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Abstract

A previous preon model for the substructure of the the standard model quarks
and leptons is completed to provide a model of Planck scale gravity and black
holes. Gravity theory with torsion is introduced in the model producing an
axial-vector �eld W coupled to preons with an attractive preon-preon interac-
tion. This is suggested to be the leading term of UV gravity. The boson has
an estimated mass near the Planck scale. It can materialize above that thresh-
old and become the center of a black hole. Chiral phase preons are proposed
to form a dynamical horizon with thickness of Planck length. Using quantum
information theoretic concepts this is seen to lead to an area law of black hole
entropy.
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1 Introduction

The purpose of this brief note is to develop further a spin 1/2 preon model
in order to give it group theoretic structure, including internal SU(N) type,
topological global knot and spacetime Poincaré symmetries. This is an early
milestone in a long term process to �nd a physically acceptable and compre-
hensive realization for the original model [1]. The model should ful�ll four
requirements:

1. provide a single global group structure for preons, quarks and leptons,

2. introduce preon properties so that they imply in the adjoint representa-
tions the standard model (SM) local gauge group structure SU(3)×SU2)×
U(1),

3. introduce Planck scale gravity that is Einstein-Hilbert compatible, i.e.
general relativity (GR) plus torsional corrections in the e�ective low energy
theory, with least order derivative terms in the action, and

4. propose a tentative corpuscular structure for black holes with an area law
entropy of the form S = 1

4A.

These goals are approached as follows. The preon model [1, 2, 3, 4] can be
formulated group theoretically using the results derived by Finkelstein [5]: the
global knot algebra SLq(2) structure for preons, quarks and leptons. Secondly,
the speci�c construction, (2.1), of the preon model directly suggests the gauge

2



group structures SU(2) and SU(3) for the weak and strong interactions, respec-
tively. Thirdly, fermion �elds in Einstein-Cartan [6], or Einstein-Cartan-Kibble-
Sciama (ECKS) [7, 8] gravity have been shown by Fabbri to yield interesting
results for torsion coupling to spin 1/2 �elds [9]. This interaction is expressed
as a massive axial-vector �eld W coupled to Dirac fermions. It originates from
translation, or rather translational rotation, symmetry of the full Poincaré gauge
group in the action. A model for Gedanken gravity phenomenology is in this
way introduceded for energy scales, say approximately 1016 Gev ≤ E ≤ 1019

GeV. At these energies the axial-vector boson may materialize due to preon-
antipreon annihilation in stellar collisions or in similar energy density thermal
environment at big bang. At E ≥ 1019 GeV the axial-vector bosons may serve
as seeds for non-singular black hole formation. Near and above Planck scale the
e�ects of curvature of general relativity are assumed to be comparatively small,
while at terrestrial and astronomical scales the e�ects of curvature dominate
gravitational phenomena. There is duality between the standard model parti-
cles and black holes. In principle, one is calculable from the other. This is more
like Regge-resonance duality rather than the more modern holographic duality.
Cursory derivation of the area law for black holes, S = A/4, is provided using
quantum information theoretic concepts [10].

The organization of this note is the following. The preon model is described
in section 2. The particle classi�cation group SLq(2) is discussed in appendix
A. The model for black hole structure using the torsion �eld is described in
section 3. Torsion in ECKS gravity is summarized in appendix B. Information
theory, correlations and area law are sketched in appendix C. In section 4 some
interesting thoughts on the nature of quantum spinor �eld equations are brie�y
quoted. Finally, conclusion are made in section 5. The appendices are of more
quantitative review nature than the sections 2-4 and they are included to make
the key sections more readable and the presentation self-contained.

This note is mostly of review nature with some new proposals for black
holes. I do not expect everything to be correct, or even less complete � the goal
is achieved if something is correct, or at least useful, on the pages below.

