies
for example when X is taken of level Γ0(N)∩Γ(2) with N odd
and square free. Note that each critical point of f corresponds
to a cusp of X but some cusps correspond to non-critical points.

ii) (ΩX is locally free) Let us also suppose that the sheaf of one-
forms of X is locally free (even when X is interpreted as the
Z-form).

iii) (f is of Galois type) We also assume that X is Galois over P1,
or, more generally that if there is one rational point in a fiber
(of the map with cusps deleted, i.e. over a non-cusp) then all
points in that fiber are rational. A fiber over a rational point
more rigorously means this: we have associated to a rational
point of P1 a map Spec(Z) → P1 and the scheme which is the
pullback of X along this map is the fiber.

iv) (nice stabilizer actions) Assume that the stabilizer in Aut(X)
of each cusp component acts transitively on the fiber compo-
nents which meet that cusp, or, more generally that when two
fiber components meet each cusp component, the intersection
subscheme of the cusp component is independent of choice of
fiber component.

v) (primes behave generically) For each irreducible component C
of the cusp locus and each fiber F over a point of P1 \{0, 1,∞}
assume that there is a prime number p ∈ Z such that for every
rational component of F the point indexed by p is not contained
in any other cusp component, and it is contained in C if and
only if the fiber component meets C.
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vi) (technical condition) For a cusp C and fiber F, using the prime
number p from v), for any finitely-generated abelian group A,
denote by [A] the order of the p primary part of A, and for
A ⊂ B arbitrary abelian groups, of finite index, denote by
[B : A] the order of the p primary part of B/A. Let Φ ∈ OF
be the different ideal such that OF/OFΦ ∼= ΩF ⊗ω−1

X , suppose
Φ is principal, let φ be a generator, and let OF be the normal-
ization. For each F such that OF = Z × ... × Z, and for each
inclusion τ of a fiber component into F, assume that if the fiber
component meets C then [τ ∗ OFOFφ

] = [ OFOFφ
]. In other words that

the kernel of the natural surjection OF
OFφ
→ τ∗τ

∗( OFOFφ
) has triv-

ial p primary part. (It is onto because τ ∗OF ∼= Z). We’ll show
that the condition follows from iv) when the localization at p
of OFφ ⊂ OF + pOF happens to be the entire maximal ideal.
The occurrence of τ here refers to one fiber, and is the same as
what will be called τi later when we number the components
of F.

vii) (conductor-discriminant formula). This next condition can pos-
sibly be deduced from Grothendieck duality; as I have not
proved this, we have to assume it: Let ω ∈ ΩF ⊗ω−1

X be a span-

ning element. Assume that the pairing [ÔF/OF ]⊗[ΩF⊗ω−1
X ]→

Q/Z given by 〈r mod OF , τ〉 = traceOF /Z( r
φ
τ
ω

) is perfect (in-

ducing a Pontryagn duality) where ÔF = {x ∈ OF ⊗ Q :
trace(xr) ∈ Z for all r ∈ OF}. Note that it implies that [OF :

OFφ] = [ÔF : OF ][OF : OF ] with both factors equal. Also
then [OF : OFφ] = [OFφ : OFφ] since the square of the second
factor is equal to the product. Also [OF : OFφ] = [OF : OFφ]
as one deduces directly, or because it is the index of the action
of φ on two lattices in the same rational vector space.
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Now we can state

Theorem. Suppose that f : X → P1 satisfies i),...,vii). Suppose
further that in the fiber F over every rational point of P1 \{0, 1,∞}
any two fiber components can be connected by an alternating se-
quence of intersecting fiber and cusp components. Then X has no
noncuspidal rational points unless g < 2.

Before proving the theorem, let’s give sufficient conditions for vi) to
hol and discuss evidence for vii).

Discussion of vi). Consider the surjection OF
OFφ
→ OF
OFφ

. The image

is contained in OF
OFφ

. The ring OF is just a cartesian product of

integral domains corresponding to the irreducible components of F.
We only need to consider the components which meet C, so number
these O1, ...,Os. They happen to be copies of the ring of integers Z
but let’s use slightly more general notation in case we later consider
cases when fiber components may be non rational.

The p-primary component of OF
OFφ

is a subring of the p primary

component of O1

O1φ
× ... × Os

Osφ . We may say ‘p-primary component’

or ‘localization at p’ here interchangeably. The reason that only
these s components need to be considered is this: since there is no
number-theoretic ramification on F, φ defines the self-intersection
locus of F. Our choice of prime p then ensures that the p primary
component of any Oi

Oiφ is zero if i is such that Spec(Oi) is one of the

components of F not meeting C.

The p-primary component of the subring OF
OFφ

of this cartesian prod-

uct, however, must be indecomposable. For, the kernel of OF
OFφ
→

OF
OFφ

is a nilpotent ideal. If the image localized at p contained an

idempotent element besides 0 or 1 idempotent lifting would provide
such an element in the localization at p of OFOFφ . But this is the struc-

ture sheaf of a subscheme of X supported on the intersection of the
fiber over the point of Spec(Z) corresponding to p with the sub-
scheme of F defined by φ = 0. Our hypothesis about primes implies
this is a single (closed) point of our cusp component C, and so the
p primary component of the is a local ring.
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Condition vi) as we’ve chosen it requires more than indecompos-
ability, though. If we let Ii ⊂ OF

OFφ
be the p primary component

of the kernel of the i’th projection, then obviously the intersection
I1 ∩ ... ∩ Is = 0. So Ii = 0 for all i if and only if Ii = Ij for all
i, j. If pOF,p + OF,pφ happens to be the full maximal ideal, then
OF,p/OF,pφ will have maximal ideal just the multiples of p; as it has
residue field Fp it must be reduced to its characteristic subring. All
theOi/Oiφ are isomorphic by the action iv) and within the cartesian
product any subring at all contains the characteristic subring and a
subring of the cartesian product, containing 1, which is reduced to
its characteristic subring must equal the diagonal.
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Outline proof of vii). In the first place, it is easy to verify this
in the case when OF is generated by one element as a ring. More
generally it is not clear whether this is true abstractly about subrings
of Zn with principal different ideal, or whether we need to invoke
more context. One might check whether coherent duality pairing

f∗OX ⊗ f∗ΩX → ΩP1

is perfect. Denote by j the inclusion of our integral point in P1, then

j∗f∗ = f∗i
∗

where the f∗ on the left just means considering underlying abelian
groups. Then the pullback of the coherent duality pairing to the
copy of Spec(Z) corresponding to a non-cusp rational point of P1

gives a pairing i∗ΩX ⊗Z OF → Z. We can write i∗ΩX up to isomor-

phism as
1
γ

ΩX

ΩX
with 1

γ
∈ OF ⊗Z Q. Three interpretations (by trace

forms, by restricting coherent duality, and by now interpreting the
left factor as the image of the residue map from logarithmic forms)
all appear to coincide, but it may be an exercise in duality theory
to be sure that condition vii) really holds exactly as we have stated
it.
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To prove the theorem we’ll first prove a lemma.

1. Lemma. Under conditions i) to vii), the incidence relation
between cusp components which meet F and components of the
fiber F itself has the structure of a combinatorial graph G with no
edge-loops. That is to say, each cusp component which meets F is
incident to exactly two fiber components.

Proof of Lemma 1. Retaining our choice of cusp component C and
prime p number the inclusions of fiber components into the fiber
τ1, ...τm. For each i = 1, 2, ...,m, condition vi) says that

[τ ∗i
OF
OFφ

] =

{
[OF : OFφ] , C is incident to the i’th component of the fiber,

1 , otherwise

Suppose F meets C. If we let u be the number of fiber components
meeting C we have, letting τ be the pullback to the full normaliza-
tion,

[OF : OFφ]u = [
OF
OFφ

]u

=
m∏
i=1

[τ ∗i
OF
OFφ

]

= [τ ∗
OF
OFφ

]

= [
OF
OFφ

]

= [OF : OFφ]

= [OF : OFφ]

= [OF : OFφ] [OFφ : OFφ]

= [OF : OFφ]2.

The number is a nontrivial power of or chosen prime p. Since the
square of a nontrivial integer is the same as the u power, we can
conclude that u = 2.
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Proof of Theorem. Let G be now the graph with cusp components
which meet F for the edges and components of the one fiber F for
the vertices. We have

f − c = 2g − 2

for g the genus of X, f the order of a regular fiber (the covering
degree), and c the total number of cusps. If all cusps meet F then

χ(G) + χ(X) = 0

where χ(X) is the Euler characteristic of the underlying topological
space of the compact curve X. By the assumption of the theorem
that the graph G is connected then χ(G) < 2 therefore

2− 2g = χ(X) > −2

hence
g < 2.

If there is any cusp component not meeting F then g = 0 and there
are one, two or three such cusp components (in the last case G being
a tree); and it is not possible for more than three cusp components
to be disjoint from F.

Thus, under a collection of simplifying hypotheses which actually
cannot be simultaneously true except in trivial cases, we’ve shown
that when g > 1 there cannot be any noncuspidal rational points;
and the idea is that by weakening the hypotheses one characterises
exactly what are the rational points.
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Example.

Let’s take as an example the elliptic curve

y2z = x(x− 3z)(x− 4z).

We will take as our function f the projection to the set of [x : y].
This branches over [0 : 1 : 0], [0 : 0 : 1], [3 : 1 : 0], [4 : 1 : 0] so it
does not satisfy the hypothesis of branching only over 0, 1,∞, and
this means that the equation relating f, c, g is not true. Of course
g = 1, f = 2, c = 4. Thus, unlike the case of a modular elliptic curve,
where the incidence graph of cusps and fiber components in a fiber
must have Euler characteristic zero plus the number of unused cusp
components, here, if it exists, it has Euler characteristic −2 plus the
number of unused cusp components.

Let’s choose as F the fiber over [1 : 1]. The components of the fiber
are indexed by [6 : 6 : 1] and [2 : 2 : 1]; neither component of the
fiber meets any of the four cusps (as one can see by considering
fitting ideals of eight two by three matrices). The fiber components
are glued together or order two at the point indexed in each by the
prime 2, but not meeting any cusp.

