Dissecting the Dyre Loader

JASON REAVES
November 25, 2015

Abstract

Dyre or Dyreza, is a pretty prominent figure in the world of financial
malware. The Dyre of today comes loaded with a multitude of mod-
ules and features while also appearing to be well maintained. The first
recorded instance of Dyre I have found is an article in June 2014 and the
sample in question is version 1001, while at the time of this report Dyre
is already up to version 1166. While the crypters and packers have varied
over time, for at least the past 6 months Dyre has used the same loader
to perform it’s initial checks and injection sequence. It is the purpose of
this report to go through the various techniques and algorithms present
in the loader, and at times reverse them to python proof of concepts.

Keywords - Reverse Engineering, Malware Analysis, Dyreza, Banking Tro-
jan

oW eb=.dword ptr f£=:[30h]

mow dword ptr [ebp-2].eb=x
mowr ehx, 32h

add ehx, 32h

now dword ptr [ebp-4].eb=
nowv eax.dvord ptr [sbp-4]
now ecE.dvord ptr [=bp-8

|
dword pt 2

Figure 1: Processor Check

1 Introduction

The Dyre banking trojan has evolved significantly since it’s emergence in June
of 2014 and, while it was by no means considered simple for it’s time it has
definitely grown in its capabilities. While some groups and bankers out there use
more advanced techniques and tools any banking trojan has the goal of stealing
enough information while utilizing enough tools in its arsenal to ultimately
perform fraud against the institutions it is targeting. I would consider the Dyre
of today to be among the more advanced forms of malware in the area of banking
trojans. In this report we go through the loader used by Dyre, a loader is simply
a program used to load various other things(code, other programs, DLLs, etc.).

2 Dyre Loader

The loader first performs a simple check on the number of processors in the sys-
tem which appears to be targeting sandboxes(Figure 1). This check was added
around April 2015.

Next the loader begins decrypting the dll and function names that it will need.
Each step the loader takes will be outlined below.

2.1 String Decrypt

The main function for the string decryption process is called with an index
number as an argument indicating which string the calling code wants returned.
This function when called puts every offset of every encoded string onto the
stack. It then uses the index passed to it to then copy the encoded string into
another section of memory, the end of the string is reached when a NULL byte
is hit. We can this happening in Figure 2.

After this is done the code passes the section of memory with the encoded
string and the length to the function responsible for decrypting it. In Figure 3
we can see the heart of what appears to be a single byte XOR loop over an
8 byte key unless the bytes are the same in which case that byte is left alone.
The byte checking portion is turned on or off with flag that gets passed to the
routine, it is an attempt at making it safe for unicode strings. However since
the unicode strings have their null byte XORd it appears that same check is not
done during the encoding process, making the check itself possibly useless code.

nov dword ptr [sbp-24h].offset inage01030000+0x1204 (01031204}

nov dvord ptr [ebp-20h].offset inage01030000+0=11f8 (010311£8)
nov dvord ptr [ebp-1Ch] offset inage01030000+0z1led (010311s4)
nov dword ptr [ebp-18h].offset inage01030000+0x1lce (010311cc)
nov dword ptr [ebp-14h].offset inage01030000+0x11b0 (010311B0)
nov dword ptr [ebp-10h].of fset linage0l1030000+0x119c (0103119c)
nov dvord ptr [sbp-0Ch],offset inage01030000+0x1l8c [0103118c)
nov dword ptr [sbp-8].cffset inage01030000+0x117c (0103117c)
nov dword ptr [sbp-41.

nov = ord ptr [sbpreaz*4-19Ch] ss:0023:0024fc88=01031820

=]

