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Abstract. We investigate time dilation under the conditions of the theory of special relativity (TSR). 
The arguments utilise variants of the Lorentz transformation and a direct comparison of clock readings 
at identical positions. The observations of time depends on (the location of) the clocks used for time 
registrations we investigate various observational principles. Three principles are in focus: Reference 
frame applying a single clock (SC); reference frame applying multiple clocks (MC); and the completely 
symmetric situation between reference frames. Further, the approach introduces an auxiliary reference 
frame and thereby gives a means to define simultaneity at different locations. We apply the approach to 
present a thorough discussion of the travelling twin example.  

Key words: Time dilation, Lorentz transformation; observational principle; positional time; auxiliary 
reference frame; simultaneity by symmetry; travelling twin. 

1 Introduction and basic assumptions 
The present work explores the concept of time dilation within the theory of special relativity (TSR). 
Chapter 2 presents an abridged and modified version of material previously posted on ViXra, see [1], 
[2]. We pinpoint the importance of the observational principle, that is, the specification of which clocks 
to apply for the required time comparisons, and present a unified framework for the various 
observational principles. 

Further, Chapter 3 gives a modified version of the Lorentz transformation. Overall, the approach 
provides a tool for investigating time dilation within the framework of the TSR. In Chapter 4 we apply 
the results to give a lengthy discussion on the ‘travelling twin’ example; claiming a concise conclusion 
regarding the twins’ ages.  

1.1 Background and problem formulation 

 First, I find the literature somewhat ambiguous regarding the very interpretation of time dilation. For 
instance, how should we interpret the common statement: 'Moving clock goes slower'?  Many authors 
apply the expression 'as seen' by the observer on the other reference system, perhaps indicating that it is 
an apparent effect, not a physical reality, but without elaborating on the interpretation of 'as seen'. Others 
stress that 'everything goes slower' on the 'moving system', not only the clocks; truly stating that the 
time dilation represents a physical reality also under the conditions of TSR (i.e. no gravitation etc.). On 
the other side Giulini [3] in Section 3.3 of his book states: ‘Moving clocks slow down’ is ‘potentially 
misleading and should not be taken too literally’. However, the expression ‘not be taken too literally’ is 
not very precise. So in what sense – and under which precise conditions – is time dilation to be 
considered a true physical phenomenon? 

We stress that rather than specifying one single time dilation formula – which is typically based on a 
somewhat arbitrary definition of simultaneity – we will in the present work look at the total picture of 
all expressions for time dilation.  

Definition of simultaneity becomes crucial when reference frames are moving relative to each other, and 
the convention seems to define simultaneity across reference frames by use of light rays. However, the 
present approach starts out to consider simultaneity of events, which occur at the same location and 
time. Each reference frame has a set of calibrated clocks, located at virtually any position, and in 
principle, we can compare the clocks of the two reference frames at any position. 

The question of symmetry is also essential. The TSR essentially describes a symmetric situation for the 
two systems/observers moving relative to each other, but it seems the literature does not always utilize 
this. Moreover, some references describe situations apparently involving some asymmetry. The present 
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work intends to account for the symmetry. Further, we introduces the concept of ‘simultaneity by 
symmetry’.  

The considerations of the present work are mainly mathematical, and we essentially discusses rather 
well known results. However, I believe that the presentation deviates from the main narratives on the 
topic. In particular, rather than focusing on a specific time dilation formula – which is often based on a 
somewhat arbitrary definition of simultaneity – we will in the present work look at the total picture of 
all expressions for time dilation.  

1.2 Basic assumptions and some notation 
The basis for the discussions is the standard theoretical experiment, two co-ordinate systems (reference 
frames), K and Kv moving relative to each other at speed, v. We investigate the relation between space 
and time parameters, (x, t) on system K and the corresponding parameters (xv, tv) on the system Kv. Thus, 
we restrict to consider just one space co-ordinate, (x-axis) and will base the discussions on the following 
specifications: 

 There is a complete symmetry between the two co-ordinate systems, K and Kv; the systems being 
identical in all respects.  

 On both reference frames there is an arbitrary number of identical, synchronized clocks, located at 
any positions where it is required to measure time.  

 At time t = tv = 0, clocks at the location x = 0 on K and location xv = 0 on Kv are synchronized. This 
represents the defining starting point, from which all events are measured: the ‘point of initiation’. 

 When we consider two different reference system, simultaneity of events will mean that they occur 
at the same time and at the same location So if clocks are on different reference frames, we only 
compare them at an instant when they are at the same location. Note that we will relax on this 
condition in Chapter 3 by introducing the concept ‘simultaneity by symmetry’. 

 We will choose the perspective of one of the systems, (here usually K), and refer to this as the primary 
system. The time on this ‘primary’ system is at any position, x given as a constant, t(x) ≡ t, 
independent of x, (all clocks being synchronized). In contrast, at a certain time, t on the primary 
system, the observed time, tv on the other (‘secondary') system(s), (here Kv), will depend on the 
location where the time reading is carried out. When there are several reference frames, we are free 
to choose any one as the primary. 

