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Abstract. We investigate time dilation in the theory of special relativity, and discuss some basic 
questions and controversies. Starting out from the Lorentz transformation, we stress that the location of 
clocks used for time readings is essential for the magnitude of the observed time dilation. We focus on 
three observational principles: 1) A reference frame may apply a single clock (SC); 2) It may apply 
multiple clocks (MC); or 3) There is a completely symmetric situation between the two reference frames. 
We specify two types of simultaneity. First, there can be a direct comparison of clock readings at 
identical positions, (‘basic simultaneity’). Further, there is simultaneity ‘in the perspective’ of any 
reference frame. By also using an auxiliary reference frame – in combination with symmetry 
considerations – we also define ‘simultaneity at a distance’; becoming an essential concept in our 
investigations. Throughout there is a focus on symmetry. A main statement is to stress that the Lorentz 
transformation has a fully symmetric solution with respect to the two reference frames: We will always 
observe that a single clock on any reference frame goes slower than the passing clocks on the other 
frame. This is mutual for both frames. We use the obtained framework to give a thorough discussion of 
the travelling twin paradox, and arrive at a conclusion regarding the twins’ ages, which deviates from 
the prevalent view regarding this example.  

Key words: Time dilation, Lorentz transformation; Dingle’s question; observational principle; 
symmetry; simultaneity; auxiliary reference frame; travelling twin. 

1 Introduction 
The present work explores the concept of time dilation within the theory of special relativity (TSR). 
Chapter 2 presents a rather limited literature review; mainly of some references that present the TSR for 
non-experts. We also introduce main questions discussed in this paper, and provide specifications of 
basic concepts. 

The material of Chapter 3 is rather well known, but starts out to by giving a somewhat modified version 
of the Lorentz transformation. We further pinpoint the importance of the observational principle, that 
is, the specification of which clocks to apply for the required time comparisons. The chapter provides a 
unified framework for the various observational principles, and points out the most interesting special 
cases.  

Chapter 4 gives a thorough discussion on the common statement that the ‘moving clock goes slower’. 
We prefer an alternative formulation to avoid misconceptions. The fundamental question is rather which 
clocks we single out for time comparisons. 

One can always specify ‘basic simultaneity’, referring to events that occur at the same instant and same 
place. In Chapter 5 we also see how the introduction of an auxiliary reference frame – in combination 
with symmetry requirements - can provide a useful tool also to specify ‘simultaneity at a distance’.  

Overall, the first chapters provide a tool for investigating time dilation within the framework of the TSR. 
In Chapter 6 we apply the approach to give a lengthy discussion of the ‘travelling twin’ example; 
claiming to give a logical conclusion regarding the twins’ ages. Our result will deviate from the solution 
usually given in the literature. So in total, the given approach will challenge the current narrative on 
time dilation and simultaneity in the TSR. We here argue that in a symmetric situation, we should also 
give a symmetric definition of ‘simultaneity at a distance’. A failure to do so seems to have caused some 
confusion in the past. 

The focus of the present paper is on the mathematical modelling, rather than on the physical, and the 
main objective is to investigate the logical implications of the Lorentz transformation. The findings 
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should have some implications regarding our conception of relative time and simultaneity within the 
framework of the TSR; as we illustrate by the travelling twin paradox.  

2 Background and basic assumptions 
We review some basic literature and a couple of web sites. Based on these works we point out some 
questions that do not seem fully settled. We also provide the basic assumptions and concepts of the 
present work. 

2.1 Problem formulation 
First, I find the literature somewhat ambiguous regarding the very interpretation of time dilation. For 
instance, how should we interpret the common statement: 'Moving clock goes slower'?  Many authors 
apply the expression 'as seen' by the observer on the other reference system, perhaps indicating that it is 
an apparent effect, not a physical reality, but without elaborating on the interpretation of 'as seen'. Others 
stress that 'everything goes slower' on the 'moving system', not only the clocks; truly stating that the 
time dilation represents a physical reality also under the conditions of TSR (i.e. no gravitation etc.). On 
the other side Giulini (2005; Section 3.3) states: ‘Moving clocks slow down’ is ‘potentially misleading 
and should not be taken too literally’. However, the expression ‘not be taken too literally’ is not very 
precise. So in what sense – and under which precise conditions – is time dilation to be considered a true 
physical phenomenon?  

Regarding the concept of time dilation, I also miss a more precise discussion of the multitude of time 
solutions (depending on location) offered by the Lorentz transformation. Some authors treats this (e.g. 
Mermin 2005), but most authors do not elaborate on this. In the present work we will look at the total 
picture of all expressions for time dilation.  

As pointed out e.g. on Pössel’s web site (Special relativity) the phenomenon of time dilation stems from 
the fact that clocks of the two systems have to be compared at least twice, so it cannot be the same two 
clocks being compared. Since movement is relative, however, an interesting question is how to decide 
which system (clock) is moving. Mermin (2005) states that what 'moves' is decided by which clocks are 
chosen to be synchronized. This seems to be is in line with the views of the present work: the procedure 
of clock synchronization and clock comparison decides which reference system has the time ‘moving 
faster/slower’.  

When reference frames are moving relative to each other, the definition of simultaneity becomes crucial. 
The convention seems to define simultaneity across reference frames by use of light rays, but this hardly 
maintains the symmetry, (cf. Hokstad 2016, Chapter 6). Now we can course always consider the ‘basic 
simultaneity’; i.e. simultaneity of events occurring at the same instant and same location. In addition, 
we can consider the simultaneity of events from the ‘perspective’ of a certain reference frame: As all 
clocks on a specific reference frame are synchronized, the events that occur at any location, where the 
clock of this reference frame show the same time, are all simultaneous in the perspective of this reference 
frame. We want to explore the potential also of this type of simultaneity. 

Also the question of symmetry is essential. The TSR actually describes a symmetric situation for the two 
systems/observers moving relative to each other, but the literature does not seem to be completely 
consistent regarding this; some references describe situations apparently involving some asymmetry. 
For instance - when discussing the travelling twin paradox – (Hamilton’s Homepage) clearly describes 
a symmetric situation, while (Feynman 2008) does not.   

Actually, the so-called travelling twin paradox, (e.g. Feynman 2008; Mermin 2005; Smith 2015; 
Hamilton’s Homepage) is well suited to highlight the above dilemmas.  And even if the main-stream 
conclusion is that the travelling twin actually ages less than the earthbound twin, there still seem to be 
some opponents. The so-called Dingle’s question, Dingle (1972) raises the important question of 
symmetry: “Which of the two clocks in uniform motion does the special theory require to work more 
slowly? McCausland (2008) presents the full question and discusses it at length. I find this an important 
question, and it is rather surprising that according to McCausland (2008) it has so far not been given a 
satisfactory answer.  
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Now some authors also question the validity of the TSR and the Lorentz transformation, (e.g. see 
McCausland 2011; Phipps 2013; Robbins 2013). In particular, McCausland (2011) reviews various 
controversies on the topic (related to H. Dingle) during several decades, and also gives a lot of 
references. Robbins (2013) also treats the Bergson-Einstein controversy, dating back to 1922. Further, 
Phipps (2013) presents a harsh critique of the TSR modelling from the standpoint of a physicist; for 
instance stating that the theory fails to include causes of the relative motion and thus will not capture 
the inherent asymmetry of the phenomenon. The scope of the present work, however, is more restricted: 
We will derive logical and consistent consequences of the Lorentz transformation; thus, accepting the 
validity of the TSR as a premise. 