2 Preons and the Standard Model Particles

The constituents of quarks and leptons must include an odd number of spin 1/2
particles. I consider the case of three constituents, preons. Requiring charge
quantization {0, 1/3, 2/3, 1} and fermionic permutation antisymmetry for same
charge preons, four bound states of three light preons have been de�ned. These
form the �rst generation quarks and leptons [1, 2]

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.1)
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A feature in (2.1) with two same charge preons is that the construction
provides a three-valued index, which �ts well for quark SU(3) color, as it was
originally discovered historically [11]. The corresponding color gauge bosons
are in the adjoint representation. The weak SU(2) left-handed doublets can
be read from the �rst two and last two lines in (2.1). The standard model
gauge structure SU(N), N = 1, 2 is emergent in this sense from the present
preon model. In the same way quark-lepton transitions between lines 1↔3 and
2↔4 in (2.1) are possible. The preon and SM fermion group structure is better
illuminated with the representations of the SLq(2) group in the appendix A.

The above gauge picture is supposed to hold in the present scheme up to the
energy of about 1016 GeV. The electroweak interaction is in the spontaneously
broken symmetry phase below energies of the order of 100 GeV and in the
symmetric phase above it. The electromagnetic and weak forces take separate
ways at higher energies (100 GeV� E � 1016 GeV). The weak interaction
restores its symmetry but melts away due to ionization of quarks and leptons
into preons. The electromagnetic interaction, in turn, stays strong towards
Planck scale, MPl ∼ 1.22× 1019 GeV. Likewise, the quark color and leptoquark
interactions su�er the same destiny as the weak force. One is left with the
electromagnetic and gravitational forces only at Planck scale.

The problem of three generations of quarks and leptons is not solved here.
Without a true theory of quantum gravity one may just expect that gravitational
or topological e�ects should come into play, but also group theoretic solutions
have been proposed in the past.

3 Black Hole Structure

The Einstein-Hilbert (EH) theory of gravity, or general relatitvity, provides ro-
tational curvature (cf. rolling a piece of dough) to spacetime in terms of the
metric tensor. This is the prevalent dogma in gravity. It is not, however, the
most general case of gauge symmetry available. The EH theory can be gener-
alized by including in the action terms of torsion, which leads to translational
curvature (cf. turning screw) in spacetime. This way the full symmetry of
the ten parameter Poincaré group can be taken into account. The new theory
is called Einstein-Cartan-Kibble-Sciama theory of gravity. Torsion is physically
realized by the appearance of an axial-vector bosonW (weak interaction bosons
are not considered in this note). Interesting enough, the W does not couple to
the metric or gauge degrees of freedom [9]. Metric tensor, or gravitons, and tor-
sion are independent degrees of freedom in ECKS gravity, therefore they couple
independently to matter.

Free preons, say with some small value of mass, interact by coupling to
the axial-vector boson W with strength gW . The preon-preon interaction is
attractive [9] providing the binding for three preon states. The mass of the
axial-vector boson is estimated to be of the order of the GUT or Planck scale
1016−19 GeV (see below in this section). This makes the torsion interaction
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range very short. At all scales the W couples to preons relatively strongly but
to the standard model particles always weakly. I make the proposal that the
torsional interaction gives the dominant semi-quantum contribution of gravity
at Planck scale. The graviton interaction there is assumed negligible. In the
case of black holes, the role of rotational curvature, or gravitons, at Planck scale
is traditionally to give the radius-mass relation of the black hole horizon. Below
I propose an alternative, dynamical de�nition of horizon. The BH singularity is
not discussed here except that it is not important within the scope of this note
or it is removed by quantum e�ects.

The �eld equation for torsion axial-vector is (B.22), from appendix B.2

∇ρ(∂W )ρµ+M2Wµ=gWψγ
µπψ (3.1)

whereM is the axial-vector mass, gW the preon�axial-vector coupling and ψ the
preon wave function. The coupling gW must be larger than the electromagnetic
coupling α to keep the charged preons bound. In EKS gravity, gW is independent
of the gravitational coupling [9]. The key point of this model of gravity is that
(3.1) depends only on the axial-vector W and preon ψ �elds, not on gauge and
metric factors.

