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Abstract. We present an approach to analyze time dilation in the theory of special relativity, starting 
out from a variant of the Lorentz transformation. The concepts of symmetry and simultaneity are 
essential in these investigations. We also stress the importance of the observational principle, i.e., the 
location of clocks used for the clock comparisons of the two reference frames (RFs) moving relative to 
each other. For a specific RF we may follow just a single clock (SC), or we can use multiple clocks 
(MC) to follow a single clock on the other RF. In addition to these standard cases, we consider an 
approach, utilizing an auxiliary RF, which – in combination with symmetry considerations – provides a 
consistent definition of ‘simultaneity at a distance’. We use the overall approach to provide a thorough 
discussion of the travelling twin paradox, and arrive at a conclusion regarding the twins’ ages, which 
deviates from the prevalent view regarding this example.  

Key words: Lorentz transformation, symmetry, simultaneity, auxiliary reference frame, travelling twin. 

1 Introduction 
The present work explores some basic concepts related to time dilation. We start out by providing a 
reformulation of the Lorentz transformation (LT), also being suitable for a graphical illustration. The 
required specification of which clocks to apply for the clock comparisons between the two inertial 
reference frames (RFs) is facilitated by this new version of the LT and the corresponding illustration. 
We refer to the specification of clocks as the observational principle. 

Symmetry is important when we discuss time dilation within special relativity. It may appear 
paradoxical that- at the same time as we have complete symmetry between the two RFs – we will also 
‘take the perspective’ of one of them, apparently destroying symmetry. For instance the common 
statement that the ‘moving clock goes slower’ represent such an apparent paradox, which is handled 
somewhat differently in the literature. Some authors apply the expression 'as seen' by the observer on 
the other reference system, perhaps indicating that it is an apparent effect, not a physical reality. 
Actually, Giulini, [1] in his Section 3.3 states: ‘Moving clocks slow down’ is ‘potentially misleading 
and should not be taken too literally’. Others stress that 'everything goes slower' on the 'moving system', 
not only the clocks; truly stating that the time dilation represents a physical reality also under the 
conditions of special relativity, (i.e. no gravitation etc.) However, for instance Pössel [2] points out that 
it is the procedure related to clock comparison (‘observational principle’) that decides which reference 
system has the time which is ‘moving faster’, resp. ‘slower’.  

Simultaneity at a distance is another important but problematic issue in special relativity. Using 
synchronized clocks of a specific reference frame we can define simultaneity of events ‘in the 
perspective’ of any RF, but the various RFs will give different specifications of simultaneity. However, 
we will introduce an auxiliary reference frame, which – in combination with symmetry requirements – 
provides a useful tool for specifying simultaneity at a distance.  

We present an approach to meet these challenges in the analysis of time dilation, and also apply the 
suggested approach to provide a rather lengthy discussion of the ‘travelling twin’ example (under the 
strict conditions of special relativity). Our solution deviates from the one usually given in the literature.  

Actually, some authors also question the validity of the theory of special relativity (TSR) and the LT, 
(e.g. see McCausland [3], Phipps [4], Robbins [5]); and perhaps we should include Serret [6]. In 
particular Ref. [3] reviews various controversies on the topic (related to H. Dingle) during several 
decades, and gives many references. Ref. [5] also treats the Bergson-Einstein controversy, dating back 
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to 1922. The scope of the present work, however, is more restricted, accepting the validity of the TSR 
as a premise. Our objective is mainly to investigate the logical implications of the Lorentz transformation 
and thereby provide an approach for analyzing relative time and simultaneity within the framework of 
the TSR. However, the suggested approach will challenge some aspects of the current narrative on time 
dilation and simultaneity in the TSR. 

2 The Lorentz transformation and some special cases 
We first specify some basic notation and assumptions. Then we provide a variant of the Lorentz 
transformation (LT) as the basis for our investigations. 

2.1 Basic notation and assumptions  
We start out from the standard theoretical experiment: Two co-ordinate systems (inertial reference 
frames), pointing in the same direction are moving relative to each other at speed, v. We consider just 
one space co-ordinate, (x-axis), and investigate the relation between space and time parameters, (x, t) on 
one RF and the corresponding parameters (xv, tv) on the other. Thus, we have the following basic 
simultaneity: At time (i.e. clock reading), t and position, x on one system, we observe that time equals 
tv and position equals xv on the other. We will base the discussions on the LT, including the following 
specifications: 

 There is a complete symmetry between the two co-ordinate systems.  
 On both RFs there is an arbitrary number of identical, synchronized clocks, located at any positions 

where it is required.  

 We will choose the perspective of one of the RFs, denoted, K, and will refer to this as the primary 
system. Simultaneity in the perspective of this RF means that all clocks on this RF show the same 
value, t. We refer to the other RF as the ‘secondary' system.   

 Throughout we let SC refer to a RF utilizing a ‘single clock’ (or the ‘same clock’), for the time 
comparisons with other RFs. Similarly, MC will refer to a reference frame, which utilizes ‘multiple 
clocks’ (at various locations) for time comparisons. 