2.2 Basic assumptions and concepts 
We base the discussions on the standard theoretical experiment: Two co-ordinate systems (reference 
frames), K and Kv (pointing in the same direction) are moving relative to each other at speed, v. We 
consider just one space co-ordinate, (x-axis), and investigate the relation between space and time 
parameters, (x, t) on system K and the corresponding parameters (xv, tv) on the system Kv. Thus, we have 
the following ‘basic simultaneity’: At time t and position x on K we observe that time equals tv and 
position equals xv on the system Kv. We base our discussions on the Lorentz transformation, including 
the following specifications: 

 There is a complete symmetry between the two co-ordinate systems, K and Kv; the systems being 
identical in all respects.  

 On both reference frames there is an arbitrary number of identical, synchronized clocks, located at 
any positions where it is required to measure time.  

 At time t = tv = 0, clocks at the location x = 0 on K and location xv = 0 on Kv are synchronized. This 
represents the defining starting point, from which all events are measured: the ‘point of initiation’. 

 We will choose the perspective of one of the systems, (here usually K), and refer to this as the primary 
system. We consider this to be ‘at rest’, (as the other reference frame move relative to it at velocity, 
c). Time on this ‘primary’ system is at any position, x given as a constant, t(x) ≡ t, independent of x, 
(all clocks being synchronized). In contrast, at a certain time, t on the primary system, the observed 
time, tv on other (‘secondary' system(s), here Kv), will depend on the location where the clock reading 
is carried out. When there are several reference frames, we are free to choose any one as the primary. 

 Throughout SC will refer to a reference frame utilizing a ‘single clock’ (or ‘same clock’), for the 
time comparisons with other reference frames; and similarly MC will refer to a reference frame 
utilizing ‘multiple clocks’ (at various locations) for time comparisons.  

3 The Lorentz transformation and special cases 
We here present the Lorentz transformation, and further investigate a variant of it, which we find useful. 

3.1 The standard formulation 
The Lorentz transformation represents the fundament for our discussion of time dilation. Note that we 
introduce a change of the standard notation. Rather than the usual t' and x' we will write tv and xv. Then 
the Lorentz transformation takes the form 

                                                                       𝑡௩ =  
௧ି

ೡ

೎మ௫

ටଵି(
ೡ

೎
)మ

                                                                    (1) 

                                                                      𝑥௩ =  
௫ି௩௧

ටଵି(
ೡ

೎
)మ

                                                                    (2) 

Thus the position, xv corresponds to (has the same location as) x when the clocks at this positions show 
time t and tv, respectively.  The formulas include the length contraction along the x-axis (Lorentz factor): 
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                                                                     𝑘௫ = ට1 − (
௩

௖
)ଶ                                                                (3) 

3.2 An alternative formulation 
Taking the perspective of K, we may at any time t choose an ‘observational position’ equal to x = wt, 
(for an arbitrarily chosen w). By inserting x = wt in (1) we directly get that time on Kv at this position 
equals: 

                                                                  𝑡௩(𝑤) =
ଵି 

ೡೢ

೎మ

ටଵି(
ೡ

೎
)మ

𝑡                                                                 (4) 

Thus to pinpoint the dependence on w we here -and when appropriate- write tv(w) rather than tv. The 
new time dilation formula (4) will – for a given time, t on the primary system, K - give the time, 𝑡௩(𝑤) 
on the secondary system, Kv, as a linear, decreasing function of w. We can now also introduce 

                                                             𝛾௩(𝑤) = (1 − 
௩௪

௖మ ) /ට1 − (
௩

௖
)ଶ                                                    (5) 

as the ‘generalized time dilation factor’, valid for any location, (any w=x/t), i.e. any observational 
principle. Thus, we can write (4) as 

𝑡௩(𝑤) = 𝛾௩(𝑤) 𝑡. 

Fig.1 provides an illustration of this time dilation formula. Here we give time in the perspective of K. 
So the figure illustrates an instant when time equals t all over this reference frame. The horizontal axis 
gives the ‘position’ w = x/t at which the clock measurements are carried out. The vertical axis gives the 
actual clock readings. As stated, time on K equals t at any ‘position’, w; see horizontal line. Further, the 
clock readings on Kv at this instant, that is 𝑡௩(𝑤), depend on w; see decreasing straight line. The three 
special cases of eqs. (9), (13) and (8) are inserted; corresponding to w = 0, w’ and v, respectively.  

This illustration given in Fig. 1 is rather fundamental for the interpretation of relative time. Being a 
direct consequence of the Lorentz transformation, it is of course well-known. For instance, (Mermin 
2005) gives a thorough discussion on this relation, focusing on how the exact expression for 𝑡ଶ

ᇱ − 𝑡ଵ
ᇱ  

depends on 𝑥ଶ − 𝑥ଵ. But perhaps they do not fully utilize the potential of this general relation.  

In particular we note that the result (4), and the accompanying Fig. 1, is significant for our understanding 
of the concept ‘simultaneity’. As all clocks on K are synchronized, we say that all events on K, (at any 
position x), occurring at the same time, t, are simultaneous in the perspective of reference frame K. So 
in the perspective of K also the event that time on Kv equals 𝑡௩(𝑤) = 𝛾௩(𝑤)𝑡 at the position 
corresponding to x = wt on K, are simultaneous to these events, (‘basic simultaneity’). However, in the 
perspective of Kv we of course have quite another result, and so we clearly see the well-known result 
that the simultaneity in TSR is relative and depends on the perspective of the observer.  

Now, in analogy to letting x = wt, we also define a wv so that xv = wv∙tv = wv∙tv(w). By inserting both x 
= wt and xv = wv∙tv, in (2), we will after some manipulations obtain 

                                                                      𝑤௩ =  
௫ೡ

௧ೡ(௪)
=

௪ି௩

ଵି
ೢ

೎
∙
ೡ

೎

                                                                        (6) 

So equations (4), (6) represent an alternative version of Lorentz transformation, here expressed by 
parameters (t, w) rather than (t, x). The equation (6) has a direct interpretation. According to standard 
results of TSR e.g. (Einstein 2004; Feynman 2008; Giulini 2005; Mermin 2005) the velocities v1 and v2 
sums up to v, given by the formula 

                                                                  𝑣 = 𝑣ଵ⨁ 𝑣ଶ  ≝  
௩భା௩మ

ଵା
ೡభ
೎

∙
ೡమ
೎

                                                       (7) 
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So by defining the operator ⨁ this way, eq. (6) actually says that 𝑤௩ = 𝑤⨁(−𝑣), or equivalently (as 
we easily derive), 𝑤௩⨁𝑣 = 𝑤, thus, clearly interpreting w and wv as velocities along the x - axis. 