We are supposed to ignore cusps which do not meet any fiber (in this
case all of them), and our graph consists of two points, and does have
Euler characteristic 2. The fact that the two points are not connected
together allows the existence of the rational point. That is, the fact
that the two fiber components do not meet at any common cusp
component means we interpret them as disconnected in the graph,
even while they meet each other. It would be tempting to try to
find examples where the two fiber components occur as vertices of a
cusp interpreted as an edge, with only three cusps uninvolved. One
would think this is the more generic situation, so these should occur.
The rule that each cusp (which meets any fiber component) must
meet exactly two is also not difficult to satisfy in this example. In
cases when the branching really is over just {0, 1,∞}, there just not
be enough cusps serve as edges to connect the graph unless g < 2.
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In the example, the chain of rings and ideals

OF ⊂ OFφ ⊂ OF ⊂ OF

is each as an abelian subgroup of Z × Z in the standard basis, the
image of the respective matrix(

2 2
2 6

)
,

(
2 0
0 2

)
,

(
1 1
1 3

)
,

(
1 0
0 1

)
while the element φ is represented by the diagaonal integer 2. We see
that while OF

OFφ
has two elements, when we tensor with either com-

ponent of OF it again has two elements, consistent with condition
vi). Also that the conductor-discriminant formula vii) holds, with
both sides of the equation evaluating to 2. However the ramification
which glues the fiber components together does not come from the
cusps, rather from a ramification component that maps onto the
whole of the subscheme of P1 defined by the ideal generated by 2.
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2. Technical facts about modular curves.

In this section I’ll prove some things that were stated in ‘Conclu-
sions about modular forms.’ Note that the overall point of that
paper having to do with interpreting the discriminant as a multi-
plicative Lefshetz trace on ordinary cohomology is not needed in
the section above, we can interpret the Euler characteristic of S as
merely the number 2− 2g without needing to use any topology, and
Mordell’s conjecture is likely not related in any meaningful way with
any notion of multiplicative Lefshetz characters.

We take on the hypotheses of ‘Conclusions about modular forms.’ In
particular X is a Z form of level Γ ⊂ Γ(2) an arbitrary finite-index
subgroup, assumed to be absolutely irreducible. In what follows,
when I say a ‘fiber’ I mean a regular fiber, that is, the scheme
theoretic pullback of a non-cusp copy of Spec(Z) in P1.
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The OF -module structure.

First is the detail about how to show that the ring OF acts on
M4(X)/(M2(X)γ(p)) where γ(p) is the modular form corresponding
to the global section of O(1) = ΩP1(C) with C the divisor of the
three cusps of P1, interpreted as a one form on the integer projective
allowed simple poles at 3 points. If we were working over a field we
would twist the residue sequence by F giving

0→ ΩX(C)→ ΩX(C + F )→ OF (C)→ 0.

An exact sequence which is an integer form of this where i is the in-
clusion of the fiber (now things are indexed soM2(X) = ΩX(log f−1

X C)0 =
f ∗XΩP1

Z
(log C))

0→M2(X)
γ(p)→ M4(X)→ i∗M4(X)→ 0

with global sections sequence still exact

0→M2
γ(p)→ M4 → i∗M4(X)→ 0.

Then M4(X)/(M2(X)γ(p)) is an invertible sheaf on the fiber F , and
its endomorphism ring is isomorphic to OF .

This also gives the OF action on an appropriate quotient group
H1(X \ C, C)/H0(X \ C,C) as we’ve mentioned elsewhere, for or-
dinary cohomology of the transcendental points with cusps deleted.
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The action of ∇γ(p).

Next is the detail about how to get the matrix L∇γ(p).

We get it by identifying this element with an element of OF and
using the OF action.

The principal part ∇γ(p) ∈ P(OX(F )) does not belong to the kernel
term in the exact sequence

0→ ΩX(F )→ P(OX(F ))→ OX(F )→ 0

but after applying i∗ it does, and gives the element, let’s still call
it ∇γ(p) but now in i∗ΩX(F ). This means that from the exact
sequence

0→ i∗OX∇γ(p)→ i∗P(OX(F ))→ P(OF (F ))→ 0

mapping onto

0→ 0→ OF (F )→ OF (F )→ 0

the result is (no need to notate twisting by F since OF (F ) is prin-
cipal)

0→ OF∇γ(p)→ i∗ΩX → ΩF → 0.

If middle term contains a principal generator ω so that

i∗ΩX = OF · ω

then there is an element of OF which is the quotient ∇γ(p)
ω

, and the
action of this via the OF action on M4/(M2γ(p)) is what we call
φ = L∇γ(p).3

3If there is no principal generator, one may look ahead to note 9; choose a Z basis of OF
and let L∇γ(p) the matrix whose columns coordinatize a Z basis of the different ideal Φ as
correctly defined on the first page of the note.
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More geometric version.

Finally, about making things more geometric, one can say that the
reason ∇γ(p) was not contained in i∗Ω(F ) is only because we need
to allow more poles. I am not sure if I described this correctly in
‘conclusions’ but certainly we can do this.

With a, b, c, d as they are there, then

d log
au+ bv

cu+ dv

has poles on two disjoint fibers, one over p and one over the point q
where the sectionj τ(p) is zero. When we pull back along the fiber
over p the pole over q will disappear.

This is the unique spanning section (up to sign) of Ω(Fp+Fq) where
Fp is the same as what we call F, that is, fiber over p and Fq is the
fiber over q, if we take X to be the projective line itself.

So this same element exists when X is general, and it is uniquely
characterised up to sign.

So we then use the exact sequence

0→ (OF ×OF ′)∇(γ(p)τ(p))→ P(OX(Fp + Fq))→ ΩFp × ΩFq → 0

This may be slightly mistyped but anyway pulling back via i∗ to
just F gives what we had before, but the point is that we are taking
the residue

Res d log
au+ bv

cu+ dv

on Fp and Fq and ignoring the residue on Fq.
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The set of all residues on F is a copy of OF (still assuming i∗ΩX

principal) and we are looking at one particular residue. I think that
this short-cuts that complicated way of defining φ = L∇γ(p). I think
it is now simply

L∇γ(p) = Res d log
au+ bv

cu+ dv
,

where we mean, ignore the residue on Fq and just consider the
residue on F = Fp.

Now, if this is right, what it means for the discriminant to be 1 or
−1 is that the form

d log
au+ bv

cu+ dv

takes the full pole everywhere along F .

Now, this fails to have a pole at any ramified cusp, and these meet F
so its residue is going to develop zeroes on ramified cusps which will
ruin some of the poles, so it seems that it is rarely if at all possible
except for the identity map X = P1 → P1 for the discriminant to
be that small.

The condition of rationality, necessary and sufficient, is that the
vanishing of the residue is only as much as matches the constraints
which glue together the copies of Spec(Z) along the cusps in the
appropriate way. This is exactly the issue which we analyzed very
carefully in section 1, but under simplifying hypotheses there. (Note
also, there can be finitely many whole fibers of the absolute map
X → Spec(Z) which ramify, and one of the things condition v) did
was to avoid this choice of prime.)

One way of proceeding is to begin resolving the singularities of the
fiber while simultaneously changing the meromorphic form corre-
spondingly, if the fiber is completely resolved and the meromorphic
function not reduced to a holomorphic generator, the fiber must
contain a nonrational point and conversely.
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Example: the Fermat curves

Let’s calculate the global sections of symmetric powers of one-forms
on the upper half-plane which are invariant under the p commutator
subgroup of Γ(2), for a prime p, and holomorphic at cusps (upstairs).
Here, we only are going to ‘set out the stall’ in the way of approach-
ing another technique; that is, observing the meromorphic residue
Res d log au0+bu1

cu0+du1
while resolving singularities in a fiber.

For the Fermat curve Y defined by xp + yp = zp in coordinates
[x : y : z] there is an obvious first choice of Belyi function, sending
[x : y : z] to [xp : yp] , which branches over 0,−1,∞ just as needed.

Then there are no further choices to make; the group is the p commu-
tator subgroup of Γ(2). All relations in the ring M(Y ) of symmetric
products of one-forms invariant for the group and holomorphi at
cusps, follow from one relation in a larger ring, once we embed the
subring as the terms in

⊕p−1
i=0C[x, y]zi (1)

of total degree divisible by p. As our convention (no longer using Dol-
gachev’s convention) we will not look at odd weights, and let’s use
the convention where the terms of weight 2k correspond to mono-
mials of degree pk.

Just to interject a comment, ‘holomorphic at the cusps’ has meaning
even without adjoining any boundary points to the upper half plane;
if we write a form on H as f(τ)dτ for f arbitrary, while the one-form
may be multivalued on the algebraic curve, we can make sense of
the notion that f(τ) is a multivalued holomorphic function, and that
holomorphicity is what is equivalent to holomorphic at a boundary
cusp on H, but it makes sense ‘downstairs,’ and it means that the
multivalued function f(τ) is holomorphic, and the orders of the poles
of the multi-valued form f(τ)dτ are the simple poles of dτ at cusps,
minus the zeroes of f.
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The ring M(2) (only looking at the even part) is the subring gen-
erated by xp and yp, and the branched covering degree is α = p2.
The Euler characteristic of the Fermat curve is p2 − 3p as one can
see from the adjunction theorem or otherwise.

Note too that this is consistent with the rule f − c = 2g − 2 as
we have regular fibers with p2 elements, and p cusps over each of
0, 1,∞.

We can just count the monomials in (1) of degree kp, there are
kp+ 1− i of them in C[x, y]zi when that number is not negative, so
for k not zero there are

p−1∑
i=0

((k − 1)p+ 1 + p− i) = (k − 1)p2 +
(p+ 1)(p+ 2)

2
− 1

=
1

2
(2k − 1)p2 +

3

2
p. (2)

We can check our prediction in terms of genus and degree. We
predicted that this should equal

(k + 1) · 1 + k · (α− 1− g) + (k − 1) · g. (3)

We have
α = p2

g =
1

2
(p2 − 3p+ 2)

and it is indeed true that substituting these values of α and g into
(2) yields (3).

We also predicted then something that is at least not immediately
obvious from the algebra: that when we view (1) as a ring using
the Fermat equation, the components of total degree divisible by
p have as a free basis over C[xp, yp] the element 1 together with
the monomials of degree p (always excluding any multiple of zp )
excepting xp, yp and the monomials of degree 2p excepting any of
these two times a monomial of degree p. The total number when
these are added is exactly p2 corresponding to the rule

1 + (α− 1− g) + g = α = p2.
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It follows immediately from what we have already said that there
is an explicit representation of the subringf based on the monomi-
als of degree divisible by p, by holomorphic symmetric products of
one-forms on the upper half plane, invariant by the p commutator
subgroup of Γ(2), and which are ‘holomorphic at the cusps’ at the
boundary of the upper half plane.

In fact, when we look at what these turn out to be, we see that the
Fermat equation simply corresponds term-by-term with the Jacobi
sum formula.

That is, we are led, with no essential choices possible, to the repre-
sentation

xp 7→ 15

16
θ(0, τ)4dτ +

1

16
θ(1/2, τ)4dτ

yp 7→ 1

16
eiπτθ(τ/2, τ)4dτ

zp 7→ θ(0, τ)4dτ

.

The Fermat equation
xp + yp = zp

corresponds to the tautology known as the Jacobi equation

θ(0, τ)4 = θ(1/2, τ)4 + eiπτθ(τ/2, τ)4.