= =
now cl. byte ptr [eax]
nov byte ptr [edst+eax],cl
inc =ax
test cl.cl
ine inage1020000+0x351 (01033£51)
nov eax. =i
lea edi_ [can+1]
now cl.byte ptr [eax]
inc eax
test cl.cl
ine inaqe010300004+0x360 (01033£60)
Memory
84 ebp=00z4fs24 iopl=D nv up =i pl nz ac pe nc A | Vitual 24£c88 Display format: | Byte v
23 es=0023 £s=003h gs=0000 ef1=00000216 0024£c688 20 18 03 01 10 18 03 01 00 16 03 01 £4 17 03 01 =8 17 03
_ 0024£c9b 01 do 17 03 01 &0 17 03 01 bo 17 03 01 a4 17 03 01 38 17
new dvord ptr [sbp-0Ch].offset inagell0I0000+0x118e (010 0024fcas D3 01 84 17 03 01 70 17 03 01 64 17 03 01 54 17 03 01 44
. . R R 0024fcs1 17 D3 01 30 17 03 01 24 17 03 01 14 17 03 01 00 17 03 01
B4 SEEIJEIiIan] Son{Qpnaanil esi-pl2eicdl edi-nlnDOOND 0024fcdd == 16 03 01 dO 16 03 01 =0 16 03 01 b0 16 03 01 90 16 D3
23 es-0023 fs=003b gs=0000 ef1-00000216 0024fce? 01 8c 16 03 01 7o 16 03 01 6c 16 03 01 54 16 03 01 3c 16

0024fcf= 03 01 24 16 03 01 168 16 03 01 Oc 16 03 01 fc 15 03 Ol £4
[AnNTAFAna 18 put

Figure 2: Finding which string to decode

Ar—

ENL

loc_482E5F:

nov bl, [eax+esi]

cmp bl, ds:byte 4681818[ecx]
jz short loc_482E73

I_*\—

EINL
loc_482E6A:

mou bl, ds:byte_4B81818[ecx]
xor [eax+esi], bl

I —

=1

loc_482E73:

inc ecx

cmp ecx, 8

jb short loc_ 482E7B

LL—

Figure 3: Main string decoding section

A proof of concept example of this can be seen in Figure 4, and decrypting
all of the strings at every offset can give us insight into how the loader might
operate(Figure 5).

Taking out the same byte check and running the script against the encoded
unicode strings also gives us some interesting strings(Figure 6).

2.2 File Name Generation

Next the loader compares its own privilege level with the first svchost it finds
in the process list, the check is performed by comparing the SIDs from the
processes respective TOKEN_USER structures. If the comparison is successful
then the loader checks if it’s running from C:\windows if it’s not successful
then the loader checks if it’s running from %APPDATA%\local. In either case
a random 15 character filename is generated using a custom Psuedo-Random

import binascii

key = bytearray(binascii.a2b_hex(’1622f36a8541ca84 "))
encoded = bytearray(binascii.a2b_hex(’7d478104e02df9b638469f06 "))

def decrypt_string(data, key):
for i in range(len(data)):
if data[i] !'= key|[i%len(key)]:
data[i] "= key[i%len (key)]
print (data)

decrypt_string (encoded , key)
#>> kernel32. dll

Figure 4: Loader String Decrypt Example

= Administrator: Administrator Command Prompt - olEl

Figure 5: Decrypted strings

function based on the Microsoft variation LCG algorithm(Figure 7).

Breaking this routine down we can see that ultimately the routine is just
generating a random number between 0 and 24 and depending on the outcome
of the first loop being even or odd this will be an index into the ascii character
set of either the lowercase or the uppercase alphabet. A proof of concept of this
in python can be seen in Figure 8.

After copying itself the loader then excutes itself from the new location with its
original location as the parameter.

