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Summary 

 

This text continues the development of pentuples begun in Part – 2 of these works. Matrix formulations 

are presented that are easily inverted. The presentation of a pentuple is similar to the form of a 

quaternion. A functionality is presented in Equation 4.2 that mimics wave-function collapse. Octonion 

multiplication is shown to be very similar irrespective of whether the complex i commutes normally or 

anti-commutes. 
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Discussion 

 

Pentuples: 

A quaternion Q is defined as follows: 

� =  ��  +  ��� +  �	
 + ��� 

Let us now define a pentuple PQ as follows: 

Equation 1.0: 


� =  �� + � =  ��  +  �� +  ��� + �	
 +  ��� =  �� �1� �  + ��� +  �	
 +  ��� 

Where 

Equation 1.1: 

�� =  ��� 00 �� 

By expressing a pentuple as shown in the Right-Hand-Side of Equation 1.0, the complex plane is given 

the same mathematical status as the unit vectors. Herein, the complex i anti-commutes with the unit 

vectors. 

This presentation allows a pentuple multiplication to be presented in matrix form as follows: 

Equation 2.0: 


�
� =  �+�� −��+�� +��
−�	 −��−�� +�	+�	 +��+�� −�	 +�� −��+�� +��

� ���
� �!�!	!�"##

$
 

This form is nearly identical to that of quaternion multiplication with the difference being that A0 is 

substituted for a0. All of the terms follow the format presented in Equation 1.0 and Equation 1.1.  

It must be remembered that the rows that result from the matrix multiplication are associated with the 

column vector [1, i], and the unit vectors i, j, and k, respectively. When performing this multiplication, 

the following identity is needed: 

Equation 2.1: 

�� �1� �  � �1� �  =  %�� + ��&%!� + !�& =  �%��!� − �!& 00 %�!� +  ��!&� �1� � 

The cases wherein either the real term is zero or the complex term is zero are of special interest.  
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Equation 2.1.1: 

��!� − �! = 0	; ()�*	+)(,	�-	.)(/	+0)()1/()	-/*2+�/3	�-	4/,5*)6 

Solution 1: 

�� � �	�37	!� � ! 

Solution 2: 

�� � ��	�37	!� � �! 

Solution 3: 

�� � !	�37	!� � � 

Solution 4: 

�� � �!	�37	!� � �� 

 

Equation 2.1.2: 

�!� �	��! � 0	; 4/,5*)6	+)(,	�-	.)(/	+0)()1/()	-/*2+�/3	�-	()�* 
Solution 1: 

�� �	!�	�37	� � 	�! 

Solution 2: 

�� �	�!�	�37	� � 	! 

Solution 3: 

�� � 	�	�37	!� � 	�! 

Solution 4: 

�� �	��	�37	!� � 	! 

 

Next, let us define the complex conjugate of A0 (Equation 2.1.2, Solution 1) as follows: 

Equation 2.2: 

��∗ �	 ��� 00 ��� 
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This makes it simple to produce an inverse for the coefficient matrix presented in Equation 2.0. 

Equation 3.0: 

���� ������ ��� ��	 ������ ��	��	 ������ ��	 ��� ������ ����
9:
�  1‖
�‖< ���

�+��∗ +��−�� +��∗
+�	 +��+�� −�	−�	 −��−�� +�	 +��∗ +��−�� +��∗ "##

$
 

 

Where 

Equation 3.1: 

‖
�‖< �   ��< + �< +  ��< +  �	< +  ��<  

When the inverse matrix is multiplied by the coefficient matrix, several identities become apparent. 

These are as follows: 

Equation 3.2: 

����� �  ��∗ �� = 0 

Equation 3.3: 

��	�� �  ��∗ �	 = 0 

Equation 3.4: 

����� �  ��∗ �� = 0 

These identities are true because the complex i anti-commutes with the unit vectors but the scalar value 

commutes normally. These expressions appear in the non-diagonal terms of the matrix that results from 

multiplying the coefficient matrix of Equation 2.0 with the inverse matrix of Equation 3.0. 

 

Bi-Quaternion: 

Now let us consider a bi-quaternion form of octonion OQ as follows: 

Equation 4.0: 

=� �  )�>� =  ?cos%C&  +  � sin%C&F� =  cos%C& � +  � sin%C& � 
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The conjugate of this expression is: 

Equation 4.1: 

=�∗ �	 cos%C&�∗ 	� 	� sin%C&� 

Note that this uses both Q and Q*. This is easily proven by multiplication of these two expressions. 