 We use a notation where SC refers to a reference frame utilizing a ‘single clock’ (or ‘same clock’), 
for the time comparisons with other reference frames, and MC refers to a reference frame utilizing 
‘multiple’ (several) clocks for time comparisons.  

2 The Lorentz transformation and special cases 

We here present the Lorentz transformation, and further investigate a variant of this. 

2.1 The standard formulation 
The Lorentz transformation represents the fundament for our discussion of time dilation. Note that we 
introduce a change of the standard notation. Rather than t' and x' we will write tv and xv. Then the Lorentz 
transformation takes the form 

                                                                       𝑡௩ =  
௧ି

ೡ

೎మ௫

ටଵି(
ೡ

೎
)మ

                                                                    (1) 

                                                                      𝑥௩ =  
௫ି௩௧

ටଵି(
ೡ

೎
)మ

                                                                    (2) 

Thus the position, xv corresponds to (has the same location as) x when the clocks at this positions show 
time t and tv, respectively.  The formulas include the length contraction along the x-axis (Lorentz factor): 
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                                                                     𝑘௫ = ට1 − (
௩

௖
)ଶ                                                                (3) 

So this transformation relates simultaneous time readings, t and tv performed at identical locations x on 
K and xv on Kv.  

2.2 An alternative formulation 
Taking the perspective of K, we may at any time t choose an ‘observational position’ equal to x = wt, 
(for an arbitrarily chosen w). By inserting x = wt in (1) we directly get that time on Kv at this position 
equals: 

                                                                  𝑡௩(𝑤) =
ଵି 

ೡೢ

೎మ

ටଵି(
ೡ

೎
)మ

𝑡                                                                 (4) 

Thus to pinpoint the dependence on w we here -and when appropriate- write tv(w) rather than tv. The 
new time dilation formula (4) will – for a given time, t, on the primary system, K - give the time, 𝑡௩(𝑤) 
on the secondary system, Kv, as a linear, decreasing function of w; cf. Fig. 1 at the end of the paper; (and 
a more complete figure in [1] and [2]). 

Now we, similarly, define wv so that xv = wv∙tv = wv∙tv(w). By inserting both x = wt and xv = wv∙tv, in (2), 
we will after some manipulations obtain 

                                                                      𝑤௩ =  
௫ೡ

௧ೡ(௪)
=

௪ି௩

ଵି
ೢ

೎
∙
ೡ

೎

                                                                        (5) 

So equations (4), (5) represent the alternative version of Lorentz transformation, here expressed by 
parameters (t, w) rather than (t, x). Next, we introduce 

                                                             𝛾௩(𝑤) = (1 − 
௩௪

௖మ ) /ට1 − (
௩

௖
)ଶ                                                    (6) 

as the ‘generalized time dilation factor’, valid for any location, (any w=x/t), i.e. any observational 
principle. That is, we can write (4) as 

𝑡௩(𝑤) = 𝛾௩(𝑤) 𝑡. 

Note that we do not need to think of w as a velocity; rather as a way to specify a certain position x = wt, 
representing the location of the clocks being applied at time t. However, we will later see that it can also 
be fruitful to interpret w as the velocity of a third ‘observational reference frame’. 

2.3 Special cases 
Focusing on time, (4) there are various interesting special cases. First, if a specific clock located at xv = 
0 on Kv is compared with various clocks on K, (being at same location), these clocks must have position 
x = vt, and thus we choose w=v and get the relation  

                                                               𝑡௩(𝑣) = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                           (7) 

Further, when a specific clock at position x = 0, on K is used for comparisons with various clocks on Kv, 
we must choose w=0 and get 

                                                               𝑡௩(0) = 𝑡 /ඥ1 − (𝑣/𝑐)ଶ                                                          (8)   

as the relation between t and tv.  Two other special cases are obtained by choosing w = c and w = -c. 
First 

                                                           𝑡௩(𝑐)  =
ଵି௩/௖

ටଵି(
ೡ

೎
)మ

𝑡 =
ඥଵି௩/௖

ඥଵା௩/௖
𝑡                                                 (9) 
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For observing this we could apply two clocks on both system: one at x = 0 and one at x = ct on K; and 
similarly, one at xv = 0 and one at xv = ctv on Kv.  

So eq. (9) is valid when the light ray is emitted in the positive direction (x > 0); i.e. c having the same 
direction as the velocity v, as seen from K. In the negative direction, (choosing x = - ct) we similarly get 
another well-known result: 

                                                          𝑡௩(−𝑐) =
ଵା௩/௖

ටଵି(
ೡ

೎
)మ

𝑡 =  
ඥଵା௩/௖

ඥଵି௩/௖
𝑡                                               (10) 

The principles (9), (10) seems essentially to be applied for two ways light flashes (‘round trips’), e.g. 
see [1]. We return to a fifth special case in Section 2.5. 

2.4  “The moving clock”. SC vs. MC 
The two special cases, (7) and (8) require special attention.  