Note that we do not need to think of w as a velocity; rather as a way to specify a certain position x = wt 
on K, representing the location of the clocks being applied at time t. However, we will later see that it 
can also be fruitful to interpret w as the velocity of a third observational reference frame. 

 

Figure 1. Time dilation. We have the perspective of K, and time all over K equals, t. Time, tv(w),on Kv 
given as a function of w, see eq. (4); (where w=x/t gives the ‘position’ on K).  

3.3 Standard special cases 
Focusing on time, eq. (4), there are various interesting special cases. First, if a specific clock located at 
xv = 0 on Kv is compared with the passing clocks on K. These clocks on K must have position x = vt, and 
thus we choose w=v and get the relation  

                                                               𝑡௩(𝑣) = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                           (8) 

Which equals the ‘standard’ time dilation formula. Further, when a specific clock at position x = 0, on 
K is used for comparisons with various passing clocks on Kv, we must choose w=0 and get 

                                                               𝑡௩(0) = 𝑡 /ඥ1 − (𝑣/𝑐)ଶ                                                          (9)   

as the relation between t and tv.  The two special cases (8), (9) are specified in Fig. 1, and we also return 
to these in Chapter 4. 

Two other standard special cases are obtained by choosing w = c and w = -c, respectively. First 

                                                          𝑡௩(𝑐)  =
ଵି௩/௖

ටଵି(
ೡ

೎
)మ

𝑡 =
ඥଵି௩/௖

ඥଵା௩/௖
𝑡                                                    (10) 

We could observe this result by applying two clocks on both system: One at x = 0 and one at x = ct on 
K; and similarly, one at xv = 0 and one at xv = ctv(c) on Kv. Now eq. (10) is valid when a light ray is 
emitted in the positive direction (x > 0); i.e. c having the same direction as the velocity v, as seen from 
K. Similarly, emitting light in the negative direction, (choosing x = - ct), gives the well-known result: 

                                                          𝑡௩(−𝑐) =
ଵା௩/௖

ටଵି(
ೡ

೎
)మ

𝑡 =  
ඥଵା௩/௖

ඥଵି௩/௖
𝑡                                               (11) 
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The results (10), (11) seems essentially applied for two ways light flashes, i.e. ‘round trips’, (e.g. 
Hokstad 2016).  

3.4  The symmetric case 
Now consider a fifth special case of the Lorentz transformation, (4), (6). We ask which value of w (and 
thus wv) would results in tv(w)= t. We easily find that this equality is obtained by choosing w=w’, where   

                                                    𝑤′ =
௖మ

௩
ቆ1 − ට1 − ቀ

௩

௖
ቁ

ଶ
ቇ =  

௩

ଵାඥଵି(௩/௖)మ
                                        (12) 

By this choice of w we also get wv = -w’. This means that if we consistently consider the positions where 
simultaneously x = w’t and xv = -w’tv = - w’t, then no time dilation will be observed at these positions. 
In other words (cf.  Fig. 1): 

                                                                         𝑡௩(𝑤′) ≡ 𝑡                                                                             (13) 

At this position xv = -x, and so we see it as the midpoint between the origins of the two reference frames; 
thus, providing a nice symmetry. Note that when we choose the observational principle, (12), then 
absolutely everything is symmetric, and it should be no surprise that we get tv = t.  

Also note that we could give w’ a nice interpretation. Recalling the definition of the operator ⨁ in eq. 
(7) for adding velocities in TSR, (𝑣 = 𝑣ଵ⨁ 𝑣ଶ), it is easily verified that when w’ is given by (12), then 
we get w’⨁w’= v. So when (the origins of) K and Kv have speed w’ and -w’, respectively, relative to the 
chosen point of observation, then the relative speed between K and Kv becomes v. Note that we also 
could link this observational point to an auxiliary reference frame, see Chapter 5. 

4  “The moving clock”: SC vs. MC 
In this chapter we investigate the special cases (8) and (9) in more detail, focusing on the 
concepts SC (single clock) and MC (multiple clocks),    

In (8), the specific clock at position xv ≡ 0 on Kv at time t passes the location x =vt (on K). So on Kv we 
just apply a single clock (SC) for the time comparisons, and in this case we say that Kv operates as a SC 
system. So for these SC time readings, 𝑡௩(𝑣) of eq. (8) we now write 

                                                                         𝑡௩
ௌ஼ ≝  𝑡௩(𝑣)                                                                (14) 

Thus, eq. (8) becomes 

𝑡௩
ௌ஼ =  𝑡 ට1 − (

𝑣

𝑐
)ଶ 

Further, in (9) we follow a clock at x ≡ 0 on K, and at this position we make comparisons with various 
clocks on Kv as they pass along. We now let MC indicate a reference frame utilizing multiple clocks, 
and so write  

                                                                       𝑡௩
ெ஼ ≝  𝑡௩(0)                                                                 (15) 

Then eq. (18) equals: 

𝑡௩
ெ஼ =  

ଵ

ටଵି(
ೡ

೎
)మ

𝑡                                                                  

But these two cases are closely linked. When Kv operates as SC then K becomes MC and vice versa. 
Thus the two symmetric results, (8), (9) could be presented in a compact form as 

                                                              𝑡ௌ஼ = 𝑡ெ஼ඥ1 − (𝑣/𝑐)ଶ                                                        (16) 
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Actually, this is much more than an effective way to write the two eqs. (8) and (9). By eq. (16) we stress 
that (8) and (9) actually represent the same result. So correctly understood (16) is much more informative 
than (8) and (9). This specifies which of the two systems we operate as SC, and which as MC.  

Here we should add a note on our notation, which now differs from that of the previous chapters. For 
instance eq. (16) illustrates the following notation: There is a SC reference frame, KSC; so we utilizes 
just one clock on this system, giving time readings, tSC on the clock located at its origin,  𝑥ௌ஼ = 0. 
Further, tMC is the time on a MC reference frame, KMC. We would denote the positions of its time 
measurements 𝑥ெ஼. We have to admit that we will apply both sets of notations from now on, but refer 
to Appendix A for a summary on the notation for time parameters. 

Further, note that we in (16) have dropped the subscript, v on both time parameters. This just means that 
(16) is valid irrespective of which reference frame is chosen as ‘primary’. But, if needed, we could add 
a subscript v to either tSC or tMC, to indicate which of the systems we choose as the secondary system. 