2.2 The standard formulation of the Lorentz transformation 
In the above notation the LT takes the form 

                                                                   𝑡௩ =  
௧ି(௩௫)/௖మ

ඥଵି(௩/௖)మ
                                                                     (1) 

                                                                   𝑥௩ =  
௫ି௩௧

ඥଵି(௩/௖)మ
                                                                    (2) 

These formulas include the length contraction along the x-axis (inverse Lorentz factor): 

                                                                 𝑘௫ = ඥ1 − (𝑣/𝑐)ଶ                                                                (3) 

2.3 An alternative formulation 
At any time, t and position, x we now introduce w equal to w = x/t. By inserting x = wt in (1) we directly 
get that time on the secondary RF at this position equals: 

                                                              𝑡௩ = 𝑡௩(𝑤) =
ଵି ௩௪/௖మ

ඥଵି(௩/௖)మ
𝑡                                                         (4) 

Note the change in notation. In eq. (1) we suppressed the dependence of tv on x Now, however, we 
pinpoint its dependence on w, and will – when appropriate – write tv(w) rather than tv.  

The new time dilation formula (4) will – for a given time, t on the primary system, K - give the time, 
𝑡௩(𝑤) on the secondary system, Kv, as a linear, decreasing function of w. The important thing is that we 
take out t as a separate factor. The relation 𝑡௩(𝑤)/𝑡 is given as the ‘general time dilation factor’: 

                                                             𝛾௩(𝑤) = (1 − 
௩௪

௖మ ) /ට1 − (
௩

௖
)ଶ                                                    
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Figure 1. Clock readings in the perspective of K. Thus, ‘time’ all over K equals, t. while clock readings, 
tv(w) on the other RF is given as a function of w, cf. (4); where w=x/t provides the ‘position’ on K.  

Thus, we can write (4) as 

𝑡௩ = 𝑡௩(𝑤) = 𝛾௩(𝑤) 𝑡. 

Fig.1 provides an illustration of this time dilation formula. Here we give clock reading (‘time’) both on 
K and Kv in the perspective of K. So the figure illustrates an instant when time equals t all over this 
reference frame. The horizontal axis gives the ‘position’ w = x/t on K at which the clock measurements 
are carried out. The vertical axis gives the actual clock readings. So as time on K equals t at any 
‘position’, w, the clock readings on Kv at this instant, 𝑡௩(𝑤), depend on w; see decreasing straight line. 

Now, in analogy to letting x = wt, we also define a wv so that xv = wv∙tv = wv∙tv(w). By inserting both x 
= wt and xv = wv∙tv, in (2), we will obtain 

                                                                      𝑤௩ =  
௫ೡ

௧ೡ(௪)
=

௪ି௩

ଵି
ೢ

೎
∙
ೡ

೎

                                                                        (5) 

Now equations (4), (5) represent an alternative version of Lorentz transformation, here expressed by 
parameters (t, w) rather than (t, x). The equation (5) has a direct interpretation. According to standard 
results of TSR, e.g. Refs. [7]-[9], the velocities v1 and v2 sums up to v, given by the formula 

                                                                  𝑣 = 𝑣ଵ⨁ 𝑣ଶ  ≝  
௩భା௩మ

ଵା
ೡభ
೎

∙
ೡమ
೎

                                                       (6) 

So by defining the operator ⨁ this way, eq. (5) actually says that 𝑤௩ = 𝑤⨁(−𝑣), implying 𝑤௩⨁𝑣 = 𝑤; 
thus, clearly interpreting w and wv as velocities along the x - axis. That is we have a moving position 
along the x-axis for clock comparisons. So this w specifies what we refer to as the observational 
principle, pinpointing that this is an essential factor for the resulting observed time dilation. 

Note that we do not have to think of w as a velocity; rather as a way to specify a certain position x = wt 
on K; representing the location of clocks – being at rest on a specific RF – and being applied at time t. 
However, we will later see that it can also be fruitful to interpret w as the velocity of a third observational 
RF. 
A final comment. Eqs. (4), (5) give the alternative LT choosing the RF with parameters (t, w) as the 
primary. We could of course solve these with respect to (t, w), and get an identical expression with the 
other RF as the primary, (just replacing v with –v). 
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2.4 Standard special cases (observational principles) 
Now focusing on time dilation, cf. eq. (4), there are various interesting special cases (observational 
principles). First, if a specific clock located at the origin xv = 0 on Kv is compared with the passing clocks 
on K. These clocks on K must have position x = vt, and thus we choose w = v and directly get the relation  

                                                               𝑡௩(𝑣) = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                           (7) 

which equals the ‘standard’ time dilation formula. Further, when a specific clock at the origin, x = 0, on 
K is used for comparisons with various passing clocks on Kv, we must choose w = 0 and thus get 

                                                               𝑡௩(0) = 𝑡 /ඥ1 − (𝑣/𝑐)ଶ                                                          (8)   

as the relation between t and tv. We specify the two special cases (7), (8) in Fig. 1, and will also discuss 
these in Ch. 3. Two other standard cases are obtained by inserting w = ± c. 