Figure 6: Decrypted unicode strings

33Ef Hor edi.edi

337d10 cnp dword ptr [ebp+10h]. edi
0£8221010000 jle image01030000+0x1b73 (01031073}
53 push =bx

8bEd0c now ebx.dvord ptr [ebp+OCh]

56 push esi

8b7508 now esi.dvord ptr [ebp+B]
8d9b00000D00 lsa ebx. [ebx]

gbdc0e nov ecx.dvord ptr [esi+d]

8a45EE lea cax, [sbp-8]

50 push eax

££d1 call | ecx {KERNEL32|(QueryPerformanceCounterStub
7412 ie image01030000+0x1a?f (01031a7f)
8b9658010000 now edx.dvord ptr [esi+158h]

3355£8 =or eds.dvord ptr [ebp-8]

3355fc Hor edx,dvord ptr [ebp-d]
839658010000 mow dword ptr [esi+158h],edx
8b8658010000 mov cax.dvord ptr [esi+158h]
69c0£4430300 imul eax,esx, 343FDh

0503922600 add cax. 269EC3h

8bch mow BCK, 28K
£69c0fd4430300 imul esax, eax, 343FDh
clesln shr ecx. 10k
05c39=2600 add eax, 269EC3L

Figure 7: Pseudo-Random filename generate function

2.3 Mutex Generation

After starting from either %APPDATA%\local or C:\Windows the loader goes
through the same checks and then checks if it temp is in it’s path. If not
it starts building out it’s mutex value. The mutex is based on the following
information

1. GetCompuerNameW
2. RtlGetVersion - Build Number

Passes the computer name, 0x31 and the machines build number to a wsprintfW
call producing the following unicode string: < computername > 49 < buildnumber >.
A SHAT1 hash is then performed on the unicode string but it only takes the
first 16 bytes of the output and then passes it to wsprintfW with the format
string ” %08x%08x%08x%08x”. This string is appended to Global\ and checked
using OpenMutexW (Figure 9).

2.4 Rsrc Decoding and Injection

Statically looking at the loader we can see 3 resource sections(Figure 10), first
it loads the smaller of the three resource sections which is 256 bytes in length,
the next resource section loaded depends on if the system is 32 bit or 64 bit.

temp = 0
val = c_int64 ()

for i in range(15):
for j in range(2):
windll . Kernel32. QueryPerformanceCounter (byref(val))
perf = val.value

temp "= perf>>32
temp "= perf & OxFFFFFFFF

temp *= int(’343fd’,16)
temp = temp & OxFFFFFFFF

temp = temp + int(’269ec3’ ,16)

temp2 = temp

temp = (temp = int(’343fd’,16)) & OxFFFFFFFF
temp2 >>= 16

temp += int(’269ec3’,16)

if j = 0:
if temp2 % 2 = 1:
even = True
else:
even = False

temp = temp & OxFFFF0000
temp = temp | temp2
remain = temp % 25

if even:

remain += int(’61’,16)
else:

remain += int(’41’,16)

resp += chr(remain)

print (resp)

Figure 8: Pseudo-Random filename generation

Depending on the outcome of that check the loader loads in one of the remaining
resource sections.
After loading the proper resource the loader will find the appropriate process

.l].ob.a.l.~.8.£f.1
b.b.3ee0.3.1.3.
0.4.b.1.2.b.32.4d.8.b
bbb 2.4d6.1.1.=.4d.