Before we leave (16) some comments are relevant. First we stress that observers on both reference 
frames will agree on this result (16). Thus, I find it rather misleading to apply the phrase 'as seen' 
regarding the clock reading on ‘the other’ system; which is a formulation used by some authors. The 
time readings are objective, and all observers (observational equipment) on the location in question will 
'see' the same thing. The main point is rather that observers at different reference frames will not agree 
regarding simultaneity of events.  

Secondly, we have the formulation ‘moving clock goes slower’. It is true that an observer on a reference 
frame (KMC), observing a specific clock (on KSC) passing by, will see this clock going slower when it is 
compared to his own clocks. So in a certain sense this confirms the standard phrase ‘moving clock goes 
slower’. However, we could equally well take the perspective of the single clock, considering this to be 
at rest, implying that the clocks on KMC are moving. The point is definitely not that clock(s) on KSC are 
moving and clocks on KMC are not. Rather, we could look at the symmetry of the situation: We are 
starting out with two clocks at origin, moving relative to each other. Then the decision on which of the 
two clocks we will compare with a clock on the other system, (a decision that can be interchanged at 
random!), will decide which of the two clocks comes out as the slow one.  

So, first of all, none of the clocks are more moving than the other. Further, it is the observational 
principle that decides which of the two clocks initially at the origin, which we observe to move slower. 
Therefore, I find the talk about the ‘moving clock’ rather misleading. 

Further, this choice on which reference frame shall apply just a single clock is obviously crucial, and it 
introduces an asymmetry between the two reference frames.  

We note that the insight as provided by eq. (16) is in no way new. Our concepts SC and MC for instance 
correspond to the concepts ‘proper’ and ‘improper’ time used by (Smith 2015). In particular, eq. (16) 
equals eq. (3-1) of that book. However, this reference has perhaps not fully utilized the potential of this 
relation.  

We should further stress one fact. It is not required to point at one reference frame to be SC (having 
‘proper’ time), and the other to be MC (having ‘improper’ time). Actually, we can specify any clock at 
one of the two reference frames; and if we decide to follow this clock, we will find that it goes slower 
than the passing clocks on the other reference frame. Thus, we may at the same time have clock(s) on 
both reference frames observed to ‘go slower’. In this respect also eq. (16) could be misleading. We do 
not have to point at one reference frame to be SC and one to be MC. The equations just says that if we 
follow a specific clock, we will observe that this goes slower than the passing clocks on the other 
reference frame.  

This point is essential, and in my opinion it also gives an answer to Dingle’s question, (see Dingle 1972; 
McCausland 2008), cf. Section 2.1. It is not the case that the clock(s) on one of the two reference frames 
go(es) slower than the clock(s) on the other, (as indicated by the Dingle’s question). We could very well 
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choose to follow both the two clocks being at the origin at time 0; which will give that both reference 
frames have a clock ‘going slower’. (We note that this fact is also most relevant when we study the 
travelling twin example; see Chapter 6 below.) So, the result on time dilation is actually fully symmetric 
with respect to the two reference frames! The question is not which reference frame has a clock that 
‘goes slower’; it is rather which observational principle we have chosen. This fully demonstrates that it 
is rather inappropriate to apply the statement ‘moving clock goes slower’. 

Actually, Professor Dingle in his later work claimed that the TSR was inconsistent; see thorough 
discussion by McCausland (2011). However, I do not find this argumentation very convincing, as - 
according to McCausland (2011) - Dingle again seems to focus on the apparent inconsistency of our 
eqs. (8), (9), rather than discussing the interpretation of the more relevant eq. (16). 

A final comment: There might be a drawback with the presentation given in Fig. 1 that it does not 
provide a symmetry between the two reference frames. Everything is seen in the perspective of one of 
them (K). However, we solve this in the next chapter by introducing an auxiliary reference frame. 

5 Using an auxiliary reference frame of symmetry 

In this Chapter we elaborate further on the special cases of eqs. (8) and (9), (or rather (16)). We still 
have two ‘main’ reference frames moving at relative speed, v. However, we now want to treat them 
symmetrically, and rather than referring to K and Kv., we will denote them K1 and K2. In addition, we 
introduce an auxiliary reference frame, denoted K, and we will use this new K as our primary reference 
frame, and so make our observations ‘in the perspective’ of K.. 

In order to get the speed between K1 and K2 to equal v (in a symmetric way), we let K1 have speed –w’ 
with respect to K, and let K2 have speed w’ with respect to K, where w’ is defined in (12). As explained 
in Section 3.4 this implies that the speed between K1 and K2 becomes v. 

Now we can apply the relation (16) between the auxiliary reference frame, K and the two reference 
frames K1 and K2. However, we must also specify the observational principle. 

First, we let the auxiliary reference frame operate as SC, and so both the secondary reference frames K1 
and K2 are MC; that is we write (16) as 

                                                      𝑡௩
ெ஼ඥ1 − (𝑣/𝑐)ଶ  =  𝑡ௌ஼,   both for v = -w’ and v = w’                 (17)                                          

In practice, this means that we always read the clocks of the three reference frames at the origin of the 
primary reference frame, K; (recall eq. (15) or consult Appendix A regarding notation). Thus, the MC 
references frames K1 and K2 at any moment use different clocks. The two relations in (17) now directly 
give 

                                                        𝑡ି௪ᇱ
ெ஼ = 𝑡௪ᇱ

ெ஼ = 𝑡ௌ஼/ඥ1 − (𝑤′/𝑐)ଶ                                               (18) 

The important thing here is that 𝑡ି௪ᇱ
ெ஼ = 𝑡௪ᇱ

ெ஼, the clock readings of K1 and K2 at the origin of K are 
identical. This of course is just the result obtained in Section 3.4, and therefore is of limited interest.  

However, if we now let the auxiliary reference frame operate as MC, and both K1 and K2 be SC, the 
result becomes more interesting. Then single clocks at the origins of K1 and K2 are at any time compared 
with various clocks along K. Then, instead of (17), (18) we get 

                                                    𝑡 ௩
ௌ஼/ඥ1 − (𝑣/𝑐)ଶ  =  𝑡ெ஼,   both for v = -w’ and v = w’                 (19) 

implying 

                                                       𝑡ି௪ᇱ
ௌ஼ = 𝑡௪ᇱ

ௌ஼ = 𝑡ெ஼ඥ1 − (𝑤′/𝑐)ଶ                                                  (20) 

Again, the most important result is that 𝑡ି௪ᇱ
ௌ஼ = 𝑡௪ᇱ

ௌ஼. These are now the ‘simultaneous’ clock readings at 
the origins of our two reference frames K1 and K2 (moving relative to each other at speed, v).  
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We illustrate all these results in Fig. 2, which provides an analogy to Fig. 1. While Fig. 1 presented time 
dilation between two reference frames, taking the perspective of one of them, Fig. 2 gives a symmetric 
picture with respect to two such reference frames. We do this by introducing a third, auxiliary reference 
frame, K, and take the perspective of this new one. So Fig. 2 gives a snapshot of the time measurements 
at an instant when all clocks on K read time t; see  horizontal line marked t 

 

char tFigure 2. Time measurements in the perspective of the auxiliary reference frame, K, where the reference 
frames K1 and K2 have speed -w’ and w’, respectively, relative to K.  