Couplings in GUT theory are of the order 0.02 at the GUT scale. With
a Yukawa potential in the Schrödinger equation V (r) = −V0 exp(−ar)/r [25],
or in our notation −gW exp(r/M)/r with the physicality condition n+ l + 1 ≤√
gWmM , one may estimate that large M correlates with small preon mass

m� mproton. These matters deserve naturally quantitative attention.
The axial-vector �eld is expected to appear as a physical particle whenever

its production is energetically possible. At Planck scale energy the axial-vector
boson serves as a seed for black hole formation causing a black hole to appear.
With the growing black hole mass the fermion spins average out towards zero
and torsion vanishes but the physical `fat' boson remains.

The horizon may as well be a very thin shell of massless preon-antipreon
pairs. In fact, an alternative de�nition for the horizon can be this dynamical
formation of an preon-antipreon `cloud'. In that case the nature of gravity
near Planck scale would be di�erent from textbook GR. The number of pairs is
correlated with the mass of the black hole, and they may form Cooper pairs. A
prototype for the lightest black hole is a preon-antipreon-W bound state. It is
a physical state which couples to quark-antiquark and lepton-antilepton pairs.
This state was called gravon in [12].

For the local energy density of the gravitational �eld there is no well-de�ned
covariant notion. Quasilocal energy (QLE) is the next best thing, the energy
contained on a two dimensional surface. For round spheres in spherically sym-
metric spacetimes there is good agreement as to what QLE should be. The
standard de�nition is the classical Misner-Sharp (MS) energy [13].

A good contender with numerous attractive features is the Brown-York (BY)
QLE [14] which is based on the covariant Hamilton-Jacobi formulation of general
relativity. In [15] the B-Y QLE was considered in a model where the energy
was calculated as coming from elementary surface constituents E = a/(8πG)A
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where a is the constant proper acceleration of an observer on the stretched
horizon and A is the area of the horizon. Therefore black hole energy should be
quantized as follows

E = const× n× l2Pl (3.2)

with the constant being a/(8πG) and n = 2, 3, 4, ... provided a sphere and
other polyhedra-type objects can be smoothly covered in the given spacetime
with n Planck areas. For comparison, loop quantum gravity gives the following
area eigenvalues A = const× l2Pl

∑
p

√
jp(jp + 1) with jp a half integer [16].

There is in this model a particle-black hole duality, of Regge-resonance type
rather than the more modern holographic. On the particle side the fermions -
i.e. preons, quarks and leptons - dominate, the axial-vector binds the preons,
and the graviton is 'visible in the sky'. On the black hole side the axial-vector
is the dominant part of the physical black hole, the preons are 'hidden' forming
the horizon and the graviton is negligible. In principle, one side is calculable
from the other.

One may now propose that, as far as there is an ultimate uni�ed �eld theory,
it is a preon theory with only gravitational and electromagnetic interactions.

In the early universe, the strong and weak forces are generated only after
massless preons combine into quarks and leptons at lower temperature. These
two forces function only with short range within nuclei making atoms, molecules
and chemistry possible. In a contracting phase of the universe the same pro-
cesses take place in the reverse order. Massless preon models are a candidate
for building conformal cosmological models, see eg. [17].

4 Considerations of Spinors Fields

The incompatibility of gravity and second quantization, as well as the problem
of radiative corrections, are discussed from a novel point of view in [9]. A
major point is that, with gravity included in the theory, plane wave solutions
do not exist any more. Instead, localized �elds can be derived by analyzing the
self-interactions of the chiral components of the spinor �elds.