The role of the λ function is in the fact that now

1

16
λ(τ) =

yp

zp

and so

(
x

z
)p = 1− 1

16
λ(τ).

Once we have represented yp as above, we find the so-called q ex-
pansion of xp−jyj = (x

y
)p−jyp for j = 0, 1, 2, ...p − 1 explicitly by

substituting into the equation

xp−jyj 7→ (1− 1

16
λ(τ))

p−j
p eiπτθ(τ/2, τ)4dτ.
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We can extend this to j = p by the same formula without a contra-
diction and more generally when a+ b+ c is divisible by p

xaybzc = θ(0, τ)4(a+b+c)/p(1− 1

16
λ(τ))

a
p (

1

16
λ(τ))

b
pdτ⊗

(a+b+c)
p

The leading coefficient of the q expansion 1
16
λ(τ) is equal to 1 and

all other coefficients are integers.

We should perhaps make a comment about plane curves and Puiseux
expansions, that we already know the so-called q expansion of λ(τ)
as λ(τ) = 16q− 128q2 + 704q3.... which results when we set q = eiπτ

in the formulas above. And the Taylor series of the (1− 1
16
λ(τ))j/p

then yield q expansions for all the monomials of degree a multiple
of p in (1) just by replacing λ(τ) itself by its q expansion.

That is to say, working over C, we have given an example of the case
of the p commutator subgroups of the Γ(2), and we see that we just
obtain the Fermat equation represented as the same as the Jacobi
equation.

And it was not necessary to use Newton polygons, or Puiseux theory.
This is because the Fermat curves are smooth plane curves.

In this sense, every curve is a plane curve; that is, if we are willing
to allow compactifications where we adjoin an algebraically singular
point at cusps, we can always represent our curve as a plane curve
in this way; but the Puiseux theory becomes more nontrivial. Or,
we can always represent a curve as a smooth curve, but it may not
be a plane curve.

Now, since our equation (the Fermat equation) is an integral equa-
tion, there is already implicitly a Z form. Unlike the case of our as-
sumptions in ‘outline geometric proof of Mordell’s conjecture,’ there
is not rationality at the cusps. Above each of the three cusps in
X(2) are a pair of cusps, one rational and one whose residue field is
cyclotomic.
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A non-cusp integer point of X(2) is [b:-a] distinct from [0:1], [1:0],
[1:1], and choosing c,d so the determinant of(

a b
c d

)
is equal to 1, we can make sense of the rational function

axp + byp

cxp + dyp

It is a ratio between two one-forms for which we’ve given the q
expansion explicitly.

A basis of the scheme defined by axp+byp = 0 consists of the degree
2p monomials modulo axp + byp times the degree p monomials, and
setting cxp+dyp to 1 has the same effect as just ignoring monomials
of any other degree.

This makes sense even if a, b are not p’th powers; the ring of forms
has no element corresponding to x or y themselves.

We consider the residue of the logarithmic deRham differential

d log
axp + byp

cxp + dyp

on the fiber over axp + byp = 0. Over Z, the reduced fiber over
each of the three cusps has normalized coordinate ring a cartesian
product of Z with the p’th cyclotomic integers.

When we look at the logarithmic deRham differential, we are taking
the differential of an actual analytic function on the complex points
of the Fermat curve. But the fact that the relations among such
things are algebraic means that we can understand the residue as
a section of a line bundle on a scheme finite type over the integers.
More simply stated, the rational function shown above is represented
by a section of the structure sheaf of the algebraic curve over the
integers, and it is a rational section in that it is a section over an
open subset smaller than the entirety of the scheme.

The same expression describes a complex analytic function which
we have written down explicitly via its q expansion.
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The specific issue here is what seems to occur in SGA7 or in notions
of Neron models and elliptic curves. The idea originally by Frey, or
students of Serre at this juncture says, what if we knew that a,b are
p’th powers, and they add to c, another p’th power?

After all, λ(τ) is the series describing the cross ratio, if the elliptic
curve with lattice Z+Zτ is described as branching over four points;
and if one of these is 0 and one is∞, such a choice of a, b is describing
a Frey curve (though it’s not clear where Frey lost the factor of 16).

However, it is not intrinsic to the geometry of the Fermat equation
that the universal cover of C \ {0, 1} happens to occur when one
considers elliptic curves and cross-ratios. Rather the Fermat equa-
tion describes the relation that occurs in nature among symmetric
powers of forms on H invariant under the p commutator subgroup
of Γ(2).

To normalize the coordinate ring of a regular fiber requires sepa-
rating the components. Some gluing can exist in the noncuspidal
ramification at p itself, but the remainder has to take place where
the fiber components meet cusps, and if a, b, a+b are relatively prime
the points where a fiber components meets each cusp are disjoint.
Note how this is vaguely reminiscent of the a, b, c conjecture.

A rational component of the fiber is one along which the vanishing of
the residue exactly matches what should be predicted by an intersec-
tion theory; at non-rational components there is further vanishing
of the residue.

One of the hypotheses of the outline Mordell discussion was that
the sheaf of one forms on the ‘modular’ curve over Z is locally free.
That is not true here due to the non-cuspidal ramification at p, but
it is true away from p. There we analyzed the case when Ω is locally
free and all cusps are rational using a notion of duality. Here we
haven’t begun describing any relevant intersection theory.
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The residue calculation

Earlier I was mentioning that it is not difficult to write down hy-
potheses which strengthen Mordell’s conjecture, with the conclusion
that particular modular curves have no noncuspidal rational points.

The hypotheses where this was written down most carefully included
a type of Galois condition, that if a fiber contains any rational point,
all must be rational.

The Fermat curves, also, as I mentioned, arise with homogeneous co-
ordinate rings the global sections of symmetric powers of one-forms
on the upper half-plane H holomorphic at cusps on H, which are
fixed by the p commutator subgroup of Γ(2). The structure map to
X(2) is a Belyi map as always, and a corresponding integer struc-
ture on the Fermat curve coming from specifying the branch points
to be 0,−1,∞ gives the usual integer structure of the p’th Fermat
curve.

Recent news stories remind us of the depth of history which un-
derlies the Fermat theorem, the friendship between Shimura and
Taniyama in Japan in the 1950’s. Wiles’ proven theorem is an in-
stance of the same strenghtened conclusion, that the Fermat curve
has no noncusidal rational points except when its genus is less than
two. The case of genus one also has no noncusipdal ratoinal points,
leaving the pythagorean triples and the triples with an entry of zero
being the only integer solutions of the Fermat equation.



Residue calculation (8)

In earlier cases, I was relating the different element to duality and
trace forms. That would be the aim here too, and to relate it to
the intersection matrix among the components of F , if a suitable
intersection theory can be found.

Let’s take p to be a prime, although this is not necessary.

The way to calculate integer points in a fiber over a noncuspidal
point [xp : yp] = [a : b], I’ve claimed, is to choose integers

A = −b
B = a

C

D

with C,D chosen so that 1 = AD −BC.

The matrix (
A B
C D

)
belongs to SL2(Z).

The residue of the form

d log
Axp +Byp

Cxp +Dyp

on the fiber F defined by the equation Axp+Byp = 0 among the set
of all residues, defines a ‘different element’ in a twist of the restricted
canonical sheaf. Let F be divisor defined by the numerator, and F ′

the divisor defined by the denominator. Since we’ve used SL2(Z)
they are disjoint even scheme-theoretically.
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The way we will calculate the residue is to use principal parts. Al-
though there are nice ways of describing this, in terms of meromor-
phic connections, let’s just consider it as some notation to write
∇(x),∇(y),∇(z) for the deRham differentials of x, y, z in affine
space which can be viewed as global sections of first principal parts
in various ways which are a basis rationally (in the sense of rational
functions).

In the first instance, let’s work over Z[1/p] so that we can identify, on
the projective plane, the first principal parts of O(p) with O(p− 1)
tensor the first principal parts of O(1).

Then we may write

P(O(p)) = O(p− 1)∇(x)⊕O(p− 1)∇(y)⊕O(p− 1)∇(z).

This direct sum of three line bundles contains a trivial line bundle,
spanned by

1

p
(∇(xp) +∇(yp)−∇(zp)).

Here we are allowed to use the rule of a derivation, and this is the
same as

xp−1∇(x)⊕ yp−1∇(y)⊕ zp−1∇(z).

Because the basic sections have no common zero anywhere on the
projective plane, this is a line bundle inclusion (locally split).

Therefore the third exterior power of P(O(p)) is the same as the
second exterior power of the quotient vector bundle. The quotient
vector bundle restricts on the Fermat curve X to the principal parts
mod torsion of OX(D) where now D is the restriction to X of any
hypersurface of degree p. We may take in particular our fiber F.

Putting things together a bit, the third exterior power of our rank
three vector bundle corresponds to a hypersurface of degree 3p− 3
on the projective plane; and so the second exterior power of the
torsion free princpal parts of the locally free sheaf L = OX(F ) on
the Fermat curve corresponds to the intersection of the Fermat curve
with a degree 3p − 3 hypersurface, and we may think of this as a
divisor of degree 3p2 − 3p on the Fermat curve.
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It is always true, because of the sequence

0→ ΩX ⊗ L → P(L)→ L → 0

which exists even if neither ΩX nor L is locally free, that there is
a map φ : Ω ⊗ L⊗2 → Λ2P(L), and in cases like the case at hand,
when L is locally free, so the exact sequence is locally split, this is
an isomorphism. Here the letter P should be taken to be torsion free
first principal parts (the reduction moduo torsion) and the kernel
term should refer to the torsion-free Kahler differentials, which is
the reduction of the one-forms modulo torsion.

We have said that this corresponds to a degree 3p2− 3p divisor, the
degree of the canonical divisor of the Fermat curve is p2 − 3p and
we see that this agrees with the degree of L ⊗ L ⊗ Ω, that is, it is
larger than the canonical degree by 2p2 which is twice the degree of
F.

The inverse isomorphism, on local sections f, g of L, is given

∇(f) ∧∇(g) 7→ fg d log(f/g).
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1. Remark. There is a slight subtlety in that we are not allowed
to factorize the expression fg d log(f/g) = g2d(f/g) = f 2d(g/f) as
a tensor such as

g⊗2 ⊗ d(f/g)

because the right factor is not a section of one forms except when g 6=
0. However working locally the way to see that the expression fdg−
gdf corresponds to a local section of L⊗L⊗Ω in a neighbournood
of a point of the Fermat curve is to choose a local section s of L
not zero at that point. Then (and the analagous thing is true for
higher exterior powers in cases of higher dimension, it is a property
of contracting under the Euler derivation) there is a homogeneity
property of the expression so that

fdg − gdf = s2(
f

s
d
g

s
− g

s
d
f

s
).