The parameter, w (horizontal axis) refers to the ‘positions’ (w =x/t) on the auxiliary reference frame, K. 
The reference frames, K1 and K2 move relative to K at speed –w’ and w’, respectively. Further, the lines 
𝑡ି௪ᇱ(𝑤) and 𝑡௪ᇱ(𝑤) give the time measured on clocks at K1 and K2, respectively; as a function of w 
(and time t) on K. So we observe that Fig. 2 applies the ‘generic’ notation, 𝑡௪ᇱ(𝑤), rather than tSC and 
tMC, as each reference frame can be seen both as SC and MC, depending on application; (again we refer 
to eqs. (14), (15) and Appendix A regarding this notation).  

We focus on three ‘positions’ on K, i.e. w equal to -w’, 0 and w’, respectively. These three values 
correspond to the origins of the reference frames, K1, K and K2, respectively.  

The letter a in the figure indicates the simultaneous clock readings of reference frames K1 and K2, 
observed at the origin of K, (see (18)). At this position the clocks on K1 and K2 show the same time, and 
are simultaneously located at the same location, w=0; so we are actually just referring to ‘basic 
simultaneity’. For these measurements the reference frame K is a SC system, and its clock will appear 
slower than the corresponding clocks on K1 and K2: we observe the line t falling below the point a. 

Next, the two points marked with b give identical time readings on K1 at the position –w’ and on K2 at 
the position w’. So in this situation the SC time readings at the origins of K1 and K2, that is, 𝑡ି௪ᇱ

ௌ஼ =

𝑡ି௪ᇲ(−𝑤′) and 𝑡௪ᇱ
ௌ஼ = 𝑡௪ᇲ(𝑤′), are identical according to (20). These origins have moved apart after 
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time 0; so the events of these two clock readings are not simultaneous, neither in the perspective of K1 
nor in that of K2.  

However, eq. (20) tells that in the perspective of the auxiliary reference frame we have two simultaneous 
events. Now simultaneity in the perspective of the auxiliary reference frame is a quite weak form of 
simultaneity. However, when we also have this complete symmetry of the positions of the observations, 
the result becomes interesting, (and not very surprising). Actually, we will postulate that this specific 
‘simultaneity at a distance (or ‘simultaneity by symmetry’) represents a valid form of simultaneity. In 
view of the required symmetry, this actually seems a rather week assumption; we could even consider 
it to be a consequence of this overall symmetry.  

In conclusion, this seems to be the most significant result obtained by using the auxiliary reference 
frame: We manage to establish a (kind of) simultaneity of events at K1 and K2 ‘at a distance’ (when they 
no longer are at the same position). We claim that it is a key question in a proper handling of time 
dilation to achieve this. See further discussions in the next chapter. 

Finally, in Fig. 2 we also see clock readings corresponding to the letter c. These exhibit the same type 
of symmetry/simultaneity as the points b, and the only difference is that the time readings at c will not 
correspond to the origins of the two main reference frames. A numerical example related to Fig. 2 is 
given in Appendix C, utilizing all points a, b and c.  

The observant reader might realize that the experimental set-up given here is well suited for handling 
the travelling twin paradox; which we discuss in the next chapter. 

6 The travelling twin  
We now utilize the framework of the previous chapters to analyse the so-called travelling twin example, 
which goes back to Langevin (1911). As stated for instance in Mermin (2005) the travelling twin 
paradox shall illustrate that two identical clocks, initially in the same place and reading the same time, 
can end up with different readings if they move apart from each other and then back together.  

6.1 The numerical example 

Mermin (2005, Chapter 10)  gives the following numerical example: “If one twin goes to a star 3 light 
years away in a super rocket that travels at 3/5 the speed of light, the journeys out and back each takes 

5 years in the frame of the earth. But since the slowing-down factor is ඥ1 − (3/5)ଶ = 4/5 the twin on 
the rocket will age only 4 years on the outward journey, and another 4 years on the return journey. When 
she gets back home, she will be 2 years younger than her stay-at-home sister, who has aged the full 10 
years.”  So the claim is that the referred difference in ageing occurs during the periods of the journey 
with a constant speed; i.e. under the conditions of the TSR, (ignoring the acceleration/deceleration 
periods). After all the whole argument relies on the Lorentz transformation! Thus, our discussion will 
restrict to the periods of constant velocity. Now throughout this chapter we let 

t = time on the clock of the earthbound twin 

tv = time on the clock of the travelling twin  

The distance between earth and the ‘star’ equals x = 3 light years, and the rocket has speed, v = (3/5)c, 

giving ඥ1 − (𝑣/𝑐)ଶ = 4/5. It follows that in the reference frame of the earth/star, the rocket reaches 
the star at time, t = x/v = 5 years. And the clock on the rocket is then located on xv = 0, corresponding 
to x = vt, and thus the Lorentz transformation gives that at the arrival at the star this clock reads 𝑡௩ =

𝑡 ∙ ඥ1 − (𝑣/𝑐)ଶ = 4 years; so obviously, tv/t =0.8 at the star (travelling twin); and the argument is also 
valid for the return travel. 

This is a rather convincing argument. It does follow from the Lorentz transformation that the returning 
clock shows 8 years when he/she returns. However, recalling the discussion of Chapters 3-5 the case is 
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perhaps not that straightforward, and since we have made no assumption of asymmetry regarding the 
periods of constant velocity, we seem to have a true paradox.  

Thus, we will not question the clock of the travelling twin, but take a new look at the clock of the 
earthbound twin, trying to look at the total situation. First, we observe - following the notation of Chapter 
4 - that the above presentation describes the travelling twin as a ‘SC system’, and thus the earthbound 
twin is located on a ‘MC system’. So, actually we could just look at eq. (16) to obtain the above result. 
It is well known (cf. Appendix B) that this is related to the length contraction: Seen from the perspective 
of the travelling twin, the distance between earth and the star does not equal x = 3 light years but just xv 
= 3∙0.8 = 2.4 light years; fully ‘explaining’ the reduction in travelling time. 

Now we have the question (which is frequently asked): Could we not similarly describe the situation as 
the travelling twin being located on a MC system, and the earthbound twin on a SC system (which would 
then have one clock located on the earth). If we insist on the symmetry of the situation, the answer must 
be yes. Thus, we simply assume that there is also a reference frame of the travelling twin with the 
required number of clocks. Say, he is equipped with rockets at appropriate and fixed distances from his 
own rocket, all moving with constant speed in the same direction as himself, and all equipped with a 
synchronized clock showing the same time, tv. Whether this is practically feasible is not relevant here. 
We are referring to the model of the TSR, and point out what this theory tells about clock readings, if 
we provide such an arrangement.  