Secondly, I quote Fabbri [9]:

�In the theory of quantum �elds, electrons are point-like with quantum ef-

fects giving an electronic self-interaction in terms of radiative processes involv-

ing loops, while here the self-interaction of the spinor should be regarded as a

mutual interaction of its two chiral parts giving internal dynamics for extended

�elds, and consequently allowing the Zitterbewegung to actually in�uence the

particles. The Zitterbewegung of classical �elds and quantum e�ects for struc-

tureless particles might coincide.�

From this point of view, we may be closer to quantum gravity than commonly
believed.
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5 Conclusions

The preon model with spin 1/2 and charge 0 and 1/3 constituents discussed
above has a sound group theoretical structure based on some of the best known
groups. Both the preons and the quarks and leptons belong to two lowest
representations of the global SLq(2) group, shown in the tables 1 and 2 of
the appendix A. With the four preons the standard model local gauge groups
SU(3) × SU2) × U(1) become visible. Preons, as Dirac spinors, are the fun-
damental building blocks of matter which couple to gravity near Planck scale
predominantly by axial-vector boson coupling. Above the Planck scale the for-
mation of black holes becomes possible with the axial-vector boson forming a
seed for it and the chiral phase preon-antipreon pairs form the horizon. The
axial-vector coupled to the preons may make the singularity of the hole softer
or fade away.

It is hoped that the preon scheme [4] would provide a way towards a better
understanding of the roles of all interactions. For that goal a special construction
is proposed for the weak and strong interactions. They are bona �de gauge
theories but emerge from the very basic fermion structure of the model (2.1).
Gravity and electromagnetism are the 'original' long range interactions in the
big bang of cyclic cosmology.

For quantum gravity the essential problem in model building is that we
do not know the nature of quantum geometry. And we have no data to guide
us. In this note I have taken the attitude that quantum gravity may be simpler
than expected, at least some part of it may be closer to quantum mechanics
than commonly thought. In the present treatment all the basic equations, of
the standard model and the torsion �eld B.22, are relativistic quantum equa-
tions. Therefore quantum gravity may be within reach in the sense of section 4.
The scenario presented above serves for most practical purposes where gravity
is considered: for terrestrial to cosmological distances the classical Einstein-
Hilbert equations work well and for Planck scale distances the Proca quantum
equation is a natural candidate, yet to be tested. A dual relationship was pro-
posed between matter and black holes in four dimensions. One is, in principle,
calculable from the other.

The role of rotational curvature needs to be quantitatively analyzed. It is
assumed here to be a small correction in this torsional model at Planck scale.
It is remarkable that the equations for torsion (B.22) and curvature (B.24) are
so di�erent with the torsion being independent of metric and gauge degrees of
freedom. Zitterbewegung at Planck energy should provide a scale of length/area
for calculations.

The translation symmetry of the full Poicaré group implies axial-vector in-
teractions which introduce a new Gedanken phenomenology for preons between
the GUT scale and Planck scale. The axial-vector particle is expected to have a
large mass, M ∼ 1016−19 GeV. Within accelerator energies axial-vector particle
couplings to standard model particles are very small.

The main conclusion from ECKS gravity is that it leads to the quantum
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equation of the spinor �eld coupled to torsion �eld B.22 which I tentatively
interpret as the UV limit of gravity. Therefore there should be quantum states
describing the preon�axial-vector system to which the information theoretic
arguments of appendix C can be applied leading to the area rule SBH = 1/4 A.

Of matters not discussed in this note I refer again to [9] where substantial
amount of phenomenological success is obtained beyond the standard model of
cosmology, like dark matter, cosmological constant and in�ation. Thermody-
namics is another area to be studied in detail. More work is needed to clarify
all the issues and gain consensus in the questions like �eld quantization, gravity
and its full quantum version.
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Appendices

A Knot Theory: Preons, Quarks and Lep-

tons

Early work on knots in physics goes back in time to 19th and 20th century
[18, 19]. On the 21st century Finkelstein has proposed a model based on the
group SLq(2) [5]. This group actualizes the needs of the model of the previous
section 2.