The right side is an expression involving rational functions which
are well-defined at our point, giving a local section of Ω, and the
factor s2 is a local section of L⊗2. So this can be interpreted as a
tensor product then, as we’ve worked locally

s⊗2 ⊗ (
f

s
d
g

s
− g

s
d
f

s
).
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Returning to our exposition, to obtain our ‘different’ element, under
the isomorphism between global sections of L and polynomials of
degree p in x, y, z modulo the Fermat relation, we shall multiply our
logarithmic derivative by two terms

(Axp +Byp)(Cxp +DY p)d log
Axp +Byp

Cxp +Dyp

and pass to the image under the isomorphism φ, which is

(A∇(xp) +B∇(yp)) ∧ (C∇(xp) +D∇(yp)).

To interpret this as an element of the third exterior power of princi-
pal parts of O(p) on the projective plane (later restricted to F ) we
will wedge with the basis element of the trivial sub bunde, that is
we will wedge this expression with

∇(xp) +∇(yp)−∇(zp).

The result is

(xyz)p−1 determinant

A B 0
C D 0
1 1 −1

∇(x) ∧∇(y) ∧∇(z)

= −(xyz)p−1∇(x) ∧∇(y) ∧∇(z).

The coefficient monomial is now interpreted as a section of the line
bundle O(3p − 3) on the projective plane, and the intersection of
F with the locus where this is zero is the subscheme defined by the
‘different’ element.

It follows that when working over Z[1/p], if F has a rational point
then the different ideal of OF is generated by (xyz)p−1 which on
each compopnent is a root of unity times an integer, and the integer
does not depend on which component we are looking at.
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2. Remark. In the way of explaining why we have obtained our
different element as a restriction of a section of Ω(2F ) when one
should expect to use Ω(F ), if we interpret L as the sheaf of ra-
tional functions with at worst simple poles on F, then the corre-
spondence between homogeneous polynomials of degree p modulo
the Fermat relations, and global sections of L, is that a polyno-
mial f corresponds to the rational function f

Axp+Byp
. Thus when we

multiplied our logarithmic derivative by the product of polynomials
(Axp +Byp)(Cxp +Dyp) the corresponding sections which we mul-
tiplied by were (1)(Cx

p+Dyp

Axp+Byp
). The numerator of the coefficient has

divisor of zeroes F ′ disjoint from F and acts to multiply the residue
by 1 since it restricts to 1 on F. The denominator has a simple zero
on the Cartier divisor F ; the product represents the same residue
as the logarithmic derivative, though now on a pole of order two.

We can now state what we’ve proved.

3. Theorem. Let X ⊂ P2 be the Fermat curve defined by xp+yp =

zp for p a prime number. For each

(
A B
C D

)
∈ Sl2(Z), let F

be the fiber of X → P2 = {[xp : yp]} over the point defined by
Axp +Byp = 0. Then

i) the scheme-theoretic zero locus of the residue Res d log Axp+Byp

Cxp+Dyp

on F agrees on the complement of the scheme p = 0 with
the restriction to F of the scheme-theoretic zero locus of the
section (xyz)p−1 of the line bundle OP2(3p− 3) (which restricts
to L⊗2 ⊗ ωX).

ii) If F has a rational point [a : b : c] then each of x, y, z restricts
on each irreducible component of F to an integer times a root
of unity.

iii) Still assuming a rational point [a : b : c], taking a, b, c pairwise
coprime, the different ideal of OF [1/p] is principal generated
by the element (abc)p−1 of the integers Z viewed as the charac-
teristic subring.

iv) Still assuming a rational point [a : b : c] with a, b, c coprime, if
s ∈ Z is such that the scheme Spec(OF [1/s]) is not connected
then abc is a divisor of a power of s.
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Proof. We’ve proved all except iv) which will follow from first con-
siderations of an intersection theory for the components of F.

It is interesting to consider the case of p = 2. Then the different
element is precisely compatible with the intersections of the four
components of F in the Pythagorean case. F is comprised of four
copies of Spec(Z) which each intersect the other three, one each,
with intersection number a, b, c.

In general, when there is a rational point and [ap : bp] is not one
of the cusps, F has (p + 2) irreducible components corresponding
to equivalence classes of solutions [aωi : bωj : cωk], and note that
adding the same constant modulo p to (i, j, k) does not affect the
solution point, nor does multiplying (i, j, k) by the same nonzero
number modulo p, which acts as an automorphism on an irreducible
component. Thus the p+2 irreducible components of F, when there
is a rational point, correspond bijectively with orbits of the one
dimensional affine group acting on F 3

p .

One naive type of intersection theory would associate to a pair of
minimal prime ideals P,Q ⊂ OF the number of elements in the
cokernel of

OF → OF/P ×OF/Q.
Our calculation of the different element (up to p torsion) would be
no different if we had started with an equation which does have a
solution such as

−8x3 + 7y3 = z3.

This has the solution [x : y : z] = [2 : 3 : 5], it still has different
element (2.3.5)2 ∈ OF [1/3]. Because it does have a rational solution,
we can look at the naive intersection numbers.

We can consider any such cubic equation, obtained by modifying
the Fermat equation by including fixed rational integer coeffficients
of xp and yp so that it does have a solution,
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Writing Ci,j,k for the irreducible component corresponding to the or-
bit including [aωi : bωj : cωk] we can calculate intersection numbers
in a few examples. In terms of representatives for our subscript se-
quences, the five irreducible components ofOF are C0,0,0, C0,0,1, C0,1,0, C1,0,0, C0,1,2.
The first is a copy of Spec(Z), and the others are copies of SpecZ[ω]
for ω a p′th root of unity.

From a few examples it seems that the naive intersection numbers
in thise sense are

C0,0,0 · C0,0,1 = 3c3

C0,0,0 · C0,1,0 = 3b3

C0,0,0 · C1,0,0 = 3a3

C0,0,0 · C0,1,2 = 3

C0,1,2 · C0,0,1 = 3a2b2c

C0,1,2 · C0,1,0 = 3a2bc2

C0,1,2 · C1,0,0 = 3ab2c2

C0,0,1 · C0,1,0 = 3a2bc

C1,0,0 · C0,1,0 = 3abc2

C0,0,1 · C1,0,0 = 3ab2c.

To reiterate, we’re considering a cubic equation of the type qx3 +
ry3 = z3 for q, r integers such that there is a solution with integers
[a : b : c]

The fact that the different element belongs to the characteristic
subring requires that for any prime s besides 3 which divides into
any of a, b, c the intersection graph must remain connected when
we replace all the intersection numbers by their s-adic valuation
(or s primary part). The equations above verify that this is true
in examples we’ve considered. The intersection numbers between
fiber components and in fact the isomorphism type of OF appear
to be independent of the choice of q, r. The intersection numbers in
examples have fixed expressions as monomials in a, b, c, p.
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Let’s restrict to the case p odd and write the equation xp+yp+zp =
0, to make the Fermat curve more symmetrical. Also, let’s use a
simplified assignment of coordinates, taking λ(τ) = yp

zp
without any

factor of 16.

That is, any finite group which has a two dimensional representa-
tion has a corresponding action on the Riemann sphere, and here
we consider P1 to be the projectivication of the two dimensional ir-
reducible representation of the symmetric group S3. The group we
take as acting by permuting the coordinate variables [x : y : z].

The quotient of the Fermat curve X/S3 is then ‘modular’ with group
Γ so that

Γ(2)(p) ⊂ Γ ⊂ Γ(1)

and it is index p2 in Γ(1), but not a normal subgroup. That is, the
quotient Γ(1)/Γ(2)(p) is isomorphic to a semidirect product F 2

p oS3

and Γ is the inverse image of a subgroup copy of S3 obtained by
choosing a trivialization of the extension cocycle.

The map X → X/S3 covers the map P1 → P1 which sends the λ
invariant to the j invariant, at least if we parametrize things so that

j =
(1 + λ+ λ2)3

λ2(1 + λ)2
=

(x2p + (xy)p + y2p)3

(xyz)2p

To consider j0 = q
s

with q, s ∈ Z we again choose A,B,C,D with
A = s, B = −q, AD − BC = 1, as before the residue over the fiber
at j0 agrees in a neighbourhood of that fiber with

Res d log
A(x2p + (xy)p + y2p)2 +B(xyz)3p

C(x2p + (xy)p + y2p) +D(xyz)3p
.

In some sense, we know the answer already. If we invert 6 the fiber
in X/S3 over j0 is the isomorphic image of the fiber in X of any
one of the λ values mapping to j0, and its different ideal must again
be generated by (abc)p−1 viewed as an element of the characteristic
subring with p inverted, if there is a rational point.
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But whereas this fiber has (p + 2) irreducible components in this
case, its inverse image, the full fiber in X over j0 now has 6(p +
2) irreducible components, and so we expect the different element
of the full fiber to have an additional factor which corresponds to
intersections between fibers over different λ values.

The residue calculation is similar to what we have done already; one
interesting thing is that the formula does not explicitly involve j0

at all, meaning, there is again a polynomial expression representing
a section of a line bundle, now O(13p − 3), which defines in its
restriction to the fiber over each value j0 to the different subscheme
of that fiber.

An issue is that the there is a line sub bundle of P(O(6p)) once we
invert 6p which is ‘spanned’ by ∇(xp + yp + zp)

N = O(5p)∇(xp + yp + zp).

Exactly the determinant which we already have calculated, in this
case a Jacobian matrix made of the numerator and denominator
of the fraction shown above along with the Fermat equation, is a
generating global section of the line bundle made by wedging our
global section of Λ2P(O(6p)) with the whole line bundle N , but

then tensoring with the dual N̂ .

The generating section is AD −BC which is 1, times

2p(xyz)2p−13(x2p+(xy)p+y2p)2det

 yz xz xy
2px2p−1 + pxp−1y 2py2p−1 + pyp−1x 0

xp−1 yp−1 zp−1


= 6p2(xyz)2p−1(x2p + (xy)p + y2p)2(xp − yp)(xp − zp)(yp − zp).

Ignoring the factor of 6p2 we see that the different element for the
six fibers viewed as disjoint, which was (xyz)p−1 has now been mul-
tiplied by factors xpypzp(xp−yp)(xp−zp)(yp−zp)(x2p+(xy)+y2p)2.
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Let’s show that all eight of the new factors, even with identical
multiplicity (!) describe points where the six fibers intersect coming
solely from congruences among values of the λ function.

4. Lemma Let a, b be coprime integers, and let j ∈ P1/S3 be the
image of [a : b] in P1. Write c = −a − b. The fiber in P1 over j
consists of the copies of Spec(Z) indexed by [a : b : c], [a : c : b], [b :
a : c], [b : c : a], [c : a : b], [c : b : a], and the different element is
represented on every irreducible component (after inverting 6) by
the integer 6(abc)(a− b)(b− c)(c− a)(a2 + ab+ b2)2 ∈ Z[1/6].