By making this assumption, we could consider the earthbound twin as travelling back and forth along 
the reference frame of the travelling twin. This will now give that the one way travelling time of the 
earthbound twin is 4 years; while arguing as above the time passed for the travelling twin equals 5 years. 
(Actually, we have here described the essence of the Dingle’s question.)  Due to this symmetry of results, 
we find it required to proceed with the discussion. Now we provide both a lengthy and a short argument. 
We first take the lengthy. But those fully familiar with the discussion of Chapter 5 might go directly to 
Section 6.3. 

6.2 The lengthy argument 
We include this section to contemplate on the described phenomenon with an open mind, without 
directly utilizing the simultaneity result of the previous chapter. We first follow up on the possibility of 
treating the earthbound twin as a SC system. Thus, he just applies his clock at the earth for time 
comparisons with the various travelling clocks; (therefore the reference frame of the travelling twin is 
equipped with several clocks at various locations). So now tv = tSC and t = tMC, and eq. (16) gives the 
result, tv / t = 1/0.8 = 1.25 (for the observations on the earth) whatever instant we consider after departure. 
So, now of course it is the clock of the earthbound twin that always ‘goes slower’. 

We want the earthbound twin to make an observation of the clocks exactly ‘at the instant’ when his 
traveling twin arrives at the star. However, the core of the problem is that we actually do not fully know 
how to define this moment on the earth. The Lorentz transformation does not seem to give a definite 
answer regarding the simultaneity of events ‘at a distance’. So now let us consider various options 
regarding the moment at which he should choose for observing the clocks; (both his own clock 
positioned on the earth, and the one passing by belonging to the reference frame of his travelling twin): 

1. Perspective of the travelling twin. At the moment when the travelling twin arrives to the star, the 
clock on his rocket shows 4 years. Then all clocks on the reference frame of the travelling twin 
show time, tv = 4 years. So this is also the case for the clock which as this moment is passing the 
earth, i.e. at x = 0. Thus, the clock of the earthbound twin at this instant shows time t = tv∙0.8 = 3.2 
years. 

2. Perspective of the earth/star system. At the instant when the twin arrives at the star, the time of the 
earthbound system at this location equals t = 5 years. (The earthbound twin could verify this by 
also installing a clock at the ‘star’.) When he performs a clock comparison at the earth (at x = 0) at 
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this moment, it gives that tv = t∙1.25 =6.25 years for the travelling clock which passes the earth at 
this moment. 

3. Symmetric solution, (Perspective of the auxiliary system, cf. Ch. 5). The above two cases 
demonstrate that the two twins completely disagree about which event at the earth is simultaneous 
with the travelling twin’s arrival at the star; (which of course is obvious also from e.g. Figs. 1 and 
2). But now consider the moment when the clock on the earth shows t = 4 years and the passing 
‘travelling clock’ shows tv = t∙1.25 = 5 years. This instant obviously occurs in between the previous 
two moments, and represents a moment being completely symmetric to the event of the twin’s 
arrival at the star (regarding clock readings). And more important: It is the instant when the 
earthbound twin have carried out a ‘travel’ equivalent to the distance of the travelling twin. There 
is a complete symmetry! (From Ch. 5 we have that this corresponds to the perspective of the 
auxiliary reference frame; see Fig. 2). 

In summary, when the earthbound twin represents a ‘SC system’, and thus, carry out the clock 
comparison at the earth, we always get tv/t = 1.25; i.e. it is the clock on the earth that ‘goes slower’. We 
summarize the findings in Table 1. The three ‘perspectives’ in some way all ‘correspond to’ the arrival 
of the travelling twin at the star, and thus, demonstrate the problem we have to define the ‘simultaneous’ 
event on the earth.  

So how should we conclude regarding the time (clock readings) at the turning of the rocket? When now 
the information of Table 1 is available, let us assume that the earthbound twin is in charge. He could 
control his twin’s travel by sending a light signal to the star, which on arrival initiates the return of his 
travelling twin. How should he do this to be sure the signal arrives at the right moment? One possibility 
that he might consider is to send a signal that arrives at the star when his earthbound clock shows 5 years 
(i.e. perspective 2 in Table 1). The problem is that at this moment the clock on the travelling twin system 
passing the earth shows 6.25 years. Thus, one could suspect the travelling twin when he returns have 
aged 12.5 years (and not 8). The reason being that if he turns when his twin’s signal reaches the rocket, 
he may have travelled a longer distance than the intended 3 light years. A similar objection applies to 
using perspective 1.  

Actually, if the earthbound twin should be in charge, I guess the following strategy should be the most 
ingenious. Knowing about the length contraction, he will know that the travelling twin will observe a 
travelling distance to the star that equals just 2.4 light years. So the earthbound twin will adopt option 
3: he sends a signal ordering to turn, such that the travelling twin will receive this signal when the clock 
on his own earthbound system shows 4 years, (cf. ‘perspective 3’ of Table 1). In my view the only 
logical and consistent result is that this is the signal that reaches the travelling twin at the moment when 
he arrives at the star.  

Following this option, we conclude that at the local time when each of the twins now consider to be the 
turning of the rocket, the twins will agree on the following facts: Their own clock shows 4 years, and 
the adjacent clock on the other system shows 5 years. So by the direct measurements, they observe that 
the other twin at this moment apparently has aged more than himself by a factor 1.25. This gives a 
completely symmetric and consistent answer to the paradox.  

 

Table 1. Various clock readings (light years) at/on the earth, potentially ‘simultaneous to’ the 
arrival of the travelling twin at the star; (at that location we have tv = 4, t=5).  

Location of 
time reading 

‘Perspective’ 
1. Travelling twin 2. Earthbound twin 3. Symmetric 

Travelling twin system (tv) 4 6.25 5 
Earth/star system           (t) 3.2 5 4 
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Following this argument, the clocks of both twins show 4 years at the point of return. The same argument 
applies for the return travel, and we should conclude that by the reunion both clocks show 8 years. 

Another way to put it. We can choose between three options, (all in apparent agreement with the Lorentz 
transformation):  

1. The travelling twin being on a SC system giving travelling times 8 years for him and 10 for the 
earthbound, eq. (16);  

2. The earthbound twin is located on a SC system, giving 8 years for him and 10 for the travelling eq 
(16);  

3. The symmetric solution, eq. (20), treating both systems as SC, giving a total duration of 8 years for 
both twins.  

To me this choice is easy. In addition to the symmetry, it is an important point that options 1 and 2 just 
follow the clock of one twin, while we in option 3 follow both clocks. 