In (7), the clock at xv ≡ 0 on Kv passes a position, x =vt (on K) at time t. We now let SC indicate a 
reference frame utilizing a single (same) clock for time comparisons, and if we write 𝑡௩(𝑣) = 𝑡௩

ௌ஼  eq. 
(7) becomes 

            𝑡௩
ௌ஼ =  𝑡 ට1 − (

௩

௖
)ଶ                                                              

In (8) we follow a clock at x ≡ 0 on K, and at this position we make comparisons with various clocks on 
Kv as they pass along. Now we let MC indicate a reference frame utilizing multiple clocks, and so by 
writing 𝑡௩(0) = 𝑡௩

ெ஼ we get: 

           𝑡௩
ெ஼ =  

ଵ

ටଵି(
ೡ

೎
)మ

𝑡                                                                  

Now when Kv is SC then K becomes MC and vie versa.  Thus the two symmetric results, (7), (8) could 
be presented in a compact form as 

                                                         𝑡ௌ஼ = 𝑡ெ஼ඥ1 − (𝑣/𝑐)ଶ                                                              (11) 

So in this notation tMC is time measured on a MC reference frame KMC, and we let 𝑥ெ஼ be the position 

of measurements on this system. Thus, there are two clocks on KMC, located at  𝑥ெ஼ = 0 and  𝑥ெ஼= 

v 𝑡ெ஼, respectively. The SC reference frame, KSC has time, tSC, and we utilizes just one clock on its 

system, located at  𝑥ௌ஼ = 0.   

In (11) we could add a subscript, v at either of the two time parameters, (as done above) to indicate the 
secondary system. Actually, we might say that the two special cases (7), (8) in a way represent the same 
observational approach. The only difference between these cases is the choice of which of the systems 
is SC, and which is MC, and so they are more effectively expressed by eq. (11). 

Some comments are relevant here. First we stress that observers on both reference frames agree on this 
result (11). Thus, I find it rather misleading here to apply the phrase 'as seen' regarding the clock reading 
on ‘the other’ system; which is a formulation used by some authors. The time readings are objective, 
and all observers (observational equipment) on the location in question will 'see' the same thing. The 
main point is rather that observers at different reference frames will not agree regarding simultaneity of 
events.  

Secondly, we have the formulation ‘moving clock goes slower’. It is true that an observer on a reference 
frame (KMC), observing a specific clock (on KSC) passing by, will see this clock going slower when it is 
compared to his own clocks. So in a certain sense this confirms the standard phrase ‘moving clock goes 
slower’. However, we could equally well take the perspective of the single clock, considering this to be 
at rest, implying that the clocks on KMC are moving. The point is definitely not that clock(s) on KSC are 
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moving and clocks on KMC are not. Rather, we could look at the symmetry of the situation: We are 
starting out with two clocks at origin, moving relative to each other. Then the decision on which of the 
two clocks we should compare with a clock on the other system, (a decision that can be interchanged at 
random!), will decide which of the two clocks comes out as the fast one!  

So, first of all, none of the clocks are more moving than the other. Further, it is the observational 
principle that decides which of the two clocks initially at the origin, which we observe to move slower. 
Therefore I find the talk about the ‘moving clock’ rather misleading. 

This choice on which reference frame shall apply just a single clock is obviously crucial, and it 
introduces an asymmetry between the two reference frames.  

2.5  The symmetric case 
Now returning to our version of the Lorentz transformation, (4), (5), we may ask which value of w (and 
thus wv) would results in tv(w)= t. we easily derive that this equality is obtained by choosing    

                                                  𝑤 = 𝑤′ =
௖మ

௩
ቆ1 − ට1 − ቀ

௩

௖
ቁ

ଶ
ቇ =  

௩

ଵାඥଵି(௩/௖)మ
                                      (12) 

By this choice of w we further get wv = -w’. This means that if we consistently consider the positions 
where simultaneously x = w’t and xv = -w’tv = - w’t, then no time dilation will be observed at these 
positions. In other words 

                                                                         𝑡௩(𝑤′) ≡ 𝑡                                                                             (13) 

At this position xv = -x, and we consider this to be the midpoint between the origins of the two reference 
frames; in total providing a nice symmetry. Observe that when we choose this observational principle, 
then absolutely everything is symmetric, and it should be no surprise that this gives tv = t.  

Note that we could give w’ a nice interpretation. Now assume that there is also a third reference frame. 
This moves relative to the reference frame K with velocity, v1, and relative to Kv with velocity, v2. Then, 
according to standard results of TSR (cf. [1]) – expressed by v1 and v2 - the relative velocity between K 
and Kv is given by the formula 

𝑣ଶ − 𝑣ଵ

1 −
𝑣ଵ
𝑐

∙
𝑣ଶ
𝑐

 

If we here insert v1 = - w’ and v2 = w’, where w’ is given by (12), then we obtain the (desired) result v. 
So if both K and Kv move relative to this third reference frame at speed, w’ (in opposite direction), then 
the velocity between K and Kv equals v. (So when K and Kv have speed ±w’ relative to this new frame, 
then the two w’ actually ‘add up’ to the speed v between K and Kv.) 