Proof. This time the two by two determinant corresponds to the
elements (a2 + (ab) + b2)3 and (abc)2. The coefficient of 6 may be
removed since we are working over Z[1/6].

Next we will consider the diagram for X the Fermat curve

X → X/S3

↓ ↓
P1 → P1/S3

The fiber over a rational point of P1/S3 is an image of a tensor
product of the fibers P1 and of X/S3 over that point; this describes
a map from a tensor product of an algebra of rank p2 as an abelian
group, and one of rank 6 as an abelian group. The map is injective
and finite. Even locally, if the discriminant of the fiber is equal to
the product of the discriminants, then the coordinate ring of the
fiber decomposes as the tensor product precisely with no further
partial normalization.

5. Remark. Another way of thinking about the explanation in
Remark 2. for why L⊗2 occurred, is that is that we are construct-
ing a section of the relative canonical sheaf, and the factor of L⊗2

represents the pullback of the inverse of the canonical sheaf of P1.
That is, when we wrote L⊗2 ⊗ ΩX we might as well have written
f ∗Ω−1

P1 ⊗ ΩX .

This analysis will continue in ‘the meaning of positive and negative.’
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The meaning of positive and negative

Sometimes, in an abstract setting, when one wants to define what
it means for a number to be positive, one will say that this means
it is a sum of squares.

We all know that if we describe the square root of 2 algebraically, the
solutions include two numbers, symmetric under an automrophism,
which are negatives of each other. We were taught, if we are to
think of positive numbers, one of them is extraneous.

It is a question, related to consistency of arithmetic, whether there
is a purely algebraic proof that a sum of nonzero rational numbers
which are positive by this definition cannot be zero.

Twisted schemes

When one is considering a subring of Zn, corresponding to a union
of copies of Spec(Z), there do exist nontrivial line bundles on such a
union. If we consider two copies of Spec(Z) meeting transversesly at
the prime indexed by 5 in both, say, then we can construct a locally
principal module by twisting the gluing identification by an element
of Z/(5Z)×. A twist by 1 or 4 would be inessential, because it lifts
to an automorphism of either factor. And a twist by 2 and 3 would
have the same effect, but there do exist twists of the free module,
and I have not proven that the restricted canonical sheaf is not of
this type.
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Relation with the canonical sheaf

Let X be ‘modular’ corresponding to a finite index subgroup of Γ(2),
not required to be a congruence subgroup. Suppose ωX is locally
free (at non-cusp points). Let ω0, ω1 as usual be the basic elements
(modular forms of weight to for Γ(2), the usual coordinates on P1).
choose numbers A,B,C,D with AD − BC = 1 so that the zero
point of Aω0 + Bω1 is not a cusp, and let F be the fiber in X that
point. Let L =M2(X), our line bundle spanned by ω0, ω1.

1. Lemma The residue

δ = Res d log
Aω0 +Bω1

Cω0 +Dω1

corresponds naturally to a section of the restriction to the fiber of
ωX ⊗ L⊗2; the ratio δω−1

X L−2 is naturally an ideal in OF and the
module of one-forms on F, which is ωX ⊗ L⊗2/(δOF ), is a locally
prinicpal module of rank one over the ring OF/(δω−1

X L−2). Finally,
it happens to be prinicpal since the Picard group of OF/(δω−1L−2)
is trivial.

This lemma does not need proof, it is a statement of things we’ve
said already, but before having been more vague about naturality.

That is, what I’ve called the different element φ in case the restric-
tion of ωX to a fiber happens to be principal (I do not know whether
it always is), is the generator of the ideal in OF which is defined by
the formula

Φ = ω−1
X ⊗ L

−2 ⊗Res d log Aω0 +Bω1

Cω0 +Dω1

with L the line bundle spanned by ω0, ω1. It does not matter whether
we use a lower case or upper case ω here, one sometimes denotes the
canonical sheaf and the other the sheaf of Kahler differentials, but
they are identical here as we assume Ω is locally free, an assumption
which will be legitimized by inverting an appropriate integer. The
fiber F ′ defined by Cω0+Dω1 = 0 is disjoint from F and is to be dis-
regarded, though F+F ′ represents the pullback of the anticanonical
class.
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Tensor indecomposability

We mentioned that the Fermat curve X maps to the pullback of
X/S3 and P1 over P1/S3, and it follows that the ring OF , a free
abelian group of rank 6p2, of the fiber F over a rational (noncusp-
idal) value of j contains, as finite index within it, a tensor product
of one of rank 6 with one of rank p2.

The construction of the tensor factor of rank 6 depended on a =
−B, b = A, and c adding to zero.

We can always tensor together the two factors abstractly, to make a
ring of rank 6p2. However, the relation between adding and taking
powers is that we may not embed the Spec of the tensor product as a
closed subscheme of any curve with locally principal canonical sheaf
unless the direct sum of the pulled back Kahler differentials modules
is again locally principal. And, since it is supported on a discrete
scheme with trivial Picard group, we may equally say ‘principal.’
However, we have this lemma.

2. Lemma. Let F ,G be locally principal sheaves on a Noetherian
scheme. Then F ⊕G is locally principal if and only if F ⊗G is zero.

The proof is just to consider the specialization to one closed point,
where we are speaking about one-dimensional vector spaces. Since
the sum of the Kahler differentials modules from the separate factors
is locally prinicipal (and even principal), it then requires that the
support schemes of the two pulled back modules must be disjoint.
Being on different sides of the tensor factor even requires

3. Lemma The spectrum of the tensor product of two algebras
cannot be embedded as a closed subscheme any curve ( over Z )
with locally principal canonical sheaf unless the discriminants of
the factors are coprime.

Note that it is perfectly possible to embed a finite extension of the
spectrum of such a tensor product, so this prohibition disappears
after normalizing.
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Duality

Let’s look at the case p = 2. The ring of rank 4 is one which we con-
structed as a fiber over a λ value. It has a basis the four monomials
1, xy, xz, yz.

The structure constants of the ring are determined by the rules
x2 = a, y2 = b, z2 = c, even while the ring does not contain any
elements labelled with the letters x, y, z.

It is instructive to write the elements in rows according to the degree
in which they previously had in the graded ring, even though there
is not any grading anymore. We write

xy xz yz

1

and for instance (xy)(yz) = bxz.

Our element δ is represented by (xyz)p−1 = xyz, which is not in the
ring. But we can construct a basis of ωX over the fiber, using the
monomials

x, y, z, xyz.
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If we write all the monomials in the rows we have

xyz

xy xz yz

x y z

1

The rows of even height are sections of OF while the rows of odd
height are sections of ωX on F. So for instance the equations

(xz)(y) = xyz

(xz)(z) = cx

describe ring elements acting on sections of ωX and converting them
to new sections.

Our different element, over Z[1/2], is (xyz)p−1 = xyz, since p = 2.

In any such diagram, the monomials in row p − 3 are g in number
where g is the genus of the ambient curve; they extend to a basis of
the global sections of ωX . For instance in case p = 2 there are none,
and when p = 3 the monomal in the same position as 1 corresponds
to the unique differential called dz on an elliptic curve.
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Transpositions of negative eigenvalue

As for the ring of rank six, working over Z[1/6], it has different
element

6(x2 − y2)(x2 − z2)(y2 − z2)(x2 + xy + y2)2

assuming that x+ y + z = 0.

Here, we can see a picture proof of what this is saying. If we compare

[x : y : −x− y]

[y : x : −x− y]

then all three size two minor determinants are ±(x2−y2) In terms of
the symmetric group action on Z2 a transposition fixes two integer
lines, one each with eigenvalue 1,−1.

But because

(x2 − y2) = (x− y)(x+ y) = (y − x)z

we see that there is an intersection, a congruence, with the cusp,
which is the other type of ramification.

After pulling back, we have an equation instead

(x2p − y2p) = (yp − xp)zp.

This is geometrically explaining why the different element of the
fiber in L⊗2⊗ωX [ 1

6p
] divided by the different element of the disjoint

union of its six parts was

6xpypzp(xp − yp)(xp − zp)(yp − zp)(x2p + (xy)p + y2p)2.

That is, it would have been better to write it as

6(x2p − y2p)(x2p − z2p)(y2p − z2p)(x2p + (xy)p + y2p)2.

Then the 6 seems to be describing the degree of the branched cover
just as the factor of p2 did on the other side (although this may
be a coincidence), and the three next factors describe one each, a
fixed line in Z3 with positive and negative eigenvalue for one of the
transpositions, and finally we see the two fixed non rational lines,
with eigenvalue ±e2πi/3.
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‘Specialization’

Before, we mentioned that if the fiber F over a λ value has any
rational point, then on each of the p + 2 components of that fiber,
each of x, y, z ‘specializes’ to an integer times a p’th root of unity.
More rigorously, each monomial in x, y, z of degree a multiple of p
corresponds to an element of OF , and each rational monomial of
degree congruent to zero modulo p also does. These must specialize
to p’th roots of the corresponding rational monomials in a, b, c and
so must equal the rational p’th root times a p’th root of unity. For
example (x/y)p − (a/b) specializes to zero, and x/y must be one of
the roots of T p− (a/b), which are a rational p’th root of a/b times a
root of unity on each component. Then ‘specialization’ of x, y or z
itself is an intersection of fractional ideals induced from Z; the ideals
are induced from Z so is the intersection, defining x, y, or z as an
element of Z up to sign.
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The case of a rational solution.

If the fiber has a rational point, then one of the λ values lying over
its j value is rational; they are symmetric under S3 so all six λ values
are rational, and fiber over the j value is just a union of six copies
of this union of p + 2 components, intersecting various ways. We
may not have the same choices of a, b, c as λ changes, but if there
is a rational point in a fiber over a lambda value, then it is true for
all the isomorphic fibers over the other lambda values lying over the
same j value, that they too have this property, although for each
there will be a different permutation.

So x on one component of one fiber may map to “a” times a root of
unity and on a component of a part of the fiber lying over a different
lambda value, but for the same j, will map to b times a different
root of unity.

What that means, though, is that xyz always maps to abc times a
root of unity on every component.

The issue about the different element not belonging to the ring is
exactly that when we calculate the expression

(a2p − b2p)(a2p − c2p)(b2p − c2p)(a2p + (ab)p + b2p)2

of degree 10p, each separate term, on each of a, b, c is corresponding
to some integer times a root of unity, and here those roots of unity
aren’t even present in ap, bp, cp. But we must multiply this by the
inverse of the fractional ideal on the fiber which is generated by all
degree 10p monomials. Now, they happen to generate the unit ideal;
this has no significance, as it relates to our original choice of section
which we call 1 which related to our choice of C and D in the matrix
A,B,C,D.

But it means that the different element really is this integer, under
the assumption that the fiber contains a rational point.
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And the other factor p2(abc)p−1, the different element of the disjoint
union of the 6 parts, likewise represents an integer times a (plus or
minus) p’th root of unity as the different element, and also as an
element of the ring, generating the ideal on the other side, describing
the support of the ramification on the other branched cover.