6.3          The short argument and further comments 

Another rather direct argument for our answer to the twin paradox goes as follows. By the start of the 
travel the two clocks are at the same location, and they are then synchronized. Afterwards they move 
relative to each other at constant speed, and for symmetry reasons we should then conclude that when 
the two clocks show the same time, then we have ‘simultaneous events’. In particular – as we have 
strongly argued – the event that the clock of the travelling shows 4 years (and he is going to return) is 
‘simultaneous with the event that the clock of the earthbound twin shows 4 years. So by return they have 
both aged 8 years. 

Finally, our argument could apply an auxiliary reference frame as introduced in Chapter 5. We directly 
apply the simultaneity in the perspective of the auxiliary system; that is ‘simultaneity at a distance’, cf. 
Fig. 2. According to this result, the event (tv = 4 years, t =5 years) at the star is simultaneous in this 
sense to the event (t = 4 years, tv = 5 years) on the earth. So by following both twins, and thus considering 
both systems as SC, the conclusion is that both twins have aged 4+4=8 years when they meet again. We 
follow both clocks in a symmetric way, from the moment when they depart (having basic simultaneity) 
to the moment when they are again united (again basic simultaneity). The time is reduced, compared to 
the result of 10 years, since SC observers experiencing a length contraction, cf. Appendix B. We also 
refer to Appendix C for a numerical calculation related to Figure 2, based on the above example. 

This result requires that the return travels for both twins have the same duration as their outward travel. 
However, since they are traveling the same distance, at exactly the same speed, giving the same length 
contraction, their clocks should measure the same duration for the outwards and return travels. 

One might still raise the question: since the simultaneity by the various perspectives obviously differ so 
wildly, why should we trust the perspective of the auxiliary reference frame introduced here, and not 
the result of any of the other reference frames that we could come up with? Our answer is simply that 
this is the only perspective exhibiting the desired symmetry between the two ‘main’ reference frames. 
Can we come up with an asymmetry here, requiring a certain asymmetry; we would choose an auxiliary 
system to accommodate for this. So far I have seen no such asymmetry. Actually, when we – as in the 
present work - focus on the full symmetry of the situation, it would be rather meaningless to claim that 
one ages slower than the other. 

There are some authors searching for asymmetry to explain a difference in ageing. For instance Feynman 
(2008), Smith (2015) argue that the acceleration required for the travelling twin when he turns, is the 
reason why we can distinguish between the two twins, thus, introducing an asymmetry, and therefore 
infer that one of them ages slower. Others introduce the concept of polar and equatorial clocks see 
references and discussion in McCausland (2011, Appendix II). I find these attempts rather ad hoc and 
not very convincing. 
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After all, the claimed magnitude of the difference in ageing is calculated using the Lorentz 
transformation, which actually exhibits symmetry. It seems that some try to defend an asymmetric 
solution to a symmetric mathematical framework by adding some apparently irrelevant assumptions 
outside the scope of the mathematical framework. Actually, it is my claim that - when treated correctly 
- the Lorentz transformation does give a symmetric result.    

So what is wrong with the standard argument of the twins’ ageing. It is obviously about simultaneity. 
The standard narrative seems implicitly to assume that the arrival of the twin at the star occurs 
‘simultaneously’ with the earthbound twin having aged 5 years. I disagree with this claim. The Lorentz 
transformation tells that the clock of the earthbound system, which is located at the ‘star’, shows 5 years 
by the arrival of the traveling twin. However, that does not imply that we can say that the earthbound 
twin has aged 5 years ‘at the same time’. In my understanding, one cannot infer such simultaneity from 
the TSR. 

A similar objection applies to the argumentation given in Smith (2015, Chapter 6), which also claims 
that the returning twin has actually aged less. However, the various arguments here starts out with 
statements like, ’He [the earthbound twin] thinks the whole trip took T seconds’, (where T corresponds 
to 5 years in our case), ‘the earth twin knows the outbound trip took T/2 seconds’, ‘the whole trip takes 
a time T’. So it seems he starts out by making an assumption that must lead to the desired conclusion, 
and we have a circle argument. A crucial question is the totality of information in principle available for 
the earthbound twin, as discussed in the previous section; cf. Table 1. Then we should not take for 
granted ‘what he thinks’, and he will not necessarily ‘know’ that the whole trip takes 10 years. As many 
authors discussing this he seems to lack a more holistic view, considering the various, apparently 
contradictory observations we might have. As we have seen, clock readings (time) depend on location, 
and simultaneity depends on the chosen perspective (reference frame). So we have to be careful, and the 
argumentation of Smith (2015) seems too simplistic.   

Now one could say that also the solution presented here is somewhat paradoxical as it involves 
apparently contradictory observations for events ‘at a distance’. However, this paradox is seemingly 
inherent in the Lorentz transformation. By accepting this as a model for how the world is ‘working’, I 
find the solution presented here consistent and logical. 

7 Summary and conclusions 
There still seems to be some open questions regarding the interpretation of time dilation between two 
reference frames moving at constant speed v relative to each other. We start out from the Lorentz 
transformation, and in order to have a precise basis for the discussions, make the following 
specifications: 

 There is a complete symmetry between the two reference frames. 

 Each reference frame is equipped with a number of synchronized clocks, (at any required position). 

 We may take the perspective of one reference frame and specify this to be the primary one; (being 
‘at rest’, and having the same clock reading at any location). 

 Basic simultaneity of events at different reference frames will refer to events occurring 
simultaneously at the same location, (‘simultaneity by location’). 

 We introduce an auxiliary reference frame, and in combination with symmetry considerations, use 
this to define ‘simultaneity at a distance’, or equivalently ‘simultaneity by symmetry’. 

 An investigation of time dilation includes a specification of the observational principle; that is, we 
specify the location of the clocks that are used for time comparisons between the reference frames. 

 In particular a reference frame may use ‘single clock’ (SC) observations; i.e. the same clock is used 
for time comparisons with the other reference frame. Similarly, in ‘multiple clock’ (MC) 
observations we apply several clocks along the x- axis of the reference frame. In situations that are 
more complex (cf. travelling twin), we may consider both types of observations on both frames. 
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  We do not use the expression ‘as seen’ (from the other reference frame). Observers (observational 
equipment) on both reference frames agree on the time readings; as they are carried out ‘on location’. 

 We do not describe time dilation by the expression ‘moving clock goes slower’. It is the 
observational principle that matters. 

The Lorentz transformation gives the ‘standard’ time dilation expression as a special case of, but we 
choose to write this as 

                                                                    𝑡ௌ஼ = 𝑡ெ஼ඥ1 − (𝑣/𝑐)ଶ                                                    

This is a mutual relation between the two reference frames, and tells that when we follow a single clock 
(SC) on one of the reference frames, this clock goes slower than the passing clocks (MC) on the other 

frame by a factor ඥ1 − (𝑣/𝑐)ଶ. This formulation is more informative than the potentially misleading 
phrase ‘moving clock goes slower’. There is no reason to see the single clock to be moving and the other 
clocks not. In general the specification of which system(s) act as SC and which act as MC is crucial for 
how to comprehend this phenomenon. 