2.5 The symmetric case 
There is another interesting special case of the LT, (4), (5). We can ask which value of w (and thus wv) 
will result in tv(w) ≡ t. We easily find that this equality is obtained by choosing w = 𝑤∗, where   

                                                    𝑤∗ =
௖మ

௩
ቀ1 − ඥ1 − (𝑣/𝑐)ଶቁ =  

௩

ଵାඥଵି(௩/௖)మ
                                        (9) 

Further, by this choice of w we also get wv = - 𝑤∗. This means that if we consistently consider the 
positions where simultaneously x = 𝑤∗t and xv = - 𝑤∗tv = - 𝑤∗t, then no time dilation will be observed 
at these positions. In other words (cf.  Fig. 1): 

                                                                         𝑡௩(𝑤∗) = 𝑡                                                                             (10) 

At this position we find xv = - x, and so we see this as the midpoint between the origins of the two 
reference frames; thus, providing a nice symmetry. Note that when we choose the observational 
principle, (9), then absolutely everything is symmetric, and it should be no surprise that we get tv = t.  

Note that 𝑤∗ has a simple interpretation. Recalling the definition of the operator ⨁ in eq. (6) for adding 
velocities in TSR, (𝑣 = 𝑣ଵ⨁ 𝑣ଶ), it is easily verified that when  𝑤∗ is given by (9), then we get 𝑤∗⨁𝑤∗= 
v. So this confirms that when our point of observation ‘moves’ with velocity  𝑤∗ relative to K and - 𝑤∗, 
relative to Kv, it corresponds exactly to the case that the relative speed between K and Kv equals v. 

3 “The moving clock”: SC vs. MC 
We now take a closer look at the observational principles given by (7) and (8). These relate 
clock readings at a location where one of the clocks are positioned at the origin of a RF. Thus, 
we can combine eqs. (7) and (8) into one single formula: 

                                                              𝑡ௌ஼ = 𝑡ெ஼ඥ1 − (𝑣/𝑐)ଶ                                                        (11) 

Here 𝑡ௌ஼ is the clock reading of the specific clock at the origin (of either K or Kv). Further 𝑡ெ஼ is the 

clock reading of the clock at the same location, but on the other frame. So, for instance, 𝑡ௌ஼ 

replaces 𝑡௩(𝑣) in eq. (7) and t in eq. (8); while 𝑡ெ஼ replaces t in eq. (7) and 𝑡௩(0) in eq. (8), This is 
clearly demonstrated in Fig. 1. At both these locations it is the SC that gives the lower value. 

Note: Extended notation 
Note that the notation of eq. (11), using 𝑡ௌ஼ and 𝑡ெ஼, shall not replace the more general notation, 

𝑡௩ = 𝑡௩(𝑤) and t, as used in (4). The new terms 𝑡ௌ஼ and 𝑡ெ஼ shall just help us to realize the symmetry 
of two specific positions, also being marked out in Fig. 1. Thus, we will still use the general notation, 
but at the two locations, w = 0 and w = v, we may in addition apply the essential result, (11). 
Also, observe that we in (11) have dropped the subscript, v in both time parameters. This just means that 
(11) is valid irrespective of which RF is chosen as the primary. However, we could (and will later ) add 
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a subscript v to either tSC or tMC, to indicate which of the systems we choose as the primary/secondary 
RF. Thus, using parameters (𝑡௩

ௌ஼  , tMC) means that we ‘follow’ a fixed SC at the origin of the ‘secondary’ 
RF, and using (tSC, 𝑡௩

ெ஼) means that we ‘follow’ a SC on the primary RF. 

We may consider this relation (11) as the ‘essential Lorentz transformation’, and is in my 
opinion more useful that the rather ambiguous (7). Actually, (11) is much more than an efficient 
way to write the two eqs. (7) and (8). By eq. (11) we stress that (7) and (8) actually represent the same 
result, and is thus more informative than (7) and (8). Actually, this choice of which reference frame shall 
apply a single clock is crucial, and it introduces an asymmetry between the two RFs. 

Before we leave (11) some further comments are relevant. First, observers on both reference frames will 
agree on this result (11). Thus, it is somewhat misleading to apply the phrase 'as seen' regarding any 
clock reading. All time readings are objective, and all observers (observational equipment) on the 
location in question will 'see' the same thing. The main point is rather that observers at different reference 
frames will not agree regarding simultaneity of events.  

Secondly, we have the formulation ‘moving clock goes slower’. It is true that an observer on one RF, 
observing a specific clock (on the other RF) passing by, will see this clock going slower, when it is 
compared to his own clocks. So in a way this confirms the standard phrase ‘moving clock goes slower’. 
However, we could equally well take the perspective of the single clock, considering this to be at rest, 
implying that the clocks on the other RF are moving. The point is definitely not that clock(s) on one RF 
are moving and clocks on the other are not. It is the observational principle that decides which of the 
two clocks initially at the origin, which we observe to move slower. Therefore, I find the talk about the 
‘moving clock’ rather misleading. 

