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Abstract 

In this research investigation, the author has presented a Recursive Past Equation and a Recursive 

Future Equation based on the Ananda-Damayanthi Normalized Similarity Measure considered to 

Exhaustion [1] (please see the addendum of [1] as well). 

The Ananda-Damayanthi Normalized Similarity Measure 

Considering any two Real Numbers, their Ananda-Damayanthi Similarity Measure is given by the 
Smaller of  the Two Numbers. The Ananda-Damayanthi Normalized Similarity Measure is given by 
the Ratio of  the Smaller to The Larger [1]. 
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The Recursive Future Equation 

Given a Time Series  nn yyyyyY ,,.......,,, 1321   

we can find 1ny  using the following Recursive Future Equation 
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where 

     111   njkjkkj yandSLofSmallerS  and      111arg   njkjkkj yandSLoferLL  

(This will be detailed in the next section) 

where  mtoj 1 is a Number which makes the Difference Residual  )1()1(   jkjk SL  tend to Zero. 

From the above Recursive Equation, we can solve for 1ny . 

Proof: 

We consider 
ky  and find the Ananda-Damayanthi Similarity [1] between 

ky and 1ny which we refer 

as 
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. We now consider the lack of similarity part, i.e.,  kk SL   and 

again find the Similarity between 
ky  and  kk SL   (this is the Difference Residual of First Order) 

which (the aforementioned Similarity) we refer to as 
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wherein the Difference Residual of Second Order is  11 kk SL  . And similarly, we find 
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. Note that we represent the second index by j which 

goes from 0 to m . We now add them all. Similarly, we consider such terms for  1k   to  n  and 

compute such aforementioned quantities and add them all. We now Normalize (L2 Norm), i.e., divide 

each of this value by the quantity  
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0 . We equate this value to 1ny  as the 

RHS is the Total Normalized Similarity contribution from each element of the Time Series Set 



 nn yyyyyY ,,.......,,, 1321   with respect to 1ny . Note that the Similarity term corresponding to the 

Difference Residual of Zeroth Order can be represented as 
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Defining Error 

We define Error in the following fashion: 

For the Recursive Future Equation: 

Method 1 

Given a Time Series  nn yyyyyY ,,.......,,, 1321   we consider only  1321 ,.......,,,  nyyyyY  and use the 

aforementioned Recursive Future Equation to find the thn  term. Say this is n

p y  where the p stands 

for the ‘predicted’ or ‘forecasted’ value. Then, the Error is defined by  

 

Method 2 

Given a Time Series  nn yyyyyY ,,.......,,, 1321   we consider it and use the aforementioned Recursive 

Future Equation to find the  thn 1  term. Say this is 1n

p y  where the p stands for the ‘predicted’ or 

‘forecasted’ value. We now consider the Time Series Set  1132 ,,,.......,,  n

p

nn yyyyyY  and use the 

aforementioned Recursive Past Equation to generate the term previous to 
2y , i.e., 1yp

. Then, the 

Error is defined by  
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The Recursive Past Equation 

Given a Time Series  nn yyyyyY ,,.......,,, 1321   

we can find 0y  using the following Recursive Past Equation 
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     njkjkkj yandSLofSmallerS 11    and      njkjkkj yandSLoferLL 11arg    

where  mtoj 1 is a Number which makes the Difference Residual  )1()1(   jkjk SL  tend to Zero. 

From the above Recursive Equation, we can solve for 0y . 