Figure 9: Mutex

-HCDATA TIRYE1SMNE 0409

|
-RCDATA YE543H26GT 0409

Figure 10: Resource Sections

Memory =a
s ot000 iy o [o
N T AN T T TR T e e ST
760013 1a 33 c1 31 22 b0 51 ec ec 20 87 67 d2 e0 Oa dc e0 ca ec .3.1".0 El
b ngasnleg gt S0y
et E S FAES L ;
76004c 43 7c 92 Be eC eC eC eC £C eC &C £C eC eC &C eC ec ec ec C|
e NTEETIEEESnEnEZT s
e r e EEErEEREEEED
L R
; ;btcece:ece:ececece:ecece:e:tcecea:sl:e:ec
s rsrressrresEres
e
e
O R mmEmmmmEmxx
s e LR T e LT
a R
; gg=cece:ece:ececece:ecece:e:tcece:sl:e:ec
s ersrressrresErres
e e LRt :
GRS EE L FATHE T LS
e R TR R L T R S
SR S L T E b - R
Figure 11: Large Resource
00202276 5d pop ebp
00502277 <3 et
00502278 8b4510 nov sax. dvord ptr [ebp+l0h]
00=0227b 6800010000 push 100n
0002280 S0 push =ax
00202281 8dBAOOEEEEELE lea ecx, [ebp-100h]
00202287 § push ecx s
00202288 833220000 call imagel0e00000+0xdccl (00e04ccl) N el
00=0228d 83c4lc add sp. OCh : N -
00502290 Bbce nov Bcx. es1
00202292 85f6 test esi,esi
00=02234 Jelc jle inagel0e00000+0822b2 (00e022L2)
00202299 8da42400000000 lea esp. [esp]
00202220 0fbé novzx edx byte ptr [eax]
00202223 Ba941S00f£E£Ef mov dl.byte ptr [ebptedz-100h]
00502255 8810 nov byte ptr [sax].dl
00=022ac 49 dec =
00=022ad 40 inc =ax
00e022ae 85c% test ECH, eCH
00=022b0 7fe= ig inagel0=00000+0x22a0 (00=022a0)
00=022b2 bB01000000 nov sax.1
00=022b7 Se pop esi
005022b8 8bas nov =sp. ebp
00=022ba 5d pop =bp
Zommand
=00202290 esp=0070se90 ebp=0070cf94 iopl=0 nv up =i pl nz ac
00lb =s=0023 ds=0023 es=0023 f£s-003b g==0000 efl1=000
imagel0e00000+052290
00202290 8bes nov ecx, esi
>t
=au=00e2a38c ebx=00c027b& ecx=00024850 ed==00760000 e=i=00024850 edi=000
0202292 esp=0070e=90 sbp=0070=f94 iopl=0 nv up =i pl nz ac
001b =s=0023 ds=0023 es=0023 f£s-003b g==0000 efl1=000
imagelle00000+0x2292
00=02292 85f6 test =51, 851
0:000r t

Figure 12: Resource Section Decode POC

to inject. In the event the loader is running from APPDATA then it will inject
explorer.exe, if however the loader is running from the Windows directory then
it will inject svchost.exe.

The loader will perform the injection by creating a handle to a empty file
mapping object using CreateFileMappingW and attain the base address with
MapViewOfFile. The encoded data(Figure 11) is then copied over to this mem-
ory section before the loader maps the section into the remote process using
ZwMapViewOfSection. Next an APC thread is created using the processes
main thread id, this is attained using NtQuerySystemInformation.

The loader calls NtQuerySystemInformation for the SystemProcessInforma-
tion option which will pull in a giant linked list of SYSTEM_PROCESS_INFORMATION
structures. After enumerating this list to find its target by comparing process
ids, the loader will then check if the number of threads is <= 0 and if so it
will continue enumerating the list. If number of threads is < 0 however then
it will jump 0xDC bytes into the structure which lands you at 4 bytes into the
CLIENT_D structure within the SYSTEM_THREAD _INFORMATION struc-
ture which is located at the bottom of the relevant SYSTEM_PROCESS_INFORMATION
structure. The loader checks that the threadState is 5 and then reads in the
thread id from the CLIENT_ID structure.

After queueing the APC thread the loader will decode the injected code. The
decoding is done using the smaller resource section as a lookup table. The two
larger resource sections are the 32 bit and 64 bit encoded injects respectively
and this can be proven with a simple proof of concept as in Figure 12. In the
previous figure we can see the decoded inject appears to be a dll wrapped in
shellcode.

3 Conclusions

Sample SHA256: ffd0c9571d4a76618c8a970f71bb17a7b0e3b9e2244704ced368bfe276614e63

References

[1] Hex-Rays Decompiler, http://www.hex-rays.com/products/decompiler/index.shtml.

[2] Python, https://www.python.org/