Note that the insight provided by eq. (11) is in no way new. Our concepts SC and MC correspond to the 
concepts ‘proper’ and ‘improper’ time used e.g. by Smith [10]. In particular, eq. (11) equals eq. (3-1) of 
that book. However, it seems this relation has not received the attention it deserves.  

We further stress that it is not required to point at one reference frame to be SC (having ‘proper’ time), 
and the other to be MC (having ‘improper’ time). We may at the same time have clock(s) on both RFs 
observed to ‘go slower’. The equation (11) just says that if we follow a specific clock (here located at 
the origin), we will observe that this goes slower than the passing clocks on the other RF.  

This point in my opinion also gives an answer to ‘Dingle’s question’. Dingle [11] raises the question of 
symmetry regarding the travelling twin paradox: “Which of the two clocks in uniform motion does the 
special theory require to work more slowly? This is an important question, which according to the 
discussion in McCausland [12] so far has not been given a satisfactory answer.  

However, from the above discussion it is not the case that the clock(s) on one of the two reference frames 
go(es) slower than the clock(s) on the other, (as indicated by the Dingle’s question). We could very well 
choose to follow both the two clocks being at the origin at time 0; which will give that both reference 
frames have a clock ‘going slower’. So, the result on time dilation is actually fully symmetric with 
respect to the two reference frames! The question is not which reference frame has a clock that ‘goes 
slower’; it is rather which observational principle we have chosen. This fully demonstrates that it is 
rather inappropriate to apply the statement ‘moving clock goes slower’. 

Actually, Professor Dingle in his later work claimed that the TSR itself was inconsistent; see thorough 
discussion by ref. [3]. However, according to [3], Dingle again seems to have focused on the apparent 
inconsistency of our eqs. (7), (8), rather than discussing the interpretation of the more relevant eq. (11). 

4 Using an auxiliary reference frame of symmetry 
We proceed to investigate the important question of simultaneity at a distance. We primarily elaborate 
on the fundamental result (11). However, we will now treat the two reference frames in a symmetric 
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way, and denote them K1 and K2. In addition, we introduce an auxiliary RF, K. We chose this as our 
primary RF, and so we make our observations ‘in the perspective’ of this auxiliary K. 

To get a completely symmetric situation we let K1 having speed – 𝑤∗ with respect to K, and K2 having 
speed 𝑤∗ with respect to K. As the speed between K1 and K2 shall equal v, it follows that we define 𝑤∗ 
by (9); (cf. discussion at end of Section 2.5.) 

Next we specify the observational principle. We choose to operate the auxiliary reference frame as MC, 
and so both K1 and K2 are SC.1 Then single clocks at the origins of K1 and K2 are at any time compared 
with various clocks along K. Now we can apply the relation (11) between the auxiliary RF, K and the 
two RFs K1 and K2, giving, (also see the Note, Alternative notation in Chapter 3): 

                                                   𝑡 ௩
ௌ஼  = 𝑡ெ஼ඥ1 − (𝑣/𝑐)ଶ,   both for v = -𝑤∗ and v = 𝑤∗                  (12) 

It directly follows that 

                                                      𝑡ି௪∗
ௌ஼ = 𝑡௪∗

ௌ஼ = 𝑡ெ஼ඥ1 − (𝑤∗/𝑐)ଶ                                                  (13) 

So here 𝑡ି௪∗
ௌ஼  is the clock reading of the clock at the origin of K1, and 𝑡௪∗

ௌ஼ is the reading of the clock at 

the origin of K2. The essential result in (13) is that 𝑡ି௪∗
ௌ஼ = 𝑡௪∗

ௌ஼. So in the perspective of K these are now 
the simultaneous clock readings at the origins of the two ‘main’ reference frames, K1 and K2, moving 
relative to each other at speed, v.  

We illustrate these results in Fig. 2, which provides an analogy to Fig. 1. While Fig. 1 presented time 
dilation between two RFs, taking the perspective of one of them, Fig. 2 gives a symmetric picture with 
respect to two RFs, also introducing a third RF, K, and taking the perspective of this new one. Fig. 2 
gives a snapshot of the clock measurements at an instant when all clocks on K read time t; cf. horizontal 
line marked t. 

The parameter, w (horizontal axis) refers to the ‘positions’ (w =x/t) on the auxiliary reference frame, K. 
The reference frames, K1 and K2 move relative to K at speed –𝑤∗ and 𝑤∗, respectively. Thus, the lines 
𝑡ି௪∗(𝑤) and 𝑡௪∗(𝑤) give the time measured on clocks at K1 and K2, respectively; as a function of w 
(and time t) on K. We focus on three positions on K, i.e. w equal to –𝑤∗, 0 and 𝑤∗, respectively. These 
three values correspond to the origins of the three reference frames, K1, K and K2, respectively.  

First, the letter a in the figure indicates the simultaneous clock readings of reference frames K1 and K2, 
observed at the origin of K. At this position the clocks on K1 and K2 show the same time, and are 
simultaneously located at the same location, w = 0; so we are actually just referring to ‘basic 
simultaneity’. For these measurements the reference frame K is a SC system, and its clock will appear 
slower than the corresponding clocks on K1 and K2: we observe the line t falling below the point a. 

