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Abstract
We obtain explicit factored closed-form expressions for Fibonacci
3 3
and Lucas sums of the form >} | Fy  and > ;_, L3 ,, where
r and n are integers.

1 Introduction

The Fibonacci numbers, F,,, and Lucas numbers, L,, are defined, for

n € Z, as usual, through the recurrence relations F,, = F,,_1 + F,, 9, Fy =0, [}, =1
and L, =1L, 1+ L, o, Ly =2, Ly = 1, with F,, = (=1)""'F, and
L_,=(-1)"L,.

Clary and Hemenway [I] derived the remarkable formulas

- F2L2 |F, 1L,.» if nis even,
e T (1.1)
k=1 wFr Ly 1Fhye ifnisodd,
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and .
8 Z ka = F22nF22n+2(L4n+2 + 6) . (12)

k=1
In this present paper we will derive the following corresponding Lucas

counterparts of (1.1)) and (1.2):

4i 1 - 5FuFrus1(LnLnga Lanas +16)  if m is even, 13)
1 LnLn+l(5FnFn+1L2n+l + 16) if n is odd.
and .
8 Z L3, = FonLoni2(5Lon FopioFanya + 32) . (1.4)

k=1
In fact we will derive the following more general results:

e If r is odd, then

T\ L2 F2 . (FoLo .+ F) ifnisodd,
+

rn* rn4r

= F2 L2 . (LenFrnyr + F,) if nis even,
wZ@F{ rl oo+ F) (1.5)
k=1

LrnLrn+r(5FrnFrn+rL2rn+r + 4(L2T + ].)) if n is odd.
(1.6)

n 5FT?’LF7"TL r LrnLrn TL - 4 L , 1 f . 7
LngLng:{ o trLopnir +4(Loy + 1)) if n is even
k=1

e If r is even, then

Far Z F237"k = anFr'Qn+r<LT”Lrn+7’ + Lr) ’ (17>
k=1

F37’ Z Lgrpk - FrnLrn+T(5LrnFrn+rF2rn+r + 4([/27" + 1)) . (18)
k=1
As variations on identities ((1.5)) and (1.7]) we will prove
e If r is odd, then

L3 2”: F3 _ FrnLrn+7‘(LrnFrn+rF2rn+r - 2Fr2) if n is even,
' k=1 o LrnFrn+r(FrnLrn+rF2rn+r - 2FT2) if n is odd.

e If r is even, then

5F3r Z F237~k = FTTZFTTL+T(LTTZLT7L+TL2TTL+T‘ - 2L72n> .
k=1



2 Required identities and preliminary results

2.1 Telescoping summation identity

The following telescoping summation identity is a special case of more
general identities proved in [3].

Lemma 2.1. If f(k) is a real sequence and m, q and n are positive inte-
gers, then

n

> [f(mk +mg) — f(mk)] = f(mk +mn) = f(mk).

k=1

2.2 First-power Fibonacci summation identities

Lemma 2.2. If r and n are integers, then
(i) If r is even, then

FTZFQTk = FrnFrn+r7
k=1

(i) if v is odd, then

L Xn: By, = Frp Ly z:fn Z:S even,
k=1 LrnFrn—i-r an 15 odd.

Proof. Setting v = 2r and u = 2rk in the identity
Lyyy— (=1)"Ly_, =5F,F, (2.1)

gives
L2rk+2r - L2rk—2r - 5F27"F2rk . (22)

Taking f(k) = Lx_2,, ¢ = 2 and m = 2r in Lemma and employing
identity (2.2)) we have

n 2 2
S5Fy, Z Forp, = Z L2rk+2rn—27‘ - Z Loy oy (2 3)
k=1 k=1 k=1 ’
= L2rn+2r + Loy — Loy — 2.
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If r is even, then on account of the identity
Lyyo+ (=1)"Ly_y = Ly Ly, (2.4)

we have
L2rn+2r + Loy, = LTL2rn+r7 Loy +2 = L72~ ’

and since
F, =F,L,, (2.5)

identity (2.3) now becomes

5Fr F’r :Lrn r_Lr
’; ok = Lorns 2.6

- 5FrnF7'n+T ) by " )
that is,

n
F, E Fory, :FrnFrn-I—m T even,
k=1

and the first part of Lemma is proved.