=�∗ =� � 	 ?cos%C&�∗ 	� 	� sin%C&�F?cos%C&�	 � 	� sin%C&�F 
=�∗ =� �	 cosC�∗ cosC�	 � 	� sinC�cosC�	 �	cosC�∗� sinC�	 � 	� sinC�� sinC�	 

=�∗ =� �	4/-<C	�∗�	 � 	� sinC cosC��	 � 	� cosC sinC��	 �	 �<-�3<C�∗� 

=�∗ =� � 	 %4/-<C	 �	-�3<C&	�∗�	 � 	�%� sinC cosC 	�	cosC sinC&�� 

Equation 4.2: 

=�∗=� � 	�∗�	 � 		 ��< 	�	��< 	� 	�	< 	� 	��< 

There is something that is very interesting about this expression. The phase angle ω has disappeared 

from the expression. Therefore, the result is the same irrespective of the phase angle ω that is used. In 

fact, the complex plane has disappeared from the expression. Essentially, the phase angle ω has become 

a hidden variable. In the author’s opinion, this behavior mimics the behavior of wave-function collapse. 

Now let us consider a more general bi-quaternion constructed of two quaternions as follows: 

= � �	 � 	�� 

Based upon Equation 4.1. the conjugate should be: 

=∗ �	�∗ 	� 	�� 

However, multiplication of these two expressions does not produce a scalar value. 

=∗= � 	 %�∗ 	� 	��&%�	 � 	��& 
=∗= �	�∗�	 � 	���	 �	�∗��	 � 	���� 

=∗= �	�∗�	 � 	���	 � 	���	 �	 �<�∗� 

=∗=	 � 	 %�∗�	 �	�∗�&	� 	�%���	 � 	��& 
=∗= �	 %�∗�	 �	�∗�&	� 	�%2HI& 

The complex term is 2ab. Since this is generally not equal to zero, the proposed conjugate is incorrect. It 

appears that there is no simple conjugate for the generalized bi-quaternion form. This observation is 

consistent with what was observed in the section on Octonions in Part – 2 of this work. 
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Given that the generalized bi-quaternion does not appear to have a simple conjugate, the author will 

focus on the version presented in Equation 4.0. 

=� �  )�>� =  ?cos%C&  +  � sin%C&F� =  cos%C& � +  � sin%C& � 

The author proposes to rewrite this expression as follows: 

Equation 5.0: 

=� �  �� �1� �  +  �� �1� � � +  �	 �1� � 
 +  �� �1� � � 

Where 

Equation 5.1: 

�� �  ��J ;  �� =  ��J ; �	 =  �	J ;  �� =  ��J 

And 

Equation 5.2: 

J �  �cos C 00 sin C� ;  J∗ =  �cos C 00 − sin C� 

 

The author is tentatively referring to Equation 5.2 as Euler’s Matrix – hence the letter E. Equation 5.0 is 

similar to the form presented by the author in the section Pentuples in Part – 2 of this work. However, 

here the author has not included the column matrix [1, i] as part of the coefficients Qx. This resolves 

some difficulties associated with the previous form. 

The next step is to multiply two octonions OA and OC that both satisfy Equation 5.0 and to express it in 

matrix form. The octonions will have phase angles ωA and ωC respectively. The author will move all of 

the unit vectors to the right-side of each group of terms. This will allow Equation 2.1 to be used if 

needed. 

=�=K �  L�� �1� �  + �� �1� � � +  �	 �1� � 
 + �� �1� � �M LN� �1� �  +  N� �1� � � +  N	 �1� � 
 +  N� �1� � �M 

=�=K �  �� �1� � N� �1� �  + �� �1� � �N� �1� �  +  �	 �1� � 
N� �1� �  +  �� �1� � �N� �1� �  + 

�� �1� � N� �1� � � +  �� �1� � �N� �1� � � +  �	 �1� � 
N� �1� � � + �� �1� � �N� �1� � � + 

�� �1� � N	 �1� � 
 + �� �1� � �N	 �1� � 
 +  �	 �1� � 
N	 �1� � 
 +  �� �1� � �N	 �1� � 
 + 

�� �1� � N� �1� � � + �� �1� � �N� �1� � � + �	 �1� � 
N� �1� � � +  �� �1� � �N� �1� � � 
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Let us first move all of the unit vectors to the right-side of each group of terms. 