As stated, the two points marked with b correspond to the SC time readings at the origins of K1 and K2. 
Thus, using the extended notation introduced in Chapter 3, we have 𝑡ି௪∗

ௌ஼ = 𝑡ି௪∗(−𝑤∗) and 𝑡௪∗
ௌ஼ =

𝑡௪∗(𝑤∗). According to our result (13), these are identical. So the clock on K1 at the position –𝑤∗ and 
the clock on K2 at the position 𝑤∗ give identical time readings. 

These origins have moved apart after time 0; and the evens that these two clock readings are equal are 
not simultaneous, neither in the perspective of K1 nor in that of K2, (clearly illustrated in Fig. 2). 
However, eq. (13) tells that in the perspective of the auxiliary reference frame we have two simultaneous 
events. Now simultaneity in the perspective of the auxiliary RF may seem a weak form of simultaneity. 
But, when we have this symmetry, the result becomes interesting, and not very surprising. Rather, I 
would postulate that this symmetric ‘simultaneity at a distance represents a valid form of simultaneity. 

                                                           
1 Alternatively we could let the auxiliary reference frame, K operate as SC; but would then just obtain the same 
result as given in Section 2.5, and this is therefore of limited interest. 
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This is not a strong assumption, considering this a consequence of the complete symmetry we have here. 
Claiming that the one of the two events b occur prior to the other would represent a contradiction. 

t

- w*

a

b

tw*(w)

t-w*(w)

Clock 
time

K1

K2

K

 w*0
w

c

 

char tFigure 2. Clock measurements (‘time’) in the perspective of the auxiliary reference frame, K, where 
the reference frames K1 and K2 have velocity -𝑤∗ and 𝑤∗, respectively, relative to K.  

In conclusion, this is the most significant result obtained by using the auxiliary RF: We manage to 
establish a simultaneity of events at K1 and K2 ‘at a distance’. This is a key question in a proper handling 
of time dilation to achieve this. Also see the further discussion on simultaneity in Hokstad [13].  

Finally, in Fig. 2 we also see two clock readings corresponding to the letter c. These exhibit the same 
type of symmetric simultaneity as the points b, and the only difference is that the time readings at c will 
not correspond to the origins of the two main RFs themselves, but rather to the location on the other 
frame at the same position. We give a numerical example related to Fig. 2 in Appendix.  

This concludes our discussion on the interpretation/handling of time dilation in TSR. The observant 
reader might realize that the experimental set-up given here is well suited for handling the travelling 
twin paradox; which we discuss in the next chapter. 

5 Example: The travelling twin  
We now utilize the framework provided in the previous chapters to analyze the so-called travelling twin 
example, which goes back to Langevin [14]. As stated for instance in Mermin [9] the travelling twin 
paradox shall illustrate that two identical clocks, initially in the same place and reading the same time, 
can end up with different readings if they move apart from each other and then back together.  

5.1  The problem 
This paradox is indeed thoroughly discussed in the literature. Shuler [15] informs that about 200 per 
reviewed academic papers with clock paradox or twin(s) paradox in their title can be identified since 
1911, most of them since 1955. He comments “Though the correct answer has never been in doubt the 
matter of how to explain the travelling twins appears be far from settled”. He also refers to the following 
statement: “On the one hand, I think that the situation is well understood, and adequately explained in 
plenty of textbook. On the other hand… there are complementary explanations which take different 
points of view on the same underlying space-time geometry (though, alas, the authors don’t always seem 
to realize this, which rather undermines my assertion that the effect is well enough understood)”. The 
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last part of this statement is close to my own impression. However – as may be evident from the 
discussion of the previous chapter – I seriously challenge the standard answer to the paradox. 

Regarding the travelling twin example, Ref. [9] (in Chapter 10)  gives the following numerical example: 
“If one twin goes to a star 3 light years away in a super rocket that travels at 3/5 the speed of light, the 
journeys out and back each takes 5 years in the frame of the earth. Since the slowing-down factor 

is ඥ1 − (3/5)ଶ = 4/5 the twin on the rocket will age only 4 years on the outward journey, and another 
4 years on the return journey. When she gets back home, she will be 2 years younger than her stay-at-
home sister, who has aged the full 10 years.”  So the claim is that the referred difference in ageing occurs 
during the periods of the journey with a constant speed; i.e. under the conditions of the TSR, (ignoring 
the acceleration/deceleration periods). After all the whole argument relies on the Lorentz 
transformation! Thus, our discussion will restrict to the periods of constant velocity.  

Throughout this chapter we avoid using the rather complex notation of the previous chapters and let 

t1 = time on the clock of the earthbound twin 

t2 = time on the clock of the travelling twin  

Similarly, the distance between earth and the ‘star’ is denoted x1 = 3 light years, and since the rocket has 

speed, v = (3/5)c, we get ඥ1 − (𝑣/𝑐)ଶ = 4/5. It follows that in the reference frame of the earth/star, the 
rocket reaches the star at time, t1 = x1/v = 5 years. Further, the Lorentz transformation gives that at the 

arrival at the star this clock reads 𝑡ଶ = 𝑡ଵ ∙ ඥ1 − (𝑣/𝑐)ଶ = 4 years; so obviously, t2/t1 =ඥ1 − (3/5)ଶ = 
0.8 at the star when the travelling twin arrives; (and the argument is valid also for the return travel). 