If r is odd, then on account of the identities and , we have
Lonsor + Loyy = 5F, Foppyr, Loy +2=5F7,

and identity reduces to

LT’ZFQT]C = F2rn+r - Fr
k=1

FoLpnyr if nis even,
Ly Frpy, it nis odd,

and the second part of Lemma[2.2]is proved. In the last stage of the above
derivation we made use of the identities

Foiro— (-1)'F,_, = F,L, (2.7)

and
Foiv+ (=1)"F,_y = L,F,. (2.8)
O



2.3 First-power Lucas summation identities
Lemma 2.3. If r and n are integers, then
(i) If r is even, then

F, Z Loy, = FrnLrn-‘rr s
k=1
(i) if v is odd, then

= LipLpnyr if nois odd.

Proof. Setting v = 2r and u = 2rk in the identity (2.7)) gives
F2rk+27" - FQTk—Qr - F27‘L27‘k‘ . (29)

Taking f(k) = Fy_2,, ¢ = 2 and m = 2r in Lemma and employing
identity (2.9) we have

n 2 2
FZT Z L2rk = Z F2rk+2rn72r - Z F2rk72r 9210
k=1 k=1 k=1 (2.10)
:F2rn+27~+F2rn_F2T'
If r is even, then choosing v = r and u = 2rn + r in identity (2.8]) gives
F2rn+27“ + Fopp = LTF2rn+r (211>
and, on account of identity (2.5]), the identity (2.10) reduces to

FTZL2rk2F2rn+r_Fr

k=1

= Lrntr+rn — Frn—i—r—rn
= FopLynyr, by identity (2.7)),

and the first part of Lemma [2.3| is proved.
If r is odd, then choosing v = r and u = 2rn + r in identity (2.7)) gives

F2rn+2r + Fopp = FrL2rn+r (212>

5



and, again on account of identity ({2.5)), the identity (2.10) now reduces to

Lr Z L2rk = L2rn+r - Lr

k=1
= Lrn+7"+rn - Lrn-‘rr—rn
S5F.,F., . if nis even,
"\ LypLyns,  if nis odd,

where in the last step we used the identities and .

2.4 Other identities

Lemma 2.4. If r and n are integers, then

F3rnF37"n+3r
FTTLFTTL+T

= LynLynirLornir + Loy + (—=1)"71.
Proof. Using the identity (equation (36) of [I], also (3.3) of [4])
Fy, =5F2 + 3(—1)"F,, (2.13)
we have
B larmttn _ (52 4 3(-1)™) (5, +3(-1)™)

FrnFrn-l-r
= (Lin — (1)) (L7 — (1))

rn-+r

- L2 L2 ( 1)Tn+TL7%n ( 1>TnL72"n+r (_1)7”’

o rn4r

(2.14)

where we have also made use of the identity
5F2— L2 =(-1)"""4. (2.15)
Now,

L2 L2 LrnLrn+r(LrnLrn+r)

rn—rn4+r —

- LrnLrn-i—r(Lan-I—r ( rnL by -
= LrnLrn+TL2rn+'r + (_1) LrnLrn—l-'rL'r .



Therefore

F3rnF3rn+3r — L. L I
F F — rntrn4rd2rn4-r
rnt rn4r

+ (_1)TnLrn+r(LrnLr - Lrn-‘,—r)
= (=D)™MTLE, + (1)

But
(_1)TnLrn+r(LrnLr - Lrn—i—T)
= ( 1)ern+r(Lrn+r + (_1)TLM*T - Lrn+r)> by "
( 1)Tn+rLrn+r Tn—r
= (=1)"""(Lopp + (=1)"""Ly,), again by (2.4)
( 1)Tn+TL2rn + L2r .
Thus

F3rnF3rn+3r
F— - LrnLrn+rL2rn+r
TnF’/‘n—H"