=�=K �	�� �1� � N� �1� � 	� 	�� �1� � N�∗ �1� � �	 � 	�	 �1� � N�∗ �1� � 
	 �	�� �1� � N�∗ �1� � �	 � 

�� �1� � N� �1� � �	 � 	�� �1� � N�∗ �1� � ��	 �	�	 �1� � N�∗ �1� � 
�	 � 	�� �1� � N�∗ �1� � ��	 � 

�� �1� � N	 �1� � 
	 � 	�� �1� � N	∗ �1� � �
	 � 	�	 �1� � N	∗ �1� � 

	 � 	�� �1� � N	∗ �1� � �
	 � 

�� �1� � N� �1� � �	 �	�� �1� � N�∗ �1� � ��	 �	�	 �1� � N�∗ �1� � 
�	 �	�� �1� � N�∗ �1� � �� 

Next, we will simplify the unit vector terms. 

=�=K �	�� �1� � N� �1� � 	� 	�� �1� � N�∗ �1� � �	 � 	�	 �1� � N�∗ �1� � 
	 �	�� �1� � N�∗ �1� � �	 � 

�� �1� � N� �1� � �	 �	�� �1� � N�∗ �1� � �	�	 �1� � N�∗ �1� � �	 �	�� �1� � N�∗ �1� � 
	 � 

�� �1� � N	 �1� � 
	 � 	�� �1� � N	∗ �1� � �	 �	�	 �1� � N	∗ �1� � 	� 	�� �1� � N	∗ �1� � �	 � 

�� �1� � N� �1� � �	 �	�� �1� � N�∗ �1� � 
	 �	�	 �1� � N�∗ �1� � �	 � 	�� �1� � N�∗ �1� � 
Lastly, we will rearrange the terms. The scalar terms will be grouped together and the respective vector 

terms will be grouped together. 

=�=K � 	�� �1� � N� �1� � 	�		�� �1� � N�∗ �1� � 	� 		�	 �1� � N	∗ �1� � 	�	�� �1� � N�∗ �1� � 	�	 
�� �1� � N�∗ �1� � �	 � 	�� �1� � N� �1� � �	 � 	�� �1� � N	∗ �1� � �	 � 	�	 �1� � N�∗ �1� � �	 � 

�	 �1� � N�∗ �1� � 
	 � 	�� �1� � N�∗ �1� � 
	 �		�� �1� � N	 �1� � 
	 � 	�� �1� � N�∗ �1� � 
	 �	 
�� �1� � N�∗ �1� � �	 �	�	 �1� � N�∗ �1� � �	 �	�� �1� � N	∗ �1� � �	 �	�� �1� � N� �1� � �	 

This can now be represented as: 

Equation 5.3: 

=�=K � 	 ���
�� 0 ������ 0 ��	 ������ ��	��	 ������ ��	 0 ������ 0 "##

#$
���
��N�∗N�∗N	∗N�∗"##

#$ 	� 	���� 00 ��� 0 						00 						00 						00 						0 ��� 00 ���� �
N�N�N	N�� 
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Now let us test Equation 5.3 by multiplying a pair of conjugates as presented by Equation 4.0 and 

Equation 4.1. 

=�∗ =� �	 ���
�� 0 ������ 0 ��	 ������ ��	��	 ������ ��	 0 ������ 0 "##

#$
���
����∗��∗�	∗��∗"##

#$ 	�	 ���
����∗ 00 ���∗ 0 						00 						00 						00 						0 ���∗ 00 ���∗"#

#$ ������	��� 

=�∗=� � 	 ���
�����	��∗	�	�		�	∗	�	�� 	��∗ 		���	��∗	�	��	�	∗	�	�		��∗��		��∗	�	�� 	��∗	�	��	��∗���	��∗	�	�		��∗	�	��	�	∗ "##

#$ 	� 	��
�����

∗	�����∗	�����∗	�	���∗	��"#
#$ 

=�∗ =� �		 ���
< �	��< �	�	< �	��<000 � 

 

This result agrees with Equation 4.2. Several identities present themselves here. These are as follows: 

Equation 5.3.1: 

�����∗ 	� 	��∗�� � 0	;	��	��∗ 	� 	��∗�	 � 0	;	�����∗ 	� 	��∗�� � 0 

Equation 5.3.2: 

����	∗ 	� 	�	��∗ � 0	;	�����∗ 	�	����∗ � 0	;	��	��∗ 	� 	���	∗ � 0 

 

Bi-Quaternion Matrix Inverse: 

Given that multiplication of two bi-quaternions as described by Equation 4.0 produces Equation 5.3 

which contains two matrix multiplications, how can there be a single matrix that represents the inverse 

matrix for this operation? Yet, there must be an inverse matrix because Equation 4.1 is shown to be the 

conjugate of Equation 4.0. To resolve this, we must return to the discussion of Octonions in Part – 2 of 

this work. In that work, the author had not yet had the insight associated with Equation 4.1 of this work. 

