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Introduction

The interior and effective representational algebra of the raising and lowering operators for the spin
eigenstates via their commutation relationship so instantiated by real orbital motion of the electrons
in the two body Dirac electron equation violates the Pauli Exclusion Principle representationally
when exchange is considered simultaneously to its consequent effective spin flip from orbital motion
and therefore physically for two Fermions under exchange with both types of variable, and thus is
generative of a necessary coordinate connection that is representative of a weak effective artifact of
Bosonization upon the Fermions at the same strength as that of the ordinary Coulomb repulsion
between them; exclusively when the effects of the absence of a tertiary or privileged observer in
relativity are considered. A way of visualizing and interpreting this symmetry principle, is that were
the two electron states in spin and orbital to be anything but independent locally and globally they
would not be simultaneous eigenstates and hold fast to the net antisymmetry of the Pauli exclusion
principle as fermions.

Hypotheses

1.) Rotations of the electrons upon the spin of the two electrons under exchange are clockwise and counter-
clockwise when viewed from above or below.

2.) These rotations are generative under exchange of an effective raising and lowing operator upon their
individual spins by the commutation relationship of the spin algebra.

3.) Relativity holds fast to an objective artifact of relativistic frame transformation which is inertial in
both frames of the electrons and there is no substantive existence of a tertiary or privileged observer.

From this it follows that the interior phase gauge symmetry is broken and a coordinate dependence
to the orbitals occurs that must be compensated for in the two body Dirac equation.
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1.) Since the representation is physical for the electrons in their own given frames, the relationship that
exists for the orbitals of the electrons and their given spins, exists as an ’excess’ coordinate dependence that
would violate the Pauli exclusion principle unless it is corrected for the sake of global to local relativistic
considerations.

2.) Correcting for this coordinate dependence results in a state for which the spins will continue to follow
the Pauli exclusion principle as fermions with the charge wave function, but in doing so, a portion of the
electromagnetic interaction becomes of a small but real attractive interaction which is equivalent to a weak
bosonization of the states.

Proof by Dual Contradiction

As proof of this, consider the exchange of the spins or orbitals as separately from one another. We
have illustrated a methodology by which they are representationally and therefore physically strictly
dependent upon each other as upon coordinates. As a result, neither wave function would be a com-
plete eigenstate with both symmetries, and thus as a result of this strict dependence in the coordinate
space, in order to adhere to both the Pauli Exclusion Principle and be completely antisymmetric in
both spin and charge as attributes of the wave function both locally and globally within relativity
under the objective provisions of an inertial state compared to an inertial state, it is necessary that
the coordinates are corrected for so that the total eigenstate in spin and wave function under ex-
change are totally antisymmetric in space and time. This is true because the global to local objective
position of both electrons within inertial states is in conflict with the provisions of a physical and
representational coordinate dependence for spins.

Hence what is found can be put more generally as the confluence of two concepts and principles:

1.) The Pauli Exclusion Principle
2.) Objective Global and Local Inertial States

The final and proper way to put this is in a case by case basis, and an argument by contradiction.
Given that spin and wave function are in something of a product relationship in the conventional
Dirac equation for the electron; where the spin is a unique decomposition and factoring of the man-
ner in which to put the Lorentz invariant frame the frame of rest, we proceed by analysis of the Pauli
Exclusion Principle and the eigenstate condition with global and local considerations of simultane-
ously meeting these provisions.

This is most easily imagined as two vectors of projection; one for the spin, and one for the or-
bital wave function. They can be imagined as initially of oppositional character, and of the same
magnitude of covariant and contravariant extension for our purposes, and it is considered that we
comparatively assess the projection in the Hilbert space of these vectors and one forms, under the
action of the orbital to representationally raise and lower the spin of their individual electron states.
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There are two operations that are mutually exclusive to be considered. From the perspective of one
electron within its own state, the other antipodal electron state seen globally to locally is either of
contravariantly and covariantly similar magnitude on both vectors and one forms as projections, or
of differing magnitude, but while preserving the contravarying and covarying contraction. The state
where the magnitude differs by a scale and its inverse, for what was an eigenstate a priori will no
longer be one for the projection of the spin portion of the eigenstate and that of the orbital will not
meet the product relationship locally and globally. However here the Pauli Exclusion Principle can
be satisfied, for the area relationship is the same, and hence their projections into each other can
remain purely antisymmetric in spin and orbital momentum. The state where the magnitude changes
scale for both projections is an admissible eigenstate, because the weights of the covarying orbital
momentum and contravarying spin are equivalent within the basis, and hence if it was initially an
eigenstate in the Dirac electron equation, it will continue to be so.

However, since the projection as measured by their combination (the spin and orbital) will determine
an area that differs, and hence the projection of the eigenstates into each other cannot be purely
antisymmetric any longer locally and globally. Thus, it appears that either of the two electrons com-
paratively must attribute the same equivalent weight to charge and spin to satisfy the dual conditions
that are the eigenstate condition and the Pauli Exclusion Principle both locally and globally; and that
to preserve these conditions relativistically it is required that a correction to the orbital momentum
be introduced

This correction is nothing but the gauge connection for the sake of the orbital momentum as a
consequence of a co-evolving spin of the electron. This correction comes out as a logarithmic differ-
ential of the spin for the conjugate representation in the two body Dirac electron equation, and it is
the same whether we consider the spin to be evolving and raising and lowering from the quantum
perspective, or when viewed by way of relativity, as a direct consequence of preserving the inertial
property of the state both locally and globally under inertial considerations.