We mention that the third reference frame we introduced here is a SC system; (there is a single 
observational point applied on this). For our purpose, we actually do not need a clock at this position; 
we just observe the clock readings on K and Kv. However, both K and Kv become MC systems; so a 
series of clocks are required for these clock comparisons. We return to this in Chapter 3. 

In summary, we consider the observational principles of Sections 2.4 and 2.5 - specified by eq. (11) and 
eqs. (12) - (13), respectively - as the main observational principles. 

3 Introducing an auxiliary reference frame 
In this section we elaborate further on the special cases represented by (7), (8), (11); but for completeness 
first present a short comment on length contraction which is so closely related to the time dilation. 

3.1 Length contraction  
The interpretation of x and xv in (1) and (2) is rather straightforward. The position xv on Kv corresponds 
exactly to the position x on K at an instant where the clock located at xv shows time tv and the clock at x 
shows time t.  
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However, x and xv could also have a slightly different interpretation. Consider again a ‘SC system’, Kv 
moving at relative speed along a system, K. Now let a distance, x be marked out on K in the same 
direction as this movement. As known, the time measured on Kv for its single clock to pass this distance 
will imply that – as measured from Kv – the length of the distance x equals 

                                                              𝑥௩
ௌ஼ =  𝑥 ට1 − (

௩

௖
)ଶ                                                                (14) 

So now 𝑥௩
ௌ஼ equals the length of x on K ‘as seen from’ Kv. (In order to utilize the clock reading to observe 

𝑥௩
ௌ஼ one first have to establish the relative speed, v, between the reference frames.) Therefore, this length 

contraction (14) corresponds exactly to the time dilation observed for a single clock moving relative to 
a fixed distance on the other reference frame. Thus, anyone on Kv observes the distance travelled to be 
shorter, and so the required time to travel this distance will be observed to be shorter (both on K and Kv). 
Therefore, the length contraction and time dilation are indeed two aspects of the same phenomenon. 

3.2 An auxiliary reference frame having a fixed point of observation (‘SC system’) 
We go back to relations (7), (8), and the combined result, (11). These treat the case where we follow 
one clock on a SC system, consistently comparing it with the adjacent clock on the other system (MC), 
which thus, applies several clocks. One way to write this result is: 

                                                               𝑡௩
ெ஼ඥ1 − (𝑣/𝑐)ଶ  =  𝑡ௌ஼                                                        

(the notation here indicating that we see the SC reference frame as the ‘primary system’). Now consider 
a slightly different situation. If we have two systems, K1 and K2 moving at relative speeds, v1 and v2 with 
respect to a new auxiliary reference frame denoted KSC, then we similarly have 

                                                        𝑡௩೔
ெ஼ඥ1 − (𝑣௜/𝑐)ଶ  =  𝑡ௌ஼,  i = 1, 2                                               (15) 

So as the notation indicates, here the auxiliary system, KSC is SC and K1 and K2 are MC, and we specify 
a single point on the auxiliary reference frame, where we carry out all clock readings/comparisons on 
K1 and K2. We can of course eliminate tSC (i.e. time on the auxiliary system) from these two relations in 
(15), and then obtain 

                                                                𝑡௩మ
ெ஼ =  

ඥଵି(௩భ/௖)మ

ඥଵି(௩మ/௖)మ
𝑡௩భ

ெ஼                                                             (16) 

In summary, v1 and v2 are the velocities of the two MC reference frames K1 and K2 relative to a common 
system, KSC, and (16) now gives the relation between the times of these two reference frame measured 
at a fixed observational point on this common auxiliary system, KSC. Here, the special case, v1 = 0, 
reduces to the standard situations, (7). (When v1 = 0 the observational point on KSC is at rest with respect 
to K1, and thus K1 reduces to a SC system in this case.) Further, the special case v2 = 0 reduces to the 
other standard situation, (8). 

Of course the two times, 𝑡௩೔
ெ஼ of (16) are identical when v1 = v2. Further, also when we insert v2 = - v1 we 

obviously get the same time reading, i.e. 

                                                                         𝑡௩భ
ெ஼ = 𝑡ି௩భ

ெ஼                                                                   (17) 

In particular, we can choose v1 = - w’ in eq. (17), and in that case the velocity between K1 and K2 becomes 
v, (see discussion in Section 2.5). So by this choice of v1 we get the symmetric case (13) as a special 
case of (17): 

                                                                        𝑡ି௪ᇱ
ெ஼ = 𝑡௪ᇱ

ெ஼                                                                  (18) 

Further, eq. (15) also gives the relation to the clock reading of the auxiliary reference frame: 

                                                            𝑡௪ᇱ
ெ஼ =  𝑡ௌ஼/ඥ1 − (𝑤′/𝑐)ଶ                                                      (19) 
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Fig. 2a illustrates the clock readings of the three reference frames. This demonstrates that the clocks on 
K1 and K2, which show the same time, are those clocks, which simultaneously are located at the midpoint 
in between the origins of K1 and K2.  