Let us consider the simple case of two dimensional representation of the
group SLq(2) which is de�ned by the matrix

T = D
1/2
mm′ =

(
a b
c d

)
(A.1)

where (a, b, c, d) satisfy the knot algebra

ab = qba bd = qdb ad− qbc = 1 bc = cb

ac = qca cd = qdc da− q1cb = 1 q1 ≡ q−1 (A.2)

where q is de�ned as follows from the matrix ε

ε =

(
0 α2

−α1 0

)
(A.3)

The matrix ε is invariant under the transformation

TεT t = T tεT = ε (A.4)
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where T t is T transposed and q = α1/α2.
Higher representations of SLq(2) are obtained by transforming the (2j + 1)

monomials
Ψj
m = N j

mx
n+

1 x
n−
2 ,−j ≤ m ≤ j (A.5)

by

x
′
1 = ax1 + bx2 (A.6)

x
′
2 = cx1 + dx2 (A.7)

where (a, b, c, d) satisfy the knot algebra (A.2) but x1 and x2 commute and
n± = j ±m, and

N j
m =

[
〈n+〉q1 !〈n−〉q1 !

]−1/2
(A.8)

and 〈n〉q = qn−1

q−1 . It is found that(
Ψj
m

)′
=
∑

Dj
mm′Ψ

j
m′ (A.9)

where

Dj
mm′(q|a, b, c, d) =

∑
δ(na+nb,n+)
δ(nc+nd,n−)

Ajmm′(q, na, nc)δ(na + nb, n
′
+)anabnbcncdnd

(A.10)
where n

′
± = j ±m′ , Dj

mm′ is a 2j+1 dimensional representation of the SLq(2)

algebra and the Ajmm′ is

Ajmm′(q, na, nc) =

[
〈n′+〉1〈n

′
−〉1

〈n+〉1〈n−〉1

]1/2 〈n+〉1!
〈na〉1!〈nb〉1!

〈n−〉1!
〈nc〉1!〈nd〉1!

(A.11)

The oriented 2-dimensional projection of a 3-dimensional knot can be as-
signed three coordinates (N,w, r) where N is the number of crossings, w is the
writhe and r the rotation. One can transform to new coordinates (j,m,m′).
These indices label the irreducible representations of Dj

mm′ of the symmetry
algebra of the knot, SLq(2) by setting

j = N/2, m = w/2, m′ = (r + o)/2 (A.12)

This linear transformations makes half-integer representations possible. The
knot constraints require w and r to be of opposite parity, therefore o is an odd

integer. The knot (N,w, r) may be labeled by D
N/2
w/2,(r+o)/2(a, b, c, d).

One assigns physical meaning to the Dj
mm′ in (A.10) by interpreting the a, b,

c, and d as creation operators for spin 1/2 preons. These are the four elements

of the fundamental j = 1/2 representation D
1/2
mm′ as indicated in Table 1. For

notational clarity, I use in Tables 1. and 2. the preon names of [5]. The preon
dictionary from the notation of [1] is the following:

m+ 7→ a, m0 7→ c

m− 7→ d, m̄0 7→ b
(A.13)
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Table 1: The D1/2 representation of the four preons.

m m' preon
1/2 1/2 a
1/2 -1/2 b
-1/2 1/2 c
-1/2 -1/2 d

Table 2: The D3/2 representation of the standard model particles

m m' particle preons
3/2 3/2 electron aaa
3/2 3/2 neutrino ccc
3/2 -1/2 d-quark abb
-3/2 -1/2 u-quark cdd

The standard model particles are the following elements of the D
3/2
mm′ repre-

sentation as indicated in Table 2.

All details of the SLq(2) extended standard model are discussed in the re-
view article [5], including the gauge and Higgs bosons and a candidate for dark
matter. I do not, however, see much advantage for introducing composite gauge
bosons in the model. Introduction of color from preons is done slightly di�er-
ently in [5]. In the early universe developments there is similarity between the
knot model and the present preon model. Therefore, apart from the di�erences
in color interpretation, the model of [1] and the knot algebra of [5] are equivalent
in the fermion sector.

In summary, knots having odd number of crossings are fermions and knots
with even number of crossings are correspondingly bosons. The leptons and
quarks are the simplest quantum knots, the quantum trefoils with three cross-
ings and j = 3/2. At each crossing there is a preon. The free preons are twisted
loops with one crossing and j = 1/2. The j = 0 states are simple loops with
zero crossings.