By extrapolation upon the two body Dirac electron equation, it can be seen that the covariant mea-
sure as provided by the differential of the spin matrices and contraction with the electromagnetic
four potential form a quantity that is a measure and a rate, indicative of the same symmetry as
that of the inertial property of an interaction; so in line with an electromagnetic interaction that is
made inertial by way of the representational quality of the spin in its evolution in space and time.
The reconciliation of the local with the global properties and the correction for the sake of relativity
is nothing more than the regularization of the renormalization group flow for the null principle of
quantum mechanics; and it is indeed the intermediate gauge in which the electrons are in inertial
states.

Dµ = ∂µ + αAµ + Γµ (1)

Where Γµ and ∂µ + αAµ are components of the momentum Dµ which anticommute and commute;
thus rendering a non-zero exchange under local and global commutation or anticommutation relation
with the prefix γµ in the electron equation:

(iγµDµ −m)Ψ = 0 (2)
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Proving that the two body electron equation has a lower energy than that of the single body electron
equation and the fact that the global and local operators of position and momentum exist within a
state lacking a center of uncertainty is now as simple as pointing to the relation that is absent; that
of a commonly null exclusively local and global eigenstate eigenvector condition of four dimensional
nature or four coordinate nature on that of the Pauli Exclusion Principle; with that of instead it’s
replacement by a colocally everywhere local and global condition of the same nature.

This can be proven; as the vanishing locally and globally with a given constant offset of the two body
electron equation with that of the midpoint of displacement on either side of the relation of the two
components described above for that of the generalized four momentum Dµ; that of it’s replacement
by a comoving basis provided by the auxiliary electron; and the substitution of the offset of the
eigenvalue; eigenvector equation with that of it’s reduction under symmetry to that of a finite offset
under what is in effect anticommutation and commutation; with the principle:

"Extrinsic modifications to a given equation under antisymmetry of operators and symmetry of operators
have symmetric and antisymmetric consequences for Fermionic eigenstates." This is entirely consistent with
the interpretation of what a Fermion means; and what properties operators and eigenstates of such possess.

Consequentially:

(iγµDµ −m)(iγµDµ −m)ΨAΨB = 0 (3)

This equation is the two body electron equation with the gauge covariant differential known as the
four energy momentum; for which either such given corrected relation of the four energy momentum
is corrected fully as contracted; and through which the discrepancy of intrinsic and extrinsic mass is
known in it’s corrected form.

(−γµDµγ
µDµ − i2mγµDµ +m2)ΨAΨB = 0 (4)

This is the equation written out in full form; and demostrated as a full eigenvalue eigenvector
equation. When this is translated into component form it is a reexpression which means:

(−γµDµγ
µDµ −m2)ΨAΨB = 2imγµDµΨAΨB (5)

After reorganization of terms and a given process of reduction to two new terms there is a reexpres-
sion once again by the following factoring:

(iγµDµ −m)(iγµDµ +m)ΨAΨB = 2imγµDµΨAΨB (6)

Which means that two electrons are the generator under the anticommutation and commutation
relationship of their subsidiary operators of a full notion of particle and antiparticle product rela-
tionship with a mass gap equivalent to the splitting equivalent to each of their reduction’s in energy
at the lorentz accomodated energy level of the full energy momentum of one either such particle.

This explains a mass energy gap; for that of the two body electron equation which is a real energy
lowering; of what is understood when imagined as the absence of one electron in it’s surrounding
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notion as in the presence of the other electron as an antielectron; for what is of presence is of absence
with matter; and together forming a solid whole of which the energy momentum is lower by a double
accounting for that of either electron.

The final explanation is consistent with QED which is that without evaluation of Feynmann diagrams;
the electron positron renormalization of the photon propogator is a full energy expectation of the
same apportionment on γµAµ for that of either the electron mass and photonic light energy mass for
what is known as the relation of that which is necessary to have agreement between the photonic en-
ergy momentum carried by the electron and it’s own non-self-energy lowering in energy momentum
(incidentally explaining the non-occurrence of self energy). This comes about by consideration of the
separation into two sum renormalization processes under disconnected tadpole (electron positron)
diagrams; for which the energy mometum is of the relation of an intermediary gauge boson of which
is the carrier of the force; for what are disconnected an repulsive interactions become of the other
sign.

This has the entire description as the same as the above equations for electron and positron; but is
seen more clearly when these equations are fully written out:

(iγµDµ −m)(iγµDµ +m)ΨAΨB = 2imγµDµΨAΨB (7)

With the re-writing as:

(iγµ(∂µ + αAµ + Γµ) −m)(iγµ(∂µ + αAµ + Γµ) +m)ΨAΨB = 2imγµDµΨAΨB (8)

This equation can be re-written as:
∂2µ + α2A2

µ = ∆ (9)

Which expresses the photon propogator with the energy momentum of the electron particle in bal-
ance with the gap; the energy momentum squared; and that of the gauge connection energy mo-
mentum due to the curved space; known as a ’field momentum energy’ of spin. Spin is after all an
intrinsic kinetic energy momentum of the subatomic particle known as the electron. So; here we
define Γµ as:

Γµ = log γν (10)

Leaving:
∆ = 2mγµDµ + im2 − Γ2

µ (11)

There is then the relation re-written from before and above on ΨAΨB :

(∂µ + Aµ)(∂µ − Aµ)ΨAΨB = ∆ (12)

Which is the Klein Gordon equation for two photons of energy momentum gap equivalent up to a
discrepancy to the lost field energy momentum of the electrons forming a pair.

If it has not been realized yet this perfectly explains in four dimensions the symmetries, isosymme-
tries, and mass gap of Yang Mills variety.
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