So it does follow from the LT that the returning clock shows 8 years when he/she returns. However, 
recalling the discussion of Chapters 3-4 the case is not that straightforward, and since we have made no 
assumption of asymmetry regarding the periods of constant velocity, we have a true paradox.  

Thus, we will not question the clock of the travelling twin, but take an overall look at the total situation. 
First, we observe that the above presentation describes the travelling twin as a ‘SC system’, and so in 
this description the earthbound twin is located on a ‘MC system’. Therefore, we can just look at eq. (11) 
to obtain the above result. So the first question is how we can decide that this is the (only) correct 
observational principle. The second question is related to simultaneity. We should definitely ask: What 
event on earth is simultaneous with the arrival of the travelling twin of the star (or simply: What does 
the clock on the earth show ‘at this instant’).  

We now elaborate on these questions, before referring to our results of the previous chapters. As we 
insist on the symmetry of the situation, we now simply assume that there is also a RF of the travelling 
twin with the required number of clocks. Say, he is equipped with rockets at appropriate and fixed 
distances from his own rocket, all moving with constant speed in the same direction as himself, and all 
equipped with a synchronized clock showing the same time, t2. Whether this is practically feasible is not 
relevant here. We are referring to the model of the TSR, and point out what this theory tells about clock 
readings, if we provide such an arrangement. Now we have established two RFs as required by the LT. 

I think the core of the problem is that we actually do not fully know how to define the moment on the 
earth ‘simultaneous to the arrival at the star of the traveling twin. The LT apparently does not give a 
definite answer regarding the simultaneity of events ‘at a distance’. Therefore, we will now discuss 
various options regarding this simultaneity. 

To proceed we also introduce a symmetric auxiliary reference frame, K, with velocity ± 𝑤∗, respectively, 
relative to the RFs of the two twins; (with 𝑤∗ given in (9); also see Appendix). Then we can consider 
simultaneity in the perspective of each of these three RFs. Starting with the arrival at the star, where t2 
= 4, t1 = 5, we now identify the simultaneous event on the earth from these three perspectives.  
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We present the result in Table 1. Note that on the earth it is the earthbound twins clock that acts as SC, 
that is here t1 being a SC time reading, and t2 a MC time reading. Thus, eq. (11) gives the result, t2 / t1 = 
1/0.8 = 1.25, for all observations on the earth, whatever instant we consider after departure. Therefore, 
at this location it is the clock on the earth that always ‘goes slower’! 

First, in the perspective of the travelling twin, the clock reading of his clock equals 4 years. So when the 
clock of his RF (showing 4 years) passes the earth, the clock on the earth just reads 0.8∙4 =  3.2 years; 
see perspective 1 in Table 1. 

Next, in the perspective of the earthbound twin, we have calculated that his clock located at the star, 
reads 5 years by the arrival of his twin. But when his own clock on earth shows 5 years, the passing 
clock of the travelling twin’s reference frame then shows 5∙1.25 = 6.25 years; see perspective 2. (If this 
is the relevant answer, we should expect the return of the twin brother after 12.5 years.)  

Table 1. Various clock readings (light years) at/on the earth, potentially ‘simultaneous to’ the 
arrival of the travelling twin at the star; (so, at the star we have t1 = 5, t2 = 4).  

Clock reading at earth Perspective of 
1. Travelling twin 2. Earthbound twin 3. Auxiliary (symmetric) 

Earthbound twin system (t1) 3.2 5 4 
Travelling twin system (t2) 4 6.25 5 

 

The third possibility is to apply the perspective of the symmetric auxiliary reference frame. In this 
perspective, we treat both clocks belonging to the twins as SC. Then we get the following symmetric 
result regarding simultaneity: The arrival at the star occurs when both twins observe that their own clock 
shows 4 years, and the adjacent clock on the other RF shows 5 years; (closely related to length 
contraction). By these direct measurements, they observe that the other twin at this moment apparently 
has aged more than himself by a factor 1.25. This gives a completely symmetric and consistent answer 
to the paradox. In addition to the symmetry, it is an important point here that in options 1 and 2 of Table 
1 we directly follow the clock of just one twin, while we in option 3 follow both these clocks. 

5.2  Conclusion and further discussion 
Above we presented a rather lengthy discussion about simultaneity, which is the essential question in 
this paradox. However, we could directly apply the approach of Chapter 4 to provide our solution to the 
problem. Fig. 2 illustrates clock readings of the three reference frames, choosing the auxiliary frame, K 
as the primary one. We further associate K1 with the earthbound twin and K2 with the travelling twin. 
Further, the ‘positions’ 𝑤∗ and -𝑤∗ give the locations of the two twins. (From (9) we find that the twin 
has velocity 𝑤∗ = 𝑐/3 relative to the auxiliary frame, K; see numerical example in Appendix.) 