+ (_1>Tn+TL2rn + LQT
— (=)L, (1)

= LrnLrn+rL2rn+r
+ (_1)M+T<L2rn - L72"n)
+ Loy + (—1)".
Finally, using the identity
Ly, = L2 + (-1)"12, (2.16)

obtained by setting v = u in identity (2.4), we have the statement of the
Lemma. ]

Lemma 2.5. If r and n are integers, then

LSrn L3rn+3r

- 5FrnFrn T'L rn-+r L r -1 T_l-
LrnLrn—i—r e e +( )

Proof. Using the following identity, (equation (1.6) of [4])
Ly, = L} —3(=1)"L,, (2.17)
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we have

L3rn Lzrn i3 2 2

OO — (L2 —3(—1 L

LrnLrn+r ( rn ( ) )( rn4+r
= (BFS, + (=1)™)(BF, ., + (=1)™), by [2.15)

25F2 F2 ( l)rn—H"SFTZn ( 1)rn5Fr2n+T (_1>r ;

rn’ rn4+r

= 3(-1))

and the rest of the calculation then proceeds as in the proof of Lemma[2.4]
the basic required identities now being (12.1)), (2.8)) and the identity

Lo, = 5F? + (—1)"2, (2.18)
obtained by setting v = u in identity (2.1)). m

Lemma 2.6. If r and n are integers, then

L3rn F3rn+3r

LoF, oo Bomer ot Lo+ (=1)

Lemma 2.7. If r and n are integers, then

F37"n L3rn+3r

F I = 5LrnFrn+rF2rn+r + Lo + (_1)T
rntrn+r
Different but equivalent versions of Lemmata [2.42.7] are given below:

Lemma 2.8. If r and n are integers, then

F TnF TN orT nr n—1)r r—
: et = L%rnJrr ( 1) L72"n+r ( 1>( b L72"n + Lz + (_1) 17 .
FrnFrn—l—'r

Proof. The proof is similar to that of Lemma [2.4] but here we use
LGL%nJrr - <L2m+r ( )mL )2
= L%rn-ﬁ-r + L2 +2(=1)"{L; Larnir}
- L%rn—l—r + L2 + 2( 1)m{L2rn+2r + (_I)TL%%}
= Lopnsy + Ly + 2(=1)"{L7,, + (1) 712
+ (=)7L, + (=)™ 2]}

and substitute in (2.14)). O



Lemma 2.9. If r and n are integers, then

L T?’LL rn—+3r nr— n—1)r r
e Sy (S Y P RO (i ) [ DLy Ry ey (s D
LrnLrn+r

Lemma 2.10. If r and n are integers, then

L3rn F3rn+3r

= 5F? —1)"r 52
LrnFrn+r 2rn+r + ( )

rn+r

+ (=) V5 F2 4 5F2 4 (—1)"3.

Lemma 2.11. If r and n are integers, then

F3rnL3rn+3r

= 5F227‘n+7" + (_1)nr5F2n+7‘ - <_1)(n_1)T5F7"2n + 5F7"2 + (_1)T3 .
FrnLrn—i-r

r

3 Main results

3.1 Sums of cubes of Fibonacci numbers

Theorem 3.1. If r and n are integers such that r is odd, then

LrnFrn+r(FrnLrn+rF2rn+T — 2F2) Zf n 18 odd.

r

. FrnLrn T LrnFrn TF rnt+r T 2Fr2 an is even,
S R
k=1

Proof. Setting v = 2rk in identity (2.13) and summing, we have

5 Fo=> Fo—3Y  Fam,
k=1 k=1 k=1
so that,
n n L . n
5Ls D Fyp = Lay D Fore =37 Lo D Py
k=1 k=1 " k=1 (3.1)
= Ly, Y Fori = 3(L} +3)Ly ) Forre.
k=1 k=1

e If n is even, then, by Lemma [2.2] identity (3.1)) can be written as

5L3r Z F237«k; = F3rnL3'rn+3r - 3([/3 + 3)FrnLrn+'r )
k=1



so that

n 3
5L37’ Zkzl Fgrk _ F3rnL3rn+3r
FrnLrnJrr FrnLrn+r

= 5L Frnir Fornir + Loy —1—3L2 =9, by Lemma
= 5LrnFrn+rF2rn+r - 10Fr2: by " and " .