 

Proof: 

We consider 
ky  and find the Ananda-Damayanthi Similarity [1] between 

ky and ny which turns out 

to be 
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and again find the Similarity between 
ky  and  kk SL   (this is the Difference Residual of First Order) 

which (the aforementioned Similarity) we refer to as 
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wherein the Difference Residual of Second Order is  11 kk SL  . And similarly, we find 
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goes from 0 to m . We now add them all. Similarly, we consider such terms for  0k   to  1n  and 

compute such aforementioned quantities and add them all. We now Normalize (L2 Norm), i.e., divide 

each of this value by the quantity  
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is the Total Normalized Similarity contribution from each element of the Time Series Set 

 13210 ,.......,,,,  nyyyyyY with respect to ny . Note that the Similarity term corresponding to the 

Difference Residual of Zeroth Order can be represented as 
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Defining Error 

We define Error in the following fashion: 

For the Recursive Past Equation:   

Method 1 



Given a Time Series  nn yyyyyY ,,.......,,, 1321   we consider only  nn yyyyY ,,.......,, 132   and use the 

aforementioned Recursive Future Past to find the st1  term. Say this is 1yp
 where the p stands for 

the ‘predicted’ or ‘forecasted’ value. Then, the Error is defined by  
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Method 2 

Given a Time Series  nn yyyyyY ,,.......,,, 1321   we consider it and use the aforementioned Recursive 

Future Equation to find the term previous to 
1y . Say this is 0yp

 where the p stands for the 

‘predicted’ or ‘forecasted’ value. We now consider the Time Series Set  13210 ,.......,,,,  n

p yyyyyY  

and use the aforementioned Recursive Future Equation to generate the term next to 1ny , i.e., n

p y . 

Then, the Error is defined by  
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Computation Complexity 

For the World’s fastest Japaneese Super-Computer which can compute 1 Quadrillion Computations 

per second 

we can use the equation   15102 nm  to calculate the Maximum Number of Terms of the Time Series 

n  for which we wish to predict the  thn 1 term and m is the Number Of Difference Residual Terms 

we wish to consider for each term, to find the n  for a given m  so that the  thn 1  term is computed 

in one second. 

Furthermore, if we take 108orm (beyond which the value of the Difference Residuals is near 

vanishing) and for different amounts of times we can spare for getting the computed answer, the 

Number of Terms of the Time Series n that we can consider is given as follows: 

 

 

 

 

 



Serial Number Duration Of Computation Number of Terms n  To Consider 

1 1 Second m64043.21  

2 1 Minute m66808.25  

3 1 Hour m69574.29  

4 1 Day m2807.34  

5 1 Week m0886.37  

6 1 Month (31 Days) m2349.39  

7 1 Year m79246.42  

 

That is, if the Time Series Set were to contain n  number of terms (as shown in the table for varying 

values of m , namely 8 and 10, then the Duration of Computation is tabulated above. 

For Forecasting Future Element 

We have  mnn2  number of 6th Order Polynomial Equations of the kind as shown in equation A to 

solve as these account for all the cases of the Time Series Set Elements being greater or lesser than 

the future  thn 1  element to be computed, as these equations are being represented by the 

aforementioned Recursive Future Equation. Only one among them is the correct equation and this 

can be found by using this thusly computed  thn 1 value and omitting the first element 
1y , using 

the Time Series Set  1132 ,,,.......,,  nnn yyyyyY  we predict the element 
1y using the aforementioned 

Recursive Past Equation. And one of the  mnm2  number of 6th Order Polynomial Equations of the 

kind as shown in equation A which gives the best true value of 
1y  can be considered as the correct 

equation and its future element forecast of 1ny  as the correct forecast. 

For Forecasting Past (to the First) Element 

We have  mnn2  number of 6th Order Polynomial Equations of the kind as shown in equation A to 

solve as these account for all the cases of the Time Series Set Elements being greater or lesser than 

the past element 
0y  to be computed, as these equations are being represented by the aforementioned 

Recursive Past Equation. Only one among them is the correct equation and this can be found by 

using this thusly computed 
0y value and omitting the latest element 

ny , using the Time Series Set 

 13210 ,.......,,,,  nyyyyyY  we predict the element 
ny using the aforementioned Recursive Future 



Equation. And one of the  mnn2  number of 6th Order Polynomial Equations of the kind as shown in 

equation A which gives the best true value of 
ny  can be considered as the correct equation and its 

past element forecast of 0y  as the correct forecast. 
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