So the only subtlety is that as you move around and consider dif-
ferent lambda values correponding to one j value, the factors like
(a2p − b2p) permute among themselves. But this does not affect
the fact that you can factor out (abc)p and that is constant on all
components.

Now, the different elements of the algebras of rank p2 and 6 were
exactly these. This matches the product of the different elements of
the two algebras, tells us also that the fiber has the same discrimi-
nant as does the tensor product.

Now, the ring of rank four which is the fiber in X/S3 over j is
contained in the ring of rank four over a λ value over j, and we have
inverted 6 so that it is isomorphic to the S3 invariants in the full
fiber over j.

When we factorized the different element of the fiber over a rational
j value as

[(abc)p−1][(a2p−b2p)(a2p−c2p)(b2p−c2p)(a2p+(ab)p+b2p)2] ∈ OF [(1/6p)],

the factor on the left corresponded exactly with the different element
of the disjoint union of six fibers over the corresponding λ values;
and the factor on the right agrees with the pullback of the different
element of the fiber in the λ projective plane over j.
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If we actually tensor the coordinate ring of the fiber over one λ value,
an algebra of rank p2, with the coordinate ring of the fiber in the
λ projective line over the corresponding j value, an algebra of rank
6, the discriminant of the tensor product would equal the actual
discriminant of the whole fiber over the j value, and the two parts
would come from tensor factors exactly matching this factorization.
They are not coprime because the different element in the second
factor can be rewritten, for instance we can factorize out zp from
(x2p−y2p), it corresponds to a transposition which interchanges two
negative points in the affine cone, and fixes a point in the projective
variety.

In fact this illustrates that the affine coordinate ring of a fiber is
not the same as the specialization of the affine coordinate ring of a
projective variety. Let’s discuss this in the next section.
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Modules on the fiber.

Let R = R0 ⊕ R1... be the homogeneous coordinate ring of a pro-
jective variety by a very ample line bundle L, and let f, g ∈ Rd be
elements of degree d. Suppose that f, g generate Ld.

For each matrix of integers A,B,C,D with AD − BC = 1 we can
reduce the graded ringR modulo relationsAf+Bg = 0, Cf+Dg = 1
for AD −BC = 1, and obtain the Z/dZ graded ring

T = R⊗Z[f,g] Z,

or, we can consider the fiber F of the map to P1. defined by Af +
Bg = 0. Let V = OF . We also have the locally sheaf I on F defined
to be

I = i∗L,
which we can interpret as a locally free module over V.

Then

5. Lemma. There is an equivalence of categories between the
category of Z/dZ graded modules over T and all modules over V.
There is a homomorphism

ψ : Z/dZ→ Pic(V )

such that for each i ∈ Z/dZ, the automorphism of the category of
T modules which consists of shifting the grading by i corresponds
to the automorphism of the category of V modules consisting of
tensoring with the ideal I⊗i. We have T ∼= V ⊕I⊕ ...⊕Id−1. Finally,
if φ(1 mod d) ∈ Pic(F ) is zero, there is an ideal J ⊂ T which is
complement of V.
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Projective versus affine ramification

The Fermat curve has as its homogeneous coordinate ring

e1 = x+ y + z

e2 = xy + xz + yz

e3 = xyz

fp = xp + yp + zp = 0

f2p = (xy)p + (xz)p + (yz)p

f3p = (xyz)p.

This can be interpreted as an inefficient system of generators and
relators, only one relator is needed. The homogeneous coordinate
ring for the line bundle O(p) on the projective plane consists of
terms of degree a muliple of p if x, y, z are given degree 1.

The homogeneous coordinate ring of the specialization at a j is the
terms of degree a multiple of p in the ring with two further relations

Af 3
2p +Bf 2

3p = 0

Cf 3
2p +Df 2

3p = 1

with A,B,C,D integers with AD −BC = 1.

The subrings generated by xp, yp includes zp of course, and it is a
copy of the homogeneous coordinate ring of the specialized and un-
specialized λ plane. Assume that the λ value is rational, so there is
an integer point [ap : bp : cp].
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If ψ(1 mod d) = 0 we can ignore the grading, reduce modulo the
complementary ideal J , and consider the result to be an algebra over
Z. We can construct an isomorphic copy of the rank six subalgebra
by writing down as columns the ways of permutating ap, bp, cp ap ap bp bp cp cp

bp cp ap cp ap bp

cp bp cp ap bp ap


and take the subalgebra of Z6 generated the the three rows. In other
words, sending xp, yp, zp to the three rows describes an isomorphism
with a rank six subalgebra of the underlying ungraded algebra of the
homogenous coordinate ring of the specialized Fermat curve modulo
J. The subalgebra has index (ap − bp)3(bp − cp)3(cp − ap)3 in Z6. As
an abstract un-graded algebra once reduced modulo J and tensored
with Z[1/((ap − bp)(bp − cp)(cp − ap))] it decomposes into a carte-
sian product of six copies of that base ring, containing six different
primitive idempotent elements. Let Y be the scheme in the P1 which
parametrizes λ values, corresponding to this j The very ample line
bundle for this rank six subalgebra is one of the p2 summands of the
pushforward of O(p) on F, giving the implication for the maps

ψF : Z/(6Z)→ Pic(F ),

ψY : Z/(6Z)→ Pic(Y ),

ψF (1 mod 6) = 0⇒ ψY (1 mod 6) = 0.

This in turn implies that Y ⊂ P1, once (ap − bp)(bp − cp)(cp − ap)
is inverted, will consist of six disconnected copies of the localized
Spec(Z).

Then the whole fiber F, the inverse image of Y, correspondingly
decomposes into a disjoint union of the copies over the six individual
λ values.
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We calculated the different elements of the disjoint union, which was
p2(abc)p−1. The different element of the whole fiber was 6p2(abc)p−1(abc)p(ap−
bp)(ap − cp)(bp − cp)(a2p + (ab)p + b2p)2. The factors (apbpcp)(a2p +
(ab)p + b2p) where ap, bp, cp are rational integers, must then be divi-
sors of a power of 6p(ap − bp)(ap − cp)(bp − cp). Thus

6. Theorem. For every rational value of j which lifts to a rational
λ value, let Fj be the fiber over j in the Fermat curve. The element
ψ(1 mod 6) ∈ Pic(Fj) cannot zero except, possibly in special cases
when j ∈ P1 is one of the three cusps or each of ap, bp, cp is a power
of 2, 3, or p.
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The case p = 1.

We are still assuming that there is a rational λ value. The fiber over
j is a subscheme of P2 comprised of six copies of Spec(Z), and the
different element, a section of O(10) is perhaps best written now

(xy − yz)(yz − zx)(zx− xy)(xy + yz + zx)(yx+ xz + zy).

This is a tensor product of five sections of O(2), and in the re-
striction to each irreducible component, it describes the five Cartier
divisors where that component meets the five other components.
The components are in two sets of three, and the decomposition
is preserved by all the permutations. Note that the last two fac-
tors are equal. Two components of the same type (transformable
to each other by an even element of S3) meet each other only at
the subscheme where xy + yz + zx is zero, but there are two such
subschemes, interchanged by any transposition. The Cartier divisor
defined by this section is principal, being defined also by the rational
integer (ab− bc)(bc− ca)(ca− ab)(ab+ bc+ ca)(ba+ ac+ cb).

Since this section of O(10) or indeed the product of the first three
and last four factors separately, describe a principal Cartier divisor,
it seems likely that so does O(2) and that ψ(2 mod 6) = 0.
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The case p = 2

It seems that, rather than using localizations, we can find a use-
ful simplification by using partial normalizations which are a local
isomorphism near a subscheme of interest, defining a type of etale
neighbourhood (I’m not sure if I’m using the correct word here).

Since p− 1 = 1, the different element

(xyz)p−1(x2y2−y2z2)(y2z2−z2x2)(z2x2−x2y2)(x2y2 +y2z2 +z2x2)2

again has an easy interpretation. The last five factors tensor to-
gether to give a section of O(20) which is just what we’ve seen
already, just pulled back from the λ projective line. Any one of
the 24 components belongs to a fiber over one λ value, and we al-
ready know that that fiber consists of four irreducible components,
each meeting the other three transversely according to the Cartier
divisors x, y, z one each. But also now we have intersections when
one of the four components for one λ value meets one of the four
components for another λ value.

Explicitly, the ring of rank 24 can be constructed as the subring of
Z24 which is the image of the homogeneous polynomials of degree a
multiple of 12 where we send p(x, y, z) to a tuple

(p(a, b, c), p(−a, c, b), ...

where included is every possible permutation or assignment of signs
to a, b, c which is essentially different (negating all variables is an
inessential change).

The different element is not given to us as an element of this ring.
Let’s look at just some factors of the different element.

x(z2x2 − x2y2) = x⊗ x2 ⊗ (z2 − y2)

We can do a partial normalization so that we can ignore other fac-
tors of the different (and c2 − b2 is coprime to a2) and arrive at a
triple intersection point where our one component meets one other
component lying over the same λ value, and two components over
different λ values, and the remaining different element is x⊗ x2.
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I believe that the x2 on the right is there because after a transposi-
tion, there is a meeting between the conjunction of two components
in the one fiber and a symmetrically opposite conjunction of two
components over the other λ value.

Now there are four components, and the coordinate ring of their
union as the subring of Z4 spanned by all

(p(a, b, c), p(−a, b, c), p(a, c, b), p(−a, c, b))

for p(x, y, z) homogeneous of degree a multiple of 12.

A neighbourhood of the relevant subscheme – the one defined by a in
our originally chosen component, is isomorphic to a neighbourhood
of the same scheme in the whole fiber.

The ring is the image of the invariants of the Klein four group acting
on the cartesian product of four copies of Spec(A) where A is the
ring comprising all homogeneous polynomials of degree divisibe by
twelve in Z[x, y, z]. The group is generated by two elements τ, σ with

τ(p(x, y, z), q(x, y, z), r(x, y, z), s(x, y, z)) = (q(−x, y, z), p(−x, y, z), s(−x, y, z), r(−x, y, z))

σ(p(x, y, z), q(x, y, z), r(x, y, z), s(x, y, z)) = (r(x, z, y), s(x, z, y), p(x, z, y), q(x, z, y)).

The rough intuition should be that multiple intersections cause split
extensions of one forms rather than nontrivial extensions.

The Klein four group actually acts on our rank 24 ring, that action
is just induced by permutations of the factors in Z24.