Fig. 3 is a generalization of Fig. 1, presenting the time readings as a function of position w on the SC 
auxiliary system (K). We indicates the three simultaneous clock readings of (18), (19) with a circle 
marked a.  

We conclude this section by pointing out that eq. (16) includes all the three major special cases of time 
dilation, referred in Chapter 2. In spite of this, (16) is not quite as general as the Lorentz transformation, 
(4). But using (16) in combination with the sum of velocity formula of TSR, i.e. (u+v)/(1+uv/c2), we 
can actually derive (4). Eq. (16) has one advantage, as compared to (4). It gives the relation between the 
time measurements of the two reference frames at a specified position, but the formula is completely 
independent of the position, x (or equivalently of w = x/t). 

3.3 The auxiliary reference frame being a MC system 
In Section 3.2 we applied a fixed position on an auxiliary reference frame KSC to observe time on the 
two reference frames K1 and K2, and thus these two reference frames both had to be MC. Of course we 
could also do it the other way. The two reference frames K1 and K2 could both be SC, and the auxiliary 
system would thus be MC. Now this means, that one is able to ‘follow’ single clocks on K1 and K2, and 
at any time compare these clocks with clocks on KMC (wherever they are located). In analogy with (15) 
and (16) we now get  

                                                      𝑡௩೔
ௌ஼/ඥ1 − (𝑣௜/𝑐)ଶ  =  𝑡ெ஼,  i = 1, 2                                               (20) 

                                                                𝑡௩మ
ௌ஼ =  

ඥଵି(௩మ/௖)మ

ඥଵି(௩భ/௖)మ
𝑡௩భ

ௌ஼                                                              (21) 

Again the observational principles (7) and (8) come out as special cases. Also a variant of the symmetric 
case appears by choosing v2 = - v1, and again we can choose v1 = - w’ to achieve the relative velocity, v, 
between K1 and K2. Thus, the analogy to (18), (19) equals 

                                                       𝑡ି௪ᇱ
ௌ஼ = 𝑡௪ᇱ

ௌ஼ = 𝑡ெ஼ඥ1 − (𝑤′/𝑐)ଶ                                                  (22) 

So here we specify one position on K1 and one on K2 (i.e. the origins of these systems), and all clock 
comparisons with the auxiliary system are carried out at these two locations, see Fig. 2.b, and circles 
marked b in Fig. 3.  

Thus, the auxiliary reference frame is now a MC system with time, tMC, and the result, (22) opens for a 
definition of ‘simultaneity’ at different – but symmetric – locations. Here 𝑡ି௪ᇱ

ௌ஼  and 𝑡௪ᇱ
ௌ஼  are the times at 

the origin of K1 and K2, and as these origins have moved apart after time 0, we would not consider these 
clocks to give the same time. If the clock at the origin of K1 is compared with the adjacent one on K2, 
the reading would be according to eq. (4). Of course exactly the same holds when we compare the clock 
at the origin of K2 with the adjacent clock at K1.  

However, eq. (22) tells that when we rather compare both the clocks at the origin with the clock on the 
auxiliary system, which at the time is at the same location, then the time readings are identical, (and 
further, the clock reading at the time on the auxiliary system is also given in (22)). This suggests that in 
a certain sense we could consider any time (𝑡ି௪ᇱ

ௌ஼ ) at the origin of K1 to be simultaneous with the same 
time (𝑡௪ᇱ

ௌ஼) observed at the origin of K2.  

Due to symmetry reasons, the result is not surprising. And this symmetry does not restrict to the origins 
of the two main reference frames! 

3.4 The main cases of simultaneous time readings 
In Chapters 2 and 3 we have now discussed a large number of relations for the simultaneous time 
readings of two reference frames. Eq, (4) gives our preferred expression for the general expression for 
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time readings at any location. However, as we have pointed out, some special cases are of particular 
interest, and we once more highlight these.  

First, if we have single clock (SC) on one of the reference frames, which at any location can be compared 
with a clock at that location on the other (MC) reference frame, then the relation between the clock 
readings are given by eq. (11); which we can see as the ‘standard’ time dilation formula. We may see 
either of the two systems as the primary system, in a way giving two time dilation formulas, cf. Fig. 1. 

Secondly, if we consistently use the midpoint between the origins of the two reference frames as the 
observational position we get that identical values of time, t for the two systems, cf. (13).In this case, 
obviously both reference frames must be MC. We studied the same situation in Section 3.2, there also 
introducing an auxiliary reference frame at speed ± w’ with respect to our main reference frames, cf. 
(18). In this situation the auxiliary system has to be SC. 

In these cases, the simultaneity refers to same location. However, with the use of this auxiliary system 
we also introduced a new simultaneity -‘at distant’- in Section3.3. We consider events occurring at 
positions being symmetric to the origin of the auxiliary reference frame and occurring at the same time 
according to the auxiliary system to be simultaneous, cf. (22). Now both the main reference frames are 
SC, (with one clock located at its origin); while the auxiliary frame is MC (if we need the time on this). 