We let Fig. 2 illustrate the arrival at the star in the perspective of the RF, K. At that location t2 = 4 years 
and t1 =5 years (right side of figure); which is simultaneous to the event that clocks show t1 = 4 years 
and t2 = 5 years on the earth (left side of figure). Therefore, by following both twins, and thus 
considering both their systems as SC, the conclusion is that both twins have aged 4+4=8 years when 
they meet again; (we describe both twins as SC systems also on the return). Thus, we follow both clocks 
in a symmetric way, from the moment when they depart (having basic simultaneity) to the moment when 
they are again united (again basic simultaneity). So when it is often seen as paradoxical that we 
apparently have to ‘choose’ one twin to age more slowly, our solution is that they both age more slowly, 
as compared to ‘passing clocks’ on the other reference frame. This reduction in the clock time, compared 
to the result of 10 years, is related to the length contraction, experienced by SC systems.  

So what does the literature say about this? Obviously quite a lot; as seen e.g. in the referred paper by 
Shuler [15]. Also Debs and Redhead [16] give a thorough discussion on this case. They refer to the two 
asymmetries that have been the basis for most of the standard explanations. The first group of arguments 
focuses on the effect of different standards of simultaneity, and secondly one can designate the 
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acceleration as the main reason for the differential aging. However, regarding the last group of 
arguments they write “… since we are dealing with flat space-time, we regard the reference to general 
relativity in this context as decidedly misleading”; a statement in which we agree.  

Thus, [16] follows up on discussing the simultaneity, and in particular argue for the conventionality of 
simultaneity. This implies that when establishing simultaneity at a distance by the use of light signals, 
the definition of simultaneity is essentially a matter on convention; (we could consider any time in a 
certain interval to be simultaneous with a distant event).  

I am uncertain about the interpretation of this. We might apply a similar argument to the above approach 
of using auxiliary reference frames: Various reference frames at different speeds would give different 
results concerning simultaneity at the two ‘main’ frames. This might correspond to various degrees of 
asymmetry, (in addition to the symmetric solution discussed above). However, we should not interpret 
this to mean that all solutions are equally valid. I would rather say that we should choose the auxiliary 
reference frame, which corresponds to the situation we want to model. If we want to model a symmetric 
situation, there should also be a symmetric reference frame, as we have chosen here. Even if there are 
several possible definitions for simultaneity at a distance, this does not mean that all are equally valid.  

Several standard arguments regarding the twins’ ageing seems to have a problem in handling 
simultaneity. Often the standard narrative seems to implicitly assume that the arrival of the twin at the 
star occurs ‘simultaneously’ with the earthbound twin having aged 5 years (in the present example). It 
is true that the Lorentz transformation tells that the clock of the earthbound system, which is located at 
the ‘star’, shows 5 years when the traveling twin arrives (with a clock reading 4 years). However, that 
does not imply that the clock on the earth reads 5 years ‘at the same time’. In my understanding, one 
cannot infer such simultaneity from the TSR. 

This objection applies for instance to the argumentation given in Ref. [10], Chapter 6, which also claims 
that the returning twin has aged less. However, the various arguments given there starts out with 
statements like, ’He [the earthbound twin] thinks the whole trip took T seconds’, (where T corresponds 
to 5 years in our case), ‘the earth twin knows the outbound trip took T/2 seconds’, and ‘the whole trip 
takes a time T’. However, we should take a more holistic view, considering the various, apparently, 
contradictory observations we might have, cf. Table 1, and so the argumentation e.g. of Ref. [10] appears 
too simplistic.   

Thus, we link our claim regarding simultaneity to arguments of symmetry. After all, we calculate the 
assumed ageing by use of the LT, which truly exhibits symmetry. I find it hard to defend an asymmetric 
solution to this symmetric mathematical framework; apparently by adding some ad hoc assumptions 
outside the scope of the chosen mathematical framework.  

Now one could say that also the solution presented here is somewhat paradoxical as it involves 
apparently contradictory observations for events ‘at a distance’. However, this paradox is seemingly 
inherent in the Lorentz transformation. By accepting this as a model for how the world is ‘working’, I 
find the solution presented here consistent and logical. 

6 Summary and conclusions 
Starting out from the Lorentz transformation (LT) we present an approach for analyzing time dilation 
and simultaneity in the theory of special relativity. The main elements of the approach are as follows: 

 We reformulate the LT, in a way that facilitates a graphical presentation of the clock time of both 
reference frames (RFs) in the same diagram. We can also directly read out the effect that the 
observational principle has on the observed time dilation.  

 As an initial step we should decide which RF is chosen as the primary one. This means that we will 
take the perspective of this RF; and simultaneity in the perspective of this frame implies that we 
have the same clock reading at any location on this frame. 
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 We should also consider the inclusion of an auxiliary RF. If so, we usually take this additional RF 
to be the primary one. The objective could be to provide a sensible definition of simultaneity at a 
distance. 

 We further specify the observational principle; that is, we specify the location of the clocks that 
are used for time comparisons between the reference frames. The graphical presentation is helpful 
to illustrate this. 