The images of particular types of polynomials (of various degrees
in the grading and transforming according to particular characters)
describe the four eigenspaces in the algebra. Without a different
type of understanding of it, we cannot see a contradiction to the
notion that the one forms module is principal. It seems most likely
that from the direct description we would deduce that it is a copy of
the augmentation ideal of the group algebra FpK for K the group,
whereas local principality of ωX would force that it is a copy of FpK
modulo the augmentation ideal.
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Let’s consider this type of question without the hypothesis of a group
action in the next section.
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Local rings and principal differentials

7. Theorem. Let R be a local Noetherian ring containing Z. Let
m be the maximum nonunit ideal of R and suppose Fp ⊂ R/m is
surjective (equality). Suppose ΩR is a principal module. Then there
is an element η ∈ m/m2 so that

m/m2 = Fp(p mod m2)⊕ Fpη.

Proof. First we write

m/(m2 + pR)→ ΩR ⊗R R/m

m 7→ dm.

This is well-defined because if q, s ∈ m

d(qs) = ds⊗ q + dq ⊗ s = ds⊗ 0 + dq ⊗ 0 = 0,

and for r ∈ R

d(pr) = dp⊗ r + dr ⊗ p = 0⊗ r + r ⊗ 0

the last because p ∈ m.

It is also surjective because Z+m = R, as this surjects onto Fp and
contains the kernel of R→ Fp.

Finally let’s show the kernel of this map is zero. A linear combina-
tion of dm which maps to zero, would be reducible to zero by the
Leibniz relation d(rm) = dm⊗ r+ dr⊗m. For r which belong to m
it just says d(rm) = 0. In the remaining terms r can be replaced by
an integer, and the relation asserts no more than that d commutes
with addition. An expression reducible to zero by the relation must
already be zero.

Now, if ΩR is principal, so is m/(m2 + pR) and we may choose a
single element η ∈ m/m2 mapping to a generator. Then m/m2 =
Fp(p mod m)⊕ Fpη.
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8. Corollary. Under these conditions, if in addition R/(pR) has
pm elements, R/(pR) ∼= Fp[T ]/(TmFp[T ]).

Proof. It is a finite local Fp algebra with residue field Fp and prin-
cipal maximum ideal.

9. Corollary. Let X be a curve over Z and x a closed point such
that that ωX is (locally) principal in a neighbourhood of x. Suppose
that there is a rational prime p so that where the residue field at
x is Fp. Suppose that R is isomorphic to the local ring at p of the
subring of Zm for some number m which is {(n1, ..., nm) : n1 ≡ n2 ≡
... ≡ nm mod p}. Then m = 1 if x is a nonsingular point of Spec(R)
and otherwise m = 2.

Proof. When we localize at p, the maximum ideal of such a ring
is its intersection with the ideal generated by (p, p, ..., p) in Zm, but it
has minimal generating set {(p, 0, 0, .., 0), (0, p, 0, 0, ..., 0), ..., (0, 0, 0, 0..., p)}
in the smaller ring. If m is the maximal ideal, these form a basis of
m/m2, whose dimension must be at most 2.



Positive and negative (9)

The case p = 2. Beginning of the proof.

We actually construct the subring of Z4 which we mentioned, spanned,
for all monomials m(x, y, z) of degrees a multiple of 6p = 12, by the

(m(a, b, c),m(−a, b, c),m(a, c, b),m(−a, c, b)).

For example for a, b, c = 3, 5,−8, chosen at random, we obtain4 the
ring with basis

(1, 1, 1, 1)

(0,−6,−1601235462701092076629787594528391167999999443784683941, 1601235462701092076629787594528391167999999443784683935),
(0, 0,−39,−1582877288574841363382795535615977489910809820443139536606134990614462098604934528388575815),
(0, 0, 0,−234)

4assuming things stabilize after degree 108, and thanks to Matt Crumley
http://silentmatt.com/ for putting BigInteger.js on sourceforge!
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The multiplication operation is component-wise integer multiplica-
tion, and a matrix representation of the ring is given by the four
matrices (shrunk so they fit on the page)

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 0 1 0 0

0 −6 −65742436077220011152441148299644670989460048071406380130996244615844690126369469667221244704559537193722765 444710294710319835124107841422095875566556399365307641038602177000372669233158790795017826323064531221002216077783810271578706124060132191122694039301162074693226887117318876941061159750451874960
0 0 −1601235462701092076629787594528391167999999443784683941 21662899551881932968974560556867291332262706009946414324487932245293270093154458925404890471728974094077843698921094692999435380610183843809910
0 0 0 1601235462701092076629787594528391167999999443784683935




[0 0 1 0
0 0 −1601235462701092076629787594528391167999999443784683941 21662899551881932968974560556867291332262706009946414324487932245293270093154458925404890471728974094077843698921094692999435380610183843809910

0 0 −39 −10707267139683938550998317947027533766804613387933451957385426964664792268786903432006448556785220949417561879810314520518163010754418421753462697170019481652164671098398277130160
0 0 0 −1582877288574841363382795535615977489910809820443139536606134990614462098604934528388575815


 0 0 0 1

0 0 0 1601235462701092076629787594528391167999999443784683935
0 0 0 −1582877288574841363382795535615977489910809820443139536606134990614462098604934528388575815
0 0 0 −234



When these are reduced modulo a = 3 they become

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

 0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


The last three are a basis of the maximal ideal, which is nilpotent
of order only three, not four. Then as the conclusion of Corollary
8 does not hold, it is impossible for such a ring to exist at a closed
point of the quadric where the differentials are locally free.

The numbers 3, 5,−8 are not numbers whose squares add to zero
(they happen to add to zero themselves instead). We cannot test
what the construction would do if we applied it to three nonzero
numbers whose squares add to zero, becuase no such triple of num-
bers is known.
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The point about the partial normalization is that it was an iso-
morphism on the local ring level. Before I had been trying inverting
integers. This is implicitly inverting coordinate functions somewhere
ambiently, but it is just easiest to consider that we can take a par-
tial normalizatin that does not affect a neighbourhood of the closed
point we’re considering.

The index of this ring in its normalization is divisible by a4, it is 4(b−
c)2a4 many (but not all) examples. Such a ring is not just having
the relations saying that the four integers are mutually congruent
mod a. There is one more relation.

Our quick way of verifying that there is no element η in the max
ideal so that m/m2 = Fp(p mod m

2) ⊕ Fpη was to mod out by p
and see if you get the only type of algebra that maps to Fp and has
principal maximum nonunit ideal.

Those four 4× 4 matrices, we’d have to make η out of a linear com-
bination of those, yet every linear combination of those is nilpotent
of order less than four.

There are examples where the index of R in Z4 is smaller than a3

while the spectrum is not connected.

So, even though we can’t – apparently – find 3 nonzero numbers
whose squares add to zero, to test this, the only thing that is in
contention is the argument which said that those four components
would have to meet.

This is where we did need the different element calculation. Since
the ideal in OF (really the different element times the inverse of
ωX) is induced from the characteristic subring locally, and the part
we are considering which is (xyz)p−1 times (xyz)p is invariant under
symmetry, this is induced from the characteristic subring globally.

Then, those two components over one λ value that meet at the
subvariety defined by the integer a in both, the different element
from the disjoint union of the six parts gave that ignoring other
components this is an intersection defined in each by just ap−1 = a.
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The other factor, if we just interpret it as we may using the special-
ization technique, gives us ap = a2.

This is part of a symmetric expression, so no matter which compo-
nent we look at it is constant a2.

That means this double intersection must meet components at this
same subvariety of Spec(Z) which are on other parts of the six, i.e.
over other lambda values.

And because it is the subvariety defined by a, and not something
like b − c, or (ab + bc + ca) it has to come from a transposition of
negative eigenvalue.

It is really hard to see numerically how this could happen.

But, the point is to make a clear proof that it cannot happen.

We know, provably, and from examples, that if that local ring R
at the closed point at a prime dividing p into a has that R/pR
is anything other than Fp[T ]/Tm for some m, that this will never
occur.

In examples if we put in random numbers for a, b, c in every case
when the four components actually meet at a, it is not of type
Fp[T ]/Tm.
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But it still needs a proof, that, to make it easier, if the subring R
of Z4 spanned by all four tuples

(m(a, b, c),m(−a, b, c),m(a, c, b),m(−a, c, b))

for m ranging over monomials a multiple of 12, the a-primary com-
ponent of the index divisible by a3, then the order of nilpotency of
the image of that maximum ideal is at most three.

Thus, to be clear we can state it as a conjecture:

Conjecture. Let a, b, c be pairwise coprime and ≥ 2. Let R be the
subring of Z4 spanned by all

(m(a, b, c),m(−a, b, c),m(a, c, b),m(−a, c, b))

for which m is a monomial of degree a multiple of 12. Let qe be the
highest power of a prime q dividing a. Suppose that R contains no
idempotent element besides 0 and 1 (which I think is equivalent to
saying [Z4 : R] is divisible by q3e). Let m be the kernel of R → Fq.
Then the conjecture is that the order of nilpotency of the image of
m in R/qR is no larger than 3.

It is this conjecture which implies that a2 + b2 + c2 cannot be zero.

For, if a2+b2+c2 = 0 the different calculation would tell us that R is
connected, a local ring rather than semi local. Then the conjecture
tells us that the order of nilpotency is no more than 3, and this
means that R/pR can’t have a principal max ideal. Then the max
ideal of R cannot be generated by p and one other element, and
therefore the Kahler differentials the local ring cannot be principal.
Then it cannot occur on the quadric a2 + b2 + c2 = 0.

In other words, we still have to show that this always happens under
the hypotheses which we’ve established would be true under the
hypothesis of existence of a noncuspidal rational point.
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Overview of a proof.

It is interesting to see that the calculation of the subring of Z4, in
examples, when it has index divisible by a3 the order of nilpotency
modulo a prime divisor of a is never as much as four. Even for the
Fermat triples one sees this. For 5, 4, 3 with a playing the role of
5, the index in Z4 is divisible by a2 only, and for 3, 4, 5 the index is
divisible by a3 but the order of nilpotency is three.

Here is an overview of the proof which is at hand. It’s just a matter
of explaining how the parts fit together.

Twisted modules.

The issue here was that I can make a ring where two copies of
Spec(Z) are glued along Z/5Z. This just means the ring is pairs of
numbers congruent mod 5. But a module can be pairs of numbers
with one double the other mod 5.

This seems like a harmless difference but if we do not know a priori
that the restriction of O(p) to a fiber isn’t like that, we have not a
method of generators and relators to describe the ring structure.

Structure of fiber

We know that only particular very restrictive combinatorial types
can occur. We don’t know much about the Fermat fiber combina-
torial type, but the fact that the thing analytically is a pullback is
suspicous because it can’t be algebraically if it is to have a rational
point, for the same reason 2 partial derivatives of a 2 variable func-
tion can’t both be zero at a point of a smooth curve they define.

However because of the previous point, it would be beyond computer
calculation to know anything at all about the whole thing.
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S3 symmetry and different element and ‘Specialization.’