We get another special case by permanently performing clock comparisons at the midpoint between the 
origins of the two reference frames; which gives identical clock readings. This observational principle 
is symmetric with respect to the two reference frames. So when we otherwise get different clock readings 
(in a symmetric situation), this is caused by an asymmetry in the chosen observational principle.  

Our main statement is that the Lorentz transformation indeed has a symmetric solution. This seems 
contrary to the views of many authors, and implicitly assumed in the so-called Dingle’s question (asking 
‘which of the two clocks goes more slowly’). Actually, both reference frames will observe that a single 
clock on the ‘other system’ goes slower. Thus, a search for the one reference frame where time goes 
slower is indeed in vain.  

We apply the given framework to analyse again the travelling twin paradox; (disregarding the 
acceleration periods), and present a symmetric experimental set-up, where we follow the single clocks 
of both twins. Then we arrive at the solution that the age of both twins is reduced by a 

factor ඥ1 − (𝑣/𝑐)ଶ, as compared to the travelling time calculated for a stationary reference frame. The 
case is that from any SC perspective one will observe a length contraction on the ‘other system’, and 
therefore also a time reduction. Thus, any single clock ‘goes slower’ when compared to the passing 
clocks on the ‘other system’. However, there is a symmetry! By specifying a reference frame for each 
twin, we see that they will both observe this phenomenon.  

Actually, under the conditions of complete symmetry it would be rather meaningless to claim a true time 
dilation, causing different ageing at the two reference frames. Therefore, it would be required to identify 
conditions (departures from symmetry) that could cause time dilation to represent a physical reality. I 
cannot see a proper identification of such conditions in the travelling twin example. In order to observe 
a difference in ageing, we probably have to introduce e.g. gravitation/acceleration effects, and cannot 
argue by the STR. 

The problem with standard arguments on the travelling twin paradox seems to be a failure to handle 
properly the ‘simultaneity at a distance’. If we want to specify a symmetric situation, also the definition 
of simultaneity (at a distance) should be symmetric. If the situation is not to be symmetric, the modelling 
should reflect this, without introducing some ad hoc assumptions (to arrive at an asymmetric solution). 
The present paper insists on symmetry, and we introduce a special auxiliary reference frame to obtain 
simultaneity at a distance (in a symmetric way).  

Such symmetry considerations should generally be valid, when we deal with phenomena described by 
the TSR. Thus, it should affect our understanding of time in the context of TSR.  

Another comment regarding our findings: An observer moving relative to a reference frame where an 
event takes place could be a rather unreliable observer. Various observational principles will provide 
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him with different results. Thus, one should be careful to let such an ‘outside’ observer define the 
phenomenon, without taking an overall view and properly consider his own position.  
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Appendix A Some notation  
We apply a diverse notation regarding time. This Appendix provides a summary. 

1. Time on the primary reference frame; also used when we do not want to specify whether we 
refer to a primary or a secondary system: 

t Generic time; being constant all over the reference frame. 

tSC Clock reading at the origin (x=0) of this reference frame; thus, applying only a single clock. 

tMC Clock reading at the position corresponding to the origin of the ‘other’ (secondary) reference 
frame; thus, applying several clocks. 

2. Time on the secondary reference frame, moving relative to the primary at speed, v: 

tv Generic time on this system; without specifying the position 
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𝑡௩(𝑤) Time at the position which corresponds to w =x/t, (where x is position on the primary system). 

𝑡௩
ௌ஼ =  𝑡௩(𝑣) Clock reading at the origin of this reference frame; thus, applying only a single clock. 

𝑡௩
ெ஼ =  𝑡௩(0) Clock reading at the position corresponding to the origin of the ‘other’ (primary) 

reference frame; thus, applying several clocks. 

 
Appendix B A note on length contraction  
The interpretation of x and xv in (1) and (2) is rather straightforward. The position xv on Kv corresponds 
exactly to the position x on K at an instant where the clock located at xv shows time tv and the clock at x 
shows time t.  
This means that x and xv could have the following interpretation. We again consider a ‘SC system’, Kv 
moving at relative speed along a system, K. Now let a distance, x be marked out on K in the same 
direction as this movement. As known, the time measured on Kv for its single clock to pass this distance 
will imply that – as measured from Kv – the length of the distance x equals 

                                                              𝑥௩
ௌ஼ =  𝑥 ට1 − (

௩

௖
)ଶ                                                              (B.1) 

So now 𝑥௩
ௌ஼ equals the length of x on K ‘as seen from’ Kv. (In order to utilize the clock reading to observe 

𝑥௩
ௌ஼ one first have to establish the relative speed, v, between the reference frames.) Therefore, this length 

contraction (B.1) corresponds exactly to the time dilation observed for a single clock moving relative to 
a fixed distance on the other reference frame. Thus, anyone on Kv observes the distance travelled to be 
shorter, and so the time required to travel this distance will be observed to be shorter (both on K and Kv). 
Therefore, the length contraction and time dilation are indeed two aspects of the same phenomenon. 

 
Appendix C   Example of numerical calculations 
Now to familiarize a little further with the argument regarding the ‘simultaneity at a distance’ (in the 
perspective of the auxiliary reference frame) we elaborate on the numerical example in Section 6. As an 
illustration, we use Fig. 2, and consider this to represent the situation when the travelling twin has 
reached his point of destination. From the above numerical values, we will from (12) get w’ = c/3 (= 
5v/9), being the speed between the auxiliary system and a twin. Further, we get that the ‘slowing down 

factor’ related to this speed equals ඥ1 − (𝑤′/𝑐)ଶ =
ଶ

ଷ
√2 ≈ 0.94. Using this, the time readings of the 

three reference frames are: 

i. The auxiliary reference frame (primary). Time is constant, t, (see horizontal line in Fig. 2). 

ii. Travelling twin. Time is a function of w: 𝑡ି௪ᇱ(𝑤) = (√2/4) ∙ (3 − 𝑤/𝑐)𝑡. 

iii. Earthbound twin. Time is a function of w: 𝑡௪ᇱ(𝑤) = (√2/4) ∙ (3 + 𝑤/𝑐)𝑡. 

In Fig. 2 we now let the observational point b have value 4 years, (i.e. the clock readings of the travelling 

twin at his arrival), corresponding to w = w’ = c/3.  This gives t = 3√2 ≈ 4.24 years. Inserting this 
above, we in Fig.2 also get that point a corresponds to 4.5 years and point c corresponds to 5 years. So 
all values are in full agreement with those used in the example. 

The time t = 3√2 ≈ 4.24 years of the auxiliary system seems less relevant. The main role of the auxiliary 
reference frame is to allow us to treat the reference frames of both twins as SC, and further to establish 
‘simultaneity at a distance’ with respect to these. 

 