We illustrate the use of an auxiliary system in Figs. 2 and 3. The position marked a corresponds to the 
midpoint between the origins of the two main reference frames, and positions b correspond to the origins 
of the same two systems. We should note that these figures are illustrations only. By discussing several 
perspectives in the same figure, they do not capture the full complexity regarding the lack of simultaneity 
(at different locations). A three dimensional figure would probably be required to capture that. 

We point at the last approach here as particularly useful. This has two clocks at two different reference 
frames, at time 0 being synchronized at the same location, and we then have the opportunity to claim 
simultaneity of clock readings also at a later instant, when they are no longer at the same position. And 
this comparison give the same time on both clocks! However, we note that if we compare the clock at 
origin with the clock at the same location on the other reference frame we of course get quite another 
result. Then we are back to the standard time dilation formula, (11).  

4 The travelling twin  
We now utilize the above approach for analysing time dilation to treat the so-called travelling twin 
example. As stated for instance in [4] the travelling twin paradox shall illustrate that two identical clocks, 
initially in the same place and reading the same time, can end up with different readings if they move 
apart from each other and then back together.  

4.1 The numerical example 
Reference [4] also gives the following numerical example, (Chapter 10): “If one twin goes to a star 3 
light years away in a super rocket that travels at 3/5 the speed of light, the journeys out and back each 

takes 5 years in the frame of the earth. But since the slowing-down factor is ඥ1 − (3/5)ଶ = 4/5 the 
twin on the rocket will age only 4 years on the outward journey, and another 4 years on the return 
journey. When she gets back home, she will be 2 years younger than her stay-at-home sister, who has 
aged the full 10 years.”  So the claim is that the referred difference in ageing occurs during the periods 
of the journey with a constant speed; i.e. under the conditions of the TSR, (ignoring the 
acceleration/deceleration periods). After all the whole argument relies on the Lorentz transformation! 
Thus, our discussion will fully restrict to the periods of constant velocity. Now throughout this chapter 

t = time on clock of earthbound twin 

tv = time on clock of travelling twin  

The distance between earth and the ‘star’ equals x = 3 light years, and the rocket has speed, v = (3/5)c, 

giving ඥ1 − (𝑣/𝑐)ଶ = 4/5. It follows that in the reference frame of the earth/star, the rocket reaches 
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the star at time, t = x/v = 5 years. And the clock on the rocket is then located on xv = 0, corresponding 
to x = vt, and thus the Lorentz transformation gives that at the arrival at the star this clock reads 𝑡௩ =

𝑡 ∙ ඥ1 − (𝑣/𝑐)ଶ = 4 years; so obviously, tv/t =0.8 at the star (travelling twin); and the argument is also 
valid for the return travel. 

This is a rather convincing argument. It does follow from the Lorentz transformation that the returning 
clock shows 8 years when he/she returns. However, recalling the discussion of Chapters 2-3 the case is 
perhaps not that straightforward, and since we have made no assumption of asymmetry regarding the 
periods of constant velocity, we seem to have a true paradox.  

Thus, we will not question the clock of the travelling twin, but take a new look at the clock of the 
earthbound twin, trying to look at the total situation. First, we observe - following the notation of Chapter 
3 - that the above presentation describes the travelling twin as a ‘SC system’, and so the earthbound twin 
is located on a ‘MC system’. So, actually we could just look at eq. (11) to obtain the above result. (And 
as observed in Section 3.1 this is related to the length contraction: Seen from the perspective of the 
travelling twin, the distance between earth and the star does not equal x = 3 light years but just xv = 3∙0.8 
= 2.4 light years; fully ‘explaining’ the reduction in travelling time.) 

Now the question is: Could we not similarly describe the situation as the travelling twin being located 
on a MC system, and the earthbound twin on a SC system (which would then be the clock located on 
the earth). If we insist on the symmetry of the situation, the answer must be yes. Thus, we simply assume 
that there is also a reference frame of the travelling twin with the required number of clocks. Say, he is 
equipped with rockets at appropriate and fixed distances from his own rocket, all moving with constant 
speed in the same direction as himself, and all equipped with a synchronized clock showing the same 
time, tv. Whether this is practically feasible is not relevant here. We are referring to the model of the 
TSR, and point out what this theory tells about clock readings, if we provide such an arrangement.  

By making this assumption, we could consider the earthbound twin as travelling back and forth along 
the reference frame of the travelling twin. This will now give that the one way ‘travelling time’ of the 
earthbound twin equals 4 years; while the time required for the travelling twin is 5 years. Due to this 
symmetry of results, we find it required to give a further discussion. There is both a lengthy and a short 
argument on this paradox. We first take the lengthy. But those fully familiar with the discussion of 
Chapter 3, might skip Section 4.2 and go directly to Section 4.3. 