e If n is odd, then, by Lemma [2.2] we have

—3(L% +3)

5L3, Z F237~k = L3rnF3rn+37“ - 3(L72~ + 3>LrnFrn+r ’

k=1
so that
5L3r Zz—l F23 k L3rnF3rn+3r 2
== % = —3(L:+3
LrnFrnJrr LrnFrn+7" ( : + )

= 5FrnLrn+rF2rn+r + Lo —1— 3L72» -9, by Lemma
= 5FLynirFornyr — 10F?, by (2.15) and (2.16) .
O

Theorem 3.2. If r and n are integers such that r is even, then

5F3r Z F23rk = FrnFrn+r(LrnLrn+rL2rn+r - 2L3) .
k=1

Proof.

5y S F = B 3 o~ 370 F Y o
k=1 k=1 r k=1

= FypnFrnisr — 3(5F7 + 3)Fo Frpg,
by Lemma and identity ,
so that
5F3. > 0 Fiy _ F3pn B3 g3y
FonFrnir FrnFrnyr
= LynLpnyrLopnyr + Lo, — 1 —15F% — 9
(by Lemma [2.4) and identity (2.13)),
= LyyLypirLopnyr — 202, by ([2.1F), and (2.18) .
O

—3(5F? +3)
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Theorem 3.3. Ifr and n are integers such that v is odd, then

L, i F3 . — Franv%n—&-r(LrnFrn-&-r + Fr) ifn 18 even,
T L2 PR (FrnLengr + F)if nds odd,

Proof. e if n is even, then from Lemma[2.2] and identity (3.1]) we have

n 3
5L, Zk:l FQrk . FSrnL3rn+3r

T2 e A C T
=5Fy ., +5F2  +5F2 +5F> —3—3L>—9, by Lemma[2.11
=5Fy,., +5F .. +5F, —10F? by identity :
so that
Bl Pl g4 Py P2
= (Fyppr — F) + (F2 + F2) — F?.

Using the following identity, derived in [5],
Fg + <_1)u+v_1F1;2 - Fu—vFu—l—v y (32)

we have

L3, > F3
w — FanF2rn+2r + FrFQTn-H" - Fr2
FrnLTn-H”

= FornForpior + F(Fornyr — F1)

= ForpnForpyor + FyFrp Loy, by identity
= FonLenyr LenFrnr + FrFon Loy

= FrnLppir(Lyn Frpsr + F)

e if n is odd, then from Lemma and identity (3.1)) we have

5L37‘ ZZ*I F23 k L3rnF3rn+3r 2
= =F — —3(L;+3
LrnFrn—l—r L’/‘nFrn—H“ ( " * )
=5Fy, ., +5F2 . +5F, +5F?—3—3L2—9, by Lemma

=5Fy ., +5F2 . +5F2 —10F? by identity (2.15),
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so that

n 3
L3T Zkzl FQrk

=Fypir + F2
L’/‘nFrn—H“ e

rn-+r

+ F2 —2F?
:<F22rn+r_Fr2)+(Fr2n+r+Fr2n)_Fr2

Using identity (3.2)), we have

Ly ZZ—1 Fz3 k 9
—==" = By Fornyor + FrForp i — F
LrnFrn—l-'r 2 2rnt2 + Zrnt r

= FQTnF2rn+2r + FT(FZfr-nJrr — Fr)

= F2rnF2rn+2r + FrLrnFrn—i-T’a by ldentlty "
= FrnLrn—l-'rLrnFrn—l—r + FrLrnFrn—H"
= LrnFrnJrr(FrnLrnJrr + Fr) .