B Einstein-Cartan-Kibble-Sciama Gravity

B.1 Introduction

To build a full Poincaré group gauge theory for gravity one has boosts, rotations
and translations to consider: the rotations lead to curvature and the transla-
tions to torsion in spacetime. From a di�erent point of view, curvature arises
in the form of metric from energy and torsion in the form of a connection from
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spin. Torsion is therefore de�ned on microscopic scales. Torsion requires ex-
tension of the Riemann geometry to Riemann-Cartan (RC) geometry [6]. RC
gravity, or Einstein�Cartan-Kibble-Sciama (ECKS) [7, 8] gravity can be reduced
to Einstein gravity plus torsional contributions. A theory has been developed
by Fabbri [9] for gravity with torsion and spinor matter �elds, which yields a
massive axial-vector coupled to spinors. His goal is to explain most of the open
problems in the standard model of particles (and cosmology) as well as to ana-
lyze the nature of spinor �elds. Here I apply the axial-vector coupling of [9] to
preon interactions.

In general relativity metric is used to measure distances and angles. Con-
nections are used to de�ne covariant derivatives. In general form, a covariant
derivative of a vector is de�ned by

DαV
µ = ∂αV

µ + V ρΓµρα (B.1)

The connection Γµρα has three indices: µ and ρ shu�e, or transform, the compo-
nents of the vector V ρ and α indicates the coordinate in the partial derivative.

Metric and connection should be unrelated. This is implemented by de-
manding that the covariant derivative of the metric vanishes. In this case the
connection is metric-compatible. Metric-compatible connections can be divided
into antisymmetric part, given by the torsion tensor, and symmetric part which
includes a combination of torsion tensors plus a symmetric, metric dependent
connection called the Levi-Civita connection.

In a general Riemannian spacetime R, at each point p with coordinates xµ,
there is a Minkowski tangent space M = TpR, the �ber, on which the local
gauge transformation of the TxµR coordinates xa takes place

x′a = xa + εa(xµ) (B.2)

where εa are the transformation parameters, µ is a spacetime index and a a
�ber frame index.

The dynamics of the theory is based on vierbeins (tetrads) eaµ, not on the
metric tensor gµν . The Cartan connection has a primary role and it is

Γµλν = eaµ∂λeaν (B.3)

The tensor associated with this connection is torsion tensor

Tµλν = e µ
a (∂λe

a
ν − ∂νeaλ) (B.4)

Unfortunate for the development of gravitation theory, spin was not discov-
ered in the laboratory before 1916. Spinors were introduced in mathematics by
Cartan in the 1920's and spinor wave equation was found by Dirac in 1928.

B.2 Torsion as Axial-Vector Massive Field

Torsion has the property that it can be separated from gauge and metric factors.
Let us start from the metric connection

Λραβ = 1
2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (B.5)
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The torsion tensor is completely antisymmetric only if some restrictions are
imposed, called the metric-hypercompatibility conditions [20, 21, 22, 23, 24].
Then it can be written in the form

Qασν = 1
6W

µεµασν (B.6)

where Wµ is torsion pseudo-vector, obtained from the torsion tensor after a
Hodge dual. With the metric connection and the torsion pseudo-vector the
most general connection can be written as a sum of Λραβ and Qασν as follows

Γραβ= 1
2g
ρµ
[
(∂βgαµ+∂αgµβ−∂µgαβ)+ 1

6W
νενµαβ

]
(B.7)

Functions Ωa
bµ that transform under a general coordinate transformation like

a lower Greek index vector and under a Lorentz transformation as

Ω′a
′

b′ν = Λa
′
a

[
Ωa
bν − (Λ−1)ak(∂νΛ)kb

]
(Λ−1)bb′ (B.8)

are called a spin connection. The torsion in coordinate formalism is de�ned as
follows

Qaµν =−(∂µe
a
ν−∂νeaµ+ebνΩa

bµ−ebµΩa
bν) (B.9)

and the spin connection is given by

Ωa
bµ = eνb e

a
ρ

(
Γρνµ − eρk∂µe

k
ν

)
(B.10)

which is antisymmetric in the two Lorentz indices after both of them are brought
in the same upper or lower position. The most general spinorial connection is