Therefore, it seems appropriate to revisit that previous effort in light of the new concept. The objective 

will be to restate Equation 5.3 as an 8x8 matrix multiplication. 
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The form of the relationship just prior to Equation 5.3 is: 

=�=K � 	�� �1� � N� �1� � 	�		�� �1� � N�∗ �1� � 	� 		�	 �1� � N	∗ �1� � 	�	�� �1� � N�∗ �1� � 	�	 
�� �1� � N�∗ �1� � �	 � 	�� �1� � N� �1� � �	 � 	�� �1� � N	∗ �1� � �	 � 	�	 �1� � N�∗ �1� � �	 � 

�	 �1� � N�∗ �1� � 
	 � 	�� �1� � N�∗ �1� � 
	 �		�� �1� � N	 �1� � 
	 � 	�� �1� � N�∗ �1� � 
	 �	 
�� �1� � N�∗ �1� � �	 �	�	 �1� � N�∗ �1� � �	 �	�� �1� � N	∗ �1� � �	 �	�� �1� � N� �1� � �	 

 

This must be equal to the following: 

	=�=K �	 %� � ��&%K � �O& 
Where the various terms of A, B, C, and D are specified to coincide with Equation 4.0. Expanding this 

gives he following: 

=�=K � �K � ��K � ��O � ���O 

=�=K � �K �	�∗�K � ��O �	�∗O 

=�=K � �K	 �	�∗O � 

														�∗�K � ��O 

Equation 6.0: 

=�=K �	 � �� ��∗��∗ �� � �KO� 
 

Look at how simple it is to express this by using Hamilton’s quaternions! This can then be presented as 

an 8x8 matrix multiplication by substituting the submatrix that is associated with each quaternion. 

In Part – 2 of this work, the author showed in 4.4.1 that an octonion multiplication wherein the complex 

i commutes normally could be represented as follows: 

=�=K �	 ��� ���� ��� �KO� 
Therefore, it appears that complex i anti-commutation causes B to become B* in the matrix form. 
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Therefore, the 8x8 matrix representation for the matrix multiplication wherein the complex i anti-

commutes is as follows: 

Equation 6.1: 

=�=K �	
��
��
��
��
���� ������ ��� ��	 ������ ��	��	 ������ ��	 ��� ������ ���

�!� �!��!� �!� �!	 �!��!� �!	�!	 �!��!� �!	 �!� �!��!� �!��!� �!��!� �!� �!	 �!��!� �!	�!	 �!��!� �!	 �!� �!��!� �!�
��� ������ ��� ��	 ������ ��	��	 ������ ��	 ��� ������ ���"#

##
##
##
$

��
��
��
���4��4��4	�4��7��7��7	�7�"#

##
##
#$
 

 

And the inverse matrix is as follows: 

Equation 6.2: 

?,F9: �	 1‖�‖<
��
��
��
��
���� ������ ��� ��	 ������ ��	��	 ������ ��	 ��� ������ ���

�!� �!��!� �!� �!	 �!��!� �!	�!	 �!��!� �!	 �!� �!��!� �!��!� �!��!� �!� �!	 �!��!� �!	�!	 �!��!� �!	 �!� �!��!� �!�
��� ������ ��� ��	 ������ ��	��	 ������ ��	 ��� ������ ���"#

##
##
##
$
 

 

Where: 

Equation 6.2.1: 

‖�‖< �	‖�‖< �	‖�‖< 

As a reminder, the coefficients in the above matrices must satisfy the following: 

Equation 6.3: 

�� � cos%C& ��;	�� � cos%C& ��; 	�	 � cos%C& �	; 	�� � cos%C& �� 

!� � sin%C& ��;	!� � sin%C& ��; 	!	 � sin%C& �	; 	!� � sin%C& �� 

This was shown in Part – 2 of this work to be necessary for the coefficient matrix to be invertible. 
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