Theorem 3.4. If r and n are integers such that r is even, then
F, Z F23rk = anan-s-r(LernJrr + Lr) : (3-3>
k=1

Proof.

n n F . n
5Fy ) Fye = Fu ) Fore = 372"F, ) Fank
k=1 k=1 T k=1
- F3TnF3TTL+3T - 3(5Fr2 + 3)FrnFrn+r )
so that

5F3, ZZ:l F23rk _ F3rnF3rn+3r
FrnFrnJrr FrnFrnJrr
= L%rn—i—r + Lgn—i—r + Lgn + L72n —7—- 15F7,2 - 9, by Lemma [2.8
- L%rn—l—r + L72“n+r - 2L72" + 5Fr2n7 by "
- <Lgrn+r - L?) + (L?ﬂnJrr - Lf) + 5Fr2n .

—3(5F? +3)

Using the identity (derived in [5])

L2+ (=112 =5F, Fuy., (3.4)
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we see that

LgmM - L72n = 5F2rnF2rn+2r = 5FrnFrn+rLrnLrn+r (35)
and
L2, ., — L2=5F,Fuia. (3.6)
Thus,
F3,. >0 F3
w = FrnFrn+rLrnLrn+7“ + FrnFrn—i—QT + Fr2n
FrnFrn+r

= FrnFrn—l—rLrnLrn—‘r’r + Frn(Frn + Frn+27‘)
= FrnFrn+rLrnLrn+r + FrnFrn+rLr7 by ldentlty "
= FrnFrn+r(LrnLrn+r + Lr) .

3.2 Sums of cubes of Lucas numbers

Theorem 3.5. If r and n are integers such that r is odd, then

Ly i I = S5FrnFrnir(LinLinsy Loy +4(Lop + 1)) if n is even,
k=1 LrnLrn+7"(5F7"nFrn+rL2rn+r + 4<L2r + 1)) Zf n is odd.

Proof. Using identity (2.17) with u = 2rk, we have

ZLgrk = ZLGT’C + 3ZL2N€ )
k=1 k=1 k=1

so that
n n L . n
L3r ; Lgrk‘ = L37“ ; LGrk + 3L_?;Lr ; L2rk

= L3, Y Lo +3(L2+3)L, Y Lo, by @17).
k=1

k=1

e [f n is even, then by Lemma [2.3| we have

L3, > L = 5F3n Fyrnisr + 3(L2 + 3)5F Frnsr (3.7)
k=1
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so that

L3r Zz—l L% k F3rnF3rn+3r 2
e 3(L, +3
5FrnFrn+r FrnFrnJrr * ( " - )
= LrnLrn—i-T’LQTn-‘rr + Loy + 1+ SLg +9, bY Lemma

= LrnLrn—l—'rLZrn—i—r + 4(L2r + ]-)7 by " .

e If n is odd, then by Lemma [2.3| we have

L37‘ Z Lgrk = L3rnL3rn+3r + 3(L% + 3>LrnLrn+7‘ ) (38)

k=1
so that
L3r szl Lg k LSrnL3rn+3r 2
== % = 3(L:+3
LTHLTTL-‘H‘ LrnLrn-‘rr * ( " * )

=5FnFrnsrLopnyr + Lo, + 1+ 3L2+9, by Lemma
= 5FrnFrn+rL2rn+r + 4(L2r + 1)7 by " .

]

Theorem 3.6. Ifr and n are integers such that r is even, then
FBT Z Lgrk = FrnLrn+r<5LrnFrn+rF2rn+r + 4(L2r + 1)) .
k=1

Proof.
n n F . n
F, Z L3, = Fs, Z Lei + 3%5 Z Loy,
k=1 k=1 T k=1

= F3; ) Lo+ 3(5F +3)F. Y Loy, by identity ([2.13)

k=1 k=1

= F3pnLarnysr + 3(5F2 + 3)FpLynyy, by Lemma2.3).

Thus,
F37‘ Z,Zfl Lg k F3rnL3rn+3r 2
——— = 3(5F +3
FrnLrn-‘rr FrnLrn+r * ( " * )

= 5Ly Frnsr Fornyr + Loy + 1+ 15F2 +9, by Lemma 2.7
= 5L Frpir Fopngr + 4(Loy + 1), by ([2.16) and 2.18) .
O
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