4.2 The lengthy argument 
We include this section as a means to contemplate further on the phenomenon. We now follow up on 
the assumption that the travelling twin is located on a MC system, and the earthbound twin represents a 
SC system; (i.e. just applying his clock at the earth for time comparisons with the travelling clocks.). 
Now eq. (11) gives the result, tv / t = 1/0.8 = 1.25 (at earth) whatever instant we consider after departure. 
Now consider various moments at which we observe the clocks positioned at (and passing by) the earth: 

1. Perspective of travelling twin. When the travelling twin arrives to the star, the clock on his rocket 
shows 4 years. So all clocks on the reference frame of the travelling twin show time, tv = 4 years. 
This is also the case for the clock which as this moment is passing the earth, i.e. at x = 0. Thus, the 
clock on the earth at this instant shows time t = tv∙0.8 = 3.2 years. 

2. Perspective of the earth/star system. At the instant when the twin arrives at the star, the time of the 
earthbound system equals t = 5 years. (The earthbound twin could verify this by installing a clock 
at the ‘star’.) When he performs a clock comparison at the earth (x = 0) at this moment, it gives that 
tv = t∙1.25 =6.25 years for the clock which pass the earth at this moment. 

3. Perspective of the auxiliary system (‘Symmetric solution’, cf. Section 3.3) The above two cases 
demonstrate that the two twins completely disagree about which event at the earth is simultaneous 
with the travelling twin’s arrival at the star. Now consider the moment when the clock on the earth 
shows t = 4 years and the passing ‘travelling clock’ shows tv = t∙1.25 = 5 years. This instant 
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obviously occurs in between the previous two moments, and also represents a moment being 
‘symmetric’ to the event of the twin’s arrival at the star (regarding clock readings!). And more 
important: It is the instant when the earthbound twin have carried out a ‘travel’ equivalent to the 
distance of the travelling twin! 

In summary, when we now let the earthbound twin represent the ‘SC system’, and thus, carry out the 
clock comparison at the earth, we always get tv/t = 1.25; i.e. it is the clock on the earth that ‘goes slower’. 
We summarize the findings in Table 1. These three ‘perspectives’ in some way all ‘correspond to’ the 
arrival of the travelling twin at the star, and thus, demonstrate the problem we have to define the 
‘simultaneous’ event on the earth. Note that we in the present discussion have chosen to skip the 4th 
‘perspective’ mentioned in Section 3.4, (cf Section 3.2), i.e. the case of having a single clock located in 
the midpoint between the two twins. As our objective is to follow the two clocks we find this option 
less relevant. However, we refer to a comment on this case in the next section. 

Table 1. Various clock readings (light years) at/on the earth, potentially ‘corresponding to’ the 
arrival of the travelling twin at the star.  

 ‘Perspective’ 
Time reading 1. Travelling twin 2. Earthbound twin 3. Auxiliary system 
Travelling twin system (MC):  tv 4 6.25 5 
Earth/star system (SC):             t 3.2 5 4 

So how should we conclude regarding the time (clock readings) at the turning of the rocket? When now 
the information of Table 1 is available, let us assume that the earthbound twin is in charge. He could 
control his twin’s travel by sending a light signal to the star, which on arrival initiates the return of his 
travelling twin. How should he do this to be sure the signal arrives at the right moment? One possibility 
that he might consider is to send a signal that arrives at the star when his earthbound clock shows 5 years 
(i.e. perspective 2 in Table 1). The problem is that at this moment the clock on the travelling twin system 
passing the earth shows 6.25 years. Thus, one would suspect the travelling twin when he returns have 
aged 12.5 years (and not 8). The reason being that if he turns when his twin’s signal reaches the rocket, 
he may have travelled a longer distance than the intended 3 light years. A similar objection applies to 
using perspective 1.  

Actually, if the earthbound twin should be in charge, I guess the following strategy should be the most 
ingenious. Knowing about the length contraction, he will know that the travelling twin will observe a 
travelling distance to the star that equals just 2.4 light years. So the earthbound twin will adopt strategy 
3: he sends a signal ordering to turn, such that the travelling twin will receive this signal when the clock 
on his own earthbound system shows 4 years, (cf. ‘strategy 3’ of Table 1).  

Following this strategy, we conclude that at the local time when each of the twins now consider to be 
the turning of the rocket, the twins will agree on the following facts: Their own clock shows 4 years, 
and the adjacent clock on the other system shows 5 years. So by the direct measurements, they observe 
that the other twin at this moment apparently has aged more than himself by a factor 1.25. This gives a 
completely symmetric and consistent answer to the paradox. 

Following this argument, both clocks show 4 years at the point of return. The same argument applies 
for the return travel, and we should conclude that by the reunion both clocks show 8 years. 

Another way to put it. We can choose between three options.  

1. Either the travelling twin being on a SC system giving travelling times 8 years for him and 10 for the 
earthbound, eq. (11), or  

2. The earthbound twin is located on a SC system, giving 8 years for him and 10 for the travelling eq 
(11);  

both these being consistent and in agreement with the Lorentz transformation, or we could choose  
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3. The symmetric solution, eq (22), treating both systems as SC, giving a total duration of 8 years for 
both twins.  

To me this choice is easy. An additional point is that options 1 and 2 just follow the clock of one of the 
twins, while option 3 follows both! We now present the short argument for the solution of the paradox. 