 All results obtained will be relative to a chosen point of initiation. This is time 0 (on all RFs), where 
the clocks at the origin of the RFs are at the same location; then being synchronized. 

One of the challenges is to balance (account for both) the inherent symmetry of the two RFs and the 
need to take the perspective of one RF. We claim to achieve this here. In particular, we stress the 
usefulness of writing the standard time dilation formula as 

                                                                    𝑡ௌ஼ = 𝑡ெ஼ඥ1 − (𝑣/𝑐)ଶ                                                    

This gives a mutual relation between the two RFs, and tells that when we follow a ‘single clock’ (SC) 
on one of the reference frames, this clock goes slower than the passing ‘multiple clocks’ (MC) on the 

other frame by a factor ඥ1 − (𝑣/𝑐)ଶ. We find this formulation more informative than the potentially 
misleading phrase ‘moving clock goes slower’. There is no reason to see the single clock to be moving 
and the other clocks not. In general the specification of which system(s) act as SC and which act as MC 
is crucial for how to comprehend this phenomenon. We illustrate that in a more complex case, one can 
have both types of observations on both frames. Actually multiple clocks on any RFs will observe that 
a single clock on the ‘other system’ goes slower, (and a search for the one RF where time goes slower 
is indeed in vain). 

This ‘standard time dilation formula’ actually illustrates a specific observational principle. We get 
another observational principle if we permanently perform clock comparisons at the midpoint between 
the origins of the two reference frames. This will give identical clock readings at the two frames. So 
when we apply this observational principle - being symmetric with respect to the two RFs - we also get 
a symmetric result! Time dilation is indeed caused by an asymmetry in the observational principle. 

A main element of the approach presented here is the method for (in some cases) to decide simultaneity 
at a distance. We introduce an auxiliary reference frame, and its position is at any instant completely 
symmetric with respect to the two main RFs. Following a SC on each of the main RFs it follows by 
symmetry that identical clock reading corresponds to simultaneity at a distance. We would see an 
asymmetric solution here as a contradiction. 

We further apply the given framework to analyze the travelling twin paradox; here seen as a thought 
experiment, (disregarding the acceleration periods), presenting a symmetric observational set-up, where 
we follow the single clocks of both twins. We arrive at the conclusion that the age of both twins is 

reduced by a factor ඥ1 − (𝑣/𝑐)ଶ, as compared to the travelling time calculated at a stationary reference 
frame. From any SC perspective one will actually observe a length contraction, and thus also a time 
reduction. By specifying a RF for each twin, we see that they will both observe this phenomenon.  

Actually, one should identify conditions (departures from symmetry) that could cause time dilation to 
represent a physical reality. I cannot see that such conditions are identified in the travelling twin example 
for those arguing within the TSR. Thus, the problem with some standard arguments on the travelling 
twin paradox seems to be a failure to handle properly the simultaneity at a distance.  

We finally comment that an observer moving relative to a RF where the event takes place could be a 
rather unreliable observer. Different observational principles will give different results. Thus, such an 
outside observer should be careful to define the phenomenon, without taking an overall, holistic view.  
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Appendix   Example of a numerical calculation 
Now we elaborate on the numerical example on the travelling twin in Ch. 6. We use Fig. 2 as an 
illustration, and this represents the situation when the travelling twin has reached his point of destination. 
The numerical values, of Ch. 6 gives 𝑤∗ = c/3 (eq. (9)), being the speed between any twin and the 

auxiliary RF. Further, ඥ1 − (𝑤∗/𝑐)ଶ =
ଶ

ଷ
√2 ≈ 0.94. Next, we apply eq. (4), here inserting 𝑤∗ for v, 

and then obtain the following clock readings of the three RFs: 

i. The auxiliary reference frame (primary). Time is constant, t, (see horizontal line in Fig. 2). 

ii. Earthbound twin. Time as function of w: 𝑡ି௪∗(𝑤) = (√2/4) ∙ (3 + 𝑤/𝑐)𝑡. 

iii. Travelling twin. Time as function of w: 𝑡௪∗(𝑤) = (√2/4) ∙ (3 − 𝑤/𝑐)𝑡. 

In Fig. 2 we now let the observational point b, correspond to 𝑤∗ = c/3; Further let time for the travelling 

twin equal 4 years, (i.e. his arrival). Thus 𝑡௪∗(𝑤∗) = 4, which gives t = 3√2 ≈ 4.24 years, and then we 
have completely specified the clock readings by the arrival, in the perspective of the auxiliary RF.   

So using this 𝑡 = 3√2 in the expressions 𝑡௪∗(𝑤) and 𝑡ି௪∗(𝑤) above, we will – referring to Fig.2 - get 
that the point a corresponds to 4.5 years and the point c corresponds to 5 years; in full agreement with 
the given example.  

The clock reading, t = 3√2 ≈ 4.24 years of the auxiliary (primary) system at this instant seems less 
relevant. The main role of the auxiliary RF is to allow us to treat the RFs of both twins as SC, and thus 
to establish ‘simultaneity at a distance’ with respect to these.  