These are going to be used only because, in combination, they tell
us which components meet which others at which points. They im-
ply that there has to be a configuration of four components meeting
at one point. Then the partial normalization which is the image of
the (actual) coordinate ring in Z4 is a partial normalization faith-
fully representing the relevant local ring and we know a priori it is
connected, i.e. a local ring not semilocal.

Because O(p) is not principal, the different element doesn’t reliably
tell us everything but the multiplicity of (abc) is reliable since it is
constant everywhere hence induced from the characteristic subring.

Then once we know this, we can discard the S3 symmetry, ignore
the different element.

Degree of nilpotence, index in normalization.

We can get away using only limited information now. The S3 sym-
metry etcetera told us that the thing is connected so we can assume
the index of the subring of Z4 is at least divisible by the thrice the
power of primes dividing a. And embeddability requires that the
ring mod q for such a prime q has to be of the type Fp[T ]/T 4, i.e.
the order of nilpotency of the max ideal of the ring mod p has to be
the maximum value of 4.

We now can throw out the assumption of any K4 symmetry.

Structure of argument

Now we are down to a question about subrings R of Z4, and for each
a, b, c we have a description of it, it is the span of (m(a, b, c),m(−a, b, c),m(a, c, b),m(−a, c, b))
for m monomials in a, b, c of degree a multiple of 12. If we can prove
that for a prime power divisor qe of a, when its index is at least
divisible by q3e (and that it disconnected otherwise) the degree of
nilpotency of the max ideal of R/p is less than 4, we are done with
the quadric.
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Even these rings for things like the Pythagorean triples 3, 4, 5, are
beyond hand calculation. But we’ve preserved the absurdity of hav-
ing a very high intersection multiplicity geometrically, with a high
order of nilpotency mod p.

We’ve needed to make essential use of the S3 symmetry and the
existence of a rational point, and in some ethical sense we have seen
from the beginning why these contradict each other but now even in
this more focussed algebraic question, it is beyond hand calculation
to solve it.

But it is absurd except in weird special cases to have high nilpotency
and high number of components. It is a matter of showing that this
class of subrings of Z4 is far enough from generic to include any sort
of weird counterexample like that. Just throwing random numbers
in for a, b, c one sees basically two patterns, where either the index
is divisible by a2 only and it is disconnected, or divisible by a3 or a4

and the degree of nilpotency is three.
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Completion of proof for general primes p.

We could simplify things by observing that the pullback of ψ(1mod 6)
to the partial normalization is trivial if p = 2 and its square is triv-
ial in general; however it is easiest to just extend the conjecture to
cover the case of all primes p and to prove that it is true. For gen-
eral primes p, we still have our four components meeting at a point
indexed by a, however two of them are not rational We obtain the
localization R at a prime divisor q of a of the subring of

Z× Z[ω]× Z× Z[ω]

spanned by

(m(a, b, c),m(ωa, b, c),m(a, c, b),m(ωa, c, b)

for m monomials of degree a multiple of 6p, ω a primitive p’th root
of unity.

The main observation is merely that any monomial

xiyjzk

can be written as
xi(yz)jzk−j

if k ≥ j, and
xi(yz)kyj−k

if j ≥ k. Since bc is invertible in R the restriction i+j+k ≡ 0 mod 6p
means the elements coming from

xiys, xizs

for i ≡ s mod 2 generate R as an algebra over the localized Z. Since
b− c is invertible in R, being a divisor of bp − cp which is coprime5

to a, the difference coming from the monomials xy and xz

(ab, ωab, ac, ωac)− (ac, ωac, ab, ωab)

= (b− c)(a, ωa,−a,−ωa)

being in R implies that so is

a(1, ω,−1,−ω).

5label a, b, c so a is odd
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From the monomials y2k and z2k we obtain

(b2k, b2k, c2k, c2k), (c2k, c2k, b2k, b2k)

and from linear combinations, both c2 and b2 times

(0, 0, b2 − c2, b2 − c2)

and as b− c is invertible we obtain

(b+ c)(0, 0, 1, 1).

From xy2k−1 and xz2k−1 we obtain

a(b2k−1, ωb2k−1, c2k−1, ωc2k−1), a(c2k−1, ωc2k−1, b2k−1, ωb2k−1),

and from linear combinations we obtain

a(b+ c)(0, 0, 1, ω).

A basis over localized Z consists of the

(a2i, (aω)2i, a2i(aω)2i),
(b+ c)(0, 0, a2i, (aω)2i)),
(a2i+1, (ωa)2i+1,−a2i+1,−(ωa)2i+1),
(b+ c)(0, 0, a2i+1, (ωa)2i+1)

for all cases when the superscript i or 2i+ 1 may be less than p (so
for example in case p = 2 one takes i = 0 and for p = 3 one takes
i = 0, 1 in the first two lines and i = 0 in the second two).

When b+ c not a multiple of q the second line with i = 0 shows that
R is not indecomposable. The whole algebra is isomorphic to the
localization of the subring of the group algebra ZCp generated by
−aw where Cp = 〈w〉 tensored with the subring of Z× Z generated
by (1, 1) and (0, b+ c). Regardless of whether q is a divisor of b+ c,
R/(Rq) is a tensor product of two local algebras with nontrivial
nilpotent elements, and the maximum nonunit ideal cannot possibly
be principal therefore.

As we’ve needed to assume that q 6= 2, 3, p this illustrates in a
special case the theorem of Fermat and Wiles, that it is impossible
for ap + bp + cp = 0 when a, b, c are nonzero and pairwise coprime,
except if each of a, b, c is a power of 2, 3, and p.
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Use of scheme theory.

It was really somehow helpful to visualize things like Spec(Z) as a
subset of the Riemann sphere even though it is not. When particular
closed points are considered, there they are analytically, right in
the point where you had to visualize them. The issue is similar
to applying a Galois automorphism to Z[

√
2] and worrying about

the discontinuity of it, and it is tempting to work in R[T ]/(T 2 − 2)
and use the classical topology, things like the analytic class number
formula. To use lattices and volumes, and the Euclidean norms. But
there is now a second tradition which is very different from doing
that.

The second tradition has to do with a type of vague attempt to make
things more symmetrical under dualizing, to imagine that integers
are functions with domain some type of hybrid anaytic object. It is
known that it is still totally rigorous to use differential calculus on
these things but it is disturbing that something seems dishonest or
ghostly about the visualization of Spec(Z).

Without wanting to be pretentious about it, I’d say that it is evi-
dence of self-deception in the past, an un symmetrical division be-
tween discrete things and continuous things; between analysis and
algebra.
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Conclusion.

I wasn’t going to send any more of these to anyone, hard-copy pdf’s,
but here is why I changed my mind about it.

One thing is, even though it’s probably still wrong, I haven’t actually
deleted any pages, each missing part just got added...

Different things...I looked up Olga Taussky-Todd’s article about
sums of squares. Very responsible, thorough, hard-working it is,
... No matter how old or tired she is, how much she’s had to do,
you know she’s going to read even Mazur, Artin, all the new things,
include a really intelligent synthesis, and finish it by the time of the
article deadline.

Also was thinking about how we lost a Teaching Quality Assessment
point; I had been assigned to be the ‘Aims and Objectives Barber of
Seville,’ to write aims and objectives for everyone who didn’t write
aims and objectives for himself.

It is actually hilariously funny, we lost the point because my own
work was in the Aims and Objectives room. The inspectors focused
on that. It was a Galois theory problem on my own exam, which
had been self-contradictory. I’m probably putting a false spin on
it; last night it was upsetting me, or depressing me about having
let everyone down. It reminded me of Holden Caufield’s having,
supposedly, left all the fencing equipment in the subway on the way
to a match. I think that book was supposed to be about something
meaningful.

I was reading about Monsanto, and debating about it with peo-
ple, all the history about Saccharine, PCB’s, agent Orange, Dioxin.
Supposedly still now GMO’s are the ‘only way to feed the rapidly
increasing population.’ I wanted to explain in some way that the
argument is upside-down. It is perfectly explained in my economics
book, because all I did is quote things people said that actually
make sense, and that show how people can actually understand
sometimes..
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I included the six BCC people, now since it is the last one, I’m
including as BCC’s maybe non-math friends, Bill, John K, Jacob,
Callan, Sam, Felix, Jamie.

Just to give an example, not to explain it all, but to give an example,
when I had a summer job, Bill took all the work out of my desk
drawer, when I got back to University, and discarded it without
telling me. Another summer job, he tried to get me to go on the
Staten Island Ferry on my lunch hour, knowing if I went with him,
I’d never get back to work in time.

Jacob had seminars about – really it must have been whatever we
were reading, I think they were Saturday Morning even, or maybe
Thursday at 10:00. I was reading a few pages of Corps Locaux.
The thing is, none of the permanent staff ever knew Jacob did this.
Equally important in my mind, more important, than any seminar
that happened under the eyes of the establishment, powerful weekly
seminars, were these.

I don’t understand how I can call it non-mathematical friendship,
when it is within Mathematics that this took place, in every case.

Anyway, the reason I decided to actually post a hard-copy .pdf as
an email attachment is, I had decided not to.

And then I fell asleep tonight, and was dreaming.

I dreamed that we had gone to get the puppy, it was a little white
puppy, and we took it with us to Stratford. As we did in real life.

And that suddenly I remembered in the past, when we were with it
before, having seen the puppy with its mother, drinking the warm
milk.

And it occurred to me, I have no way to feed it. I just hadn’t
thought about it.

I mentioned my worry to Dimitra, I was desperate about it, we
have to go back! And she was her usual, it might be inconvenient
‘absolutely not’ attitude....

I wondered, after all this time, how can it be OK?
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I used to have dreams that I was supposed to be teaching a class,
back at Columbia, one of those precalculus classes maybe, and I’d
forgotten to go again and it woud be about racing around, trying
to find the list of times, weeks, trying to find the room. And some
students would be waiting for me to explain meaningful things, and
I’d give a lecture, but then later realize, it has been four more weeks,
and I have not been there, and I wonder if they are still waiting.

But not any more, dreaming about abandoning students or any-
thing.

The puppy looked content enough, but I noticed its tail was loose,
it is a white puppy with a brownish tail, like Skiffles has.

And it just was somehow, maybe I was trying to pet it, or maybe
to comfort it somehow, or to heal it, or see if it was OK, and it was
on the couch. The tail had become disconnected. The puppy was
ill, from having been taken away.

And it looked ill too, and it looked like other parts might fall off,
and I was feeling sick with worry about it.

I got some water from the faucet onto my hand, and let it drip onto
my knee, and the puppy started licking it. It stopped for a while,
and I started to panic that it wasn’t right, then it started again.

My only wish was to bring it back where it always belonged.

It’s hard to explain how poignant it was, that it didn’t seem to be
worried, from what I could determine, but I was the one who was
worried, and I held it for a little while, it was talking to me.