Ωµ = 1
2Ωabµσ

ab+iqAµI (B.11)

where Aµ is the gauge potential. The spinorial curvature is using the spinorial
connection

F αβ = ∂αΩβ − ∂βΩα + [Ωα,Ωβ] (B.12)

Let us de�ne the decomposition of the spinor �eld in its left and right parts

πLψ=ψL ψπR=ψL (B.13)

πRψ=ψR ψπL=ψR (B.14)

so that

ψL+ψR=ψ ψL+ψR=ψ (B.15)

Now one has 16 linearly-independent bi-linear spinorial quantities

2ψσabπψ=Σab (B.16)

2iψσabψ=Sab (B.17)

ψγaπψ=V a (B.18)

ψγaψ=Ua (B.19)

iψπψ=Θ (B.20)

ψψ=Φ (B.21)
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To have the most general connection decomposed into the simplest sym-
metric connection plus torsion terms we substitute (B.7) in (B.10) and this in
(B.11). The �eld equations reduce to the following

∇ρ(∂W )ρµ+M2Wµ=gWψγ
µπψ (B.22)

for torsion axial-vector and

Rρσ− 1
2Rg

ρσ−Λgρσ=

= k
2 [14F

2gρσ−F ραF σα + (B.23)

+1
4(∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ) +

+ i
4(ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

−1
2gW (W σψγρπψ+W ρψγσπψ)] (B.24)

for the torsion-spin and curvature-energy coupling, and

∇σF σµ=qψγµψ (B.25)

for the gauge-current coupling; and �nally

iγµ∇µψ−gWWσγ
σπψ−mψ=0 (B.26)

for the spinor �eld equations which again can be split as

i
2(ψγµ∇µψ−∇µψγ

µψ)−gWWσV
σ−mΦ=0

∇µUµ=0

i
2(ψγµπ∇µψ−∇µψγ

µπψ)−gWWσU
σ=0

∇µV µ−2mΘ=0

i(ψ∇αψ−∇αψψ)−∇µSµα +

+2gWWσΣσα−2mUα=0

∇αΦ−2(ψσµα∇µψ−∇µψσµαψ)+2gWΘWα=0

∇νΘ−2i(ψσµνπ∇µψ−∇µψσµνπψ)−
−2gWΦWν+2mVν =0

(∇αψπψ−ψπ∇αψ)+∇µΣµα+2gWW
µSµα=0
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∇µV ρεµραν+i(ψγ[α∇ν]ψ−∇[νψγα]ψ) +

+2gWW[αVν]=0

∇[αUν]+iεανµρ(ψγρπ∇µψ−∇µψγρπψ)−
−2gWWσUρε

ανσρ−2mSαν =0

together equivalent to the spinor �eld equations above. From (B.22) one sees
that torsion behaves like a massive axial-vector �eld satisfying Proca �eld equa-
tions. It is noted that torsion does not couple to gauge �elds. Torsion and gravi-
tation seem to have the same coupling constant. However, in [9] it is shown that
using the Einstein-Cartan-Sciama-Kibble �eld equations these two independent
�elds with independent sources can have independent coupling constants.

The preon-preon interaction is attractive and of short range due to the mass
of the axial-vector �eld. The interaction includes two free parameters, the
coupling constant gW and the mass M of the axial-vector. Therefore, bound
states of preons may be formed in principle by the axial-vector interaction.

C Correlations and Area Law

Correlations between between two systems, say A and B, are information of A
about B. Usually correlations are calculated as the decay of two-point functions
as a function of distance. In physical situations it is often asked how correlations
between a connected region A and its environment B scale with the size of the
region B. In quantum systems at zero temperature all correlations are due to
entanglement which is measured by entropy. The entropy of black holes scales
with the area - not volume - of the surface at the event horizon. The area law
holds in the form that the maximal information content of the surface comes
from elementary areas of size l2Pl containing one bit of information.

Area law for entropy is found also in non-critical quantum lattice systems
whereas critical systems allow for small logarithmic corrections. The area law
can be intuitively understood by introducing characteristic length scale, the
correlation length, which gives a measure of how fast two-point correlations
decay. If the correlation length can be estimated, or calculated, and it is small
compared to the typical size of the system, the area law is expected. This
cannot, however, rigorously proved in general.

In the following I make use of the lattice model and results of [10] and
introduce a quantum information theory concept, the mutual information. The
mutual information and entanglement entropy coincide at zero temperature.
Secondly, mutual information measures the total amount of information of one
system about another without leaving out hidden correlations. Thirdly, the area
law can be proved at �nite temperatures.

Consider a system on lattice L in D spatial dimension which is translational
invariant. Each lattice site represents a quantum spin state in Hilbert space
Cd. Assume a probability function ρ on the lattice and ρA, ρB corresponding to
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disjoint sets A,B ⊆ L. The mutual information between sets A and B s de�ned
as follows

I(A : B) = S(ρA) + S(ρB)− S(ρAB) (C.1)

where S(ρ) = −tr(ρ logρ) is von Neumann entropy. The mutual information
is the total amount of correlations between two systems. (C.1) quanti�es the
information about B obtainable from A. Properties of mutual information are:
positivity, it vanishes if and only if the system factorizes and it is non-increasing
under discarding parts of the system.

The correlation length, de�ned by mutual information, is related with the
area law. Consider a spherical shell with outer radius R and wall thickness
L� R. The shell separates the inner region A from the exterior B. Denote the
mutual information between A and B by IL(R) and de�ne ξM as the minimal
length obeying the inequality

IL(R) < I0(R)/2 (C.2)

for all R. In other words, correlation length is measured by the mutual informa-
tion. From the subadditivity property of entropy it follows that I(A : BC) ≤
I(A : B) + 2SC and from this one gets

I0 ≤ IξM + 2SC ≤ 4|∂A|ξM (C.3)

where ∂A is the subset of A which is connected to the exterior by an interaction.
The second inequality is obtained from the �rst one by inserting IξM ≤ 1/2 I0
and the relation S(C) ≤ ξM |∂A|. Therefore one gets an area law for the mutual
information from the existence of the length scale ξM alone. This area law holds
for zero temperature, too. Its violation implies in�nite correlation length ξM .

Consider now a simple case of one dimensional long lattice. It can be obvi-
ously extended to two dimensions with additional translational symmetry. Start
with an one dimensional �nitely correlated state (FCS) [26]. Each FCS can be
described by a completely positive, trace preserving map T : H1 → H1 ⊗ H2

with H1,H2 being Hilbert spaces of dimension D1, D2, respectively. Introduce
E(x) = tr2[T (x)] and assume that E(x) has just one eigenvalue of the order of
one. The second largest eigenvalue of E , ε2, depends on the standard correlation
length like this: ξ ∼ −1/log ε2. To get an idea of ξM consider the fact that ρAB
factorizes exponentially with the separation L [10]

||ρAB − ρA ⊗ ρB||1 = O
(
exp(−L/ξ)

)
(C.4)

With a few more steps it is found that

IL(R) ≤ log(D)O
(
L exp(−L/ξ)

)
(C.5)

Now IL(R) is bound from below, increases with R and decreases with L. There-
fore ξM is �nite and connected to ξ.

Specify next the system as consisting of spin 1/2 singlets. For a given site i
the probability of having s singlet at site j is a function f(|i− j|). The number
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of singlets that connect two regions in the lattice gives the mutual information
between those regions. Consider a case with f(x) ∝ exp(−x/ξ), then the fol-
lowing conditions hold: (a) all correlation functions decay exponentially with
the diistance and ξ gives the correlation length, (b) IL(R) decays exponentially
with L and ξM ∝ ξ and (c) an area law is found. If the probability function is
f(x) ∝ 1/(x2 +a2) correlation functions decay as power laws with distance and
the area law is violated with in�nite correlation length.
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