4.3 The short argument and additional remarks 
According to the symmetry of the situation, we would adopt the concept ‘simultaneity by symmetry’ 
(cf. Section 3.3 and Figs. 2-3). According to this, the event (tv = 4 years, t =5 years) on the star is 
‘simultaneous’ with the event (tv = 5 years, t = 4 years) on the earth, and considering both systems as 
SC, the conclusion is that both twins have aged 8 years by the return of the travelling twin. 

So what is then wrong with the standard argument. It is obviously about simultaneity. The standard 
narrative seems implicitly to use the assumption that the arrival of the twin at the star is ‘simultaneous’ 
with the earthbound twin having aged 5 years. I disagree with this claim. The Lorentz transformation 
tells that the clock of the earthbound system located at the ‘star’ shows 5 years by the traveling twins 
arrival. However, that does not imply that we can say that the earthbound twin has aged 5 years ‘at the 
same time’. In my understanding, one cannot infer such simultaneity within the TSR. 

Further, when we here focus on the full symmetry of the situation, it should be rather meaningless to 
claim that one ages faster than the other does. Therefore, when we ignore the effects of the 
acceleration/deceleration periods, it is hard to see any asymmetry here that could justify a claim of a 
true difference in ageing. 

Now, finally to familiarize a little with the argument regarding the ‘simultaneity by symmetry’ we 
elaborate on the above numerical example. As an illustration, we use Fig. 3, and consider this to 
represent the situation when the travelling twin has reached his point of destination. From the above 

numerical values, we will from (12) get w’ = c/3 = 5v/9, also giving ඥ1 − (𝑤′/𝑐)ଶ =
ଶ

ଷ
√2 ≈ 0.94. 

Further, in Fig. 3 let the lower point of the observational point b have value 4 (the clock readings of the 
twins at this instant). Then the clock reading at on the auxiliary system according to eq. (22) equals 

4/ඥ1 − (𝑤′/𝑐)ଶ = 3√2 ≈ 4.24 years (at the travelling twin’s arrival at the star).  

We have already calculated that the clock on the earthbound system at the same location equals 5 years, 
and so the midpoint in between the two twins equals 4.5 years. The time at the origin of the auxiliary 

system becomes 4.5ඥ1 − (𝑤′/𝑐)ଶ = 3√2 years; i.e. identical to the result just obtained at the position 
of the travelling twin. Note that this corresponds to the perspective we discussed in Section 3.2, (which 
was not included in the perspectives presented in Table 1).  

This numerical result illustrates that the relation between the clock readings of the auxiliary system and 
any of the twins’ system equals the relation between clock readings the reference frames of the two 

twins; the difference being that the ‘slowing down’ factor equals ඥ1 − (𝑤′/𝑐)ଶ when we involve the 

auxiliary system, while it equals ඥ1 − (𝑣/𝑐)ଶ when we just consider the two twins’ systems. 

Finally, we can conclude that in the perspective of the auxiliary system, the time back and forth equals 

2 ∙ 3√2 = 6√2 ≈ 8.5 years. Thus, the perspectives of the three reference frames give quite different 
results regarding total time, (8, 8.5 and 10 years, respectively). As we know they also disagree on 
simultaneity. So when we deal with simultaneity of events at different locations, one should be rather 
careful to choose the perspective of just a specific reference frame.  

Actually, the travelling twin example suggests that the concept of ‘simultaneity by symmetry’ could be 
more fruitful when we investigate the simultaneity of events at different locations, and so the concept 
seems an interesting supplement to the pure comparison of clock readings at the same location. 
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5 Summary and conclusions 
We use the Lorentz transformation to discuss a number of results on time dilation between two reference 
frames moving relative to each other at constant speed v. Basic features of the approach are: 

 There is a complete symmetry between the two reference frames, and we synchronize all clocks on 
the same reference frame. 

 In the outset, simultaneity across systems restricts to explore direct comparisons of clocks being at 
the same location at the same time (‘simultaneity by location’). 

 We do not use the expression ‘as seen’ (from the other reference frame). Observers (observational 
equipment) on both reference frames agree on the time readings; as they are carried out ‘on location’. 

 We specify that one of the reference frames is the ‘primary’, meaning that time equals t all over this 
reference frame, independent of position. 

 We always specify the applied observational principle, which means specifying the location of the 
clocks that are used for time comparisons between the reference frames. Thus, an essential aspect 
of the approach is to specify how the observed time, tv, on the 'other' (‘secondary’) system, Kv 
depends on the position, x on the primary reference frame, K. 

 We stress the distinct difference between ‘single clock’ (SC) systems – where one and the same 
clock is used for time comparisons, and ‘multiple clock’ (MC) systems – where several clocks along 
the x- axis are applied.  

 We do not describe time dilation by the expression ‘moving clock goes slower’. It seems irrelevant 
which of the two reference frames we consider to be moving, as it is rather the observational 
principle that matters. 

Thus, it is an important fact that at a given time, t on K, the time, tv observed on Kv will depend on the 

position, x on K. The standard result 𝑡௩ = 𝑡ඥ1 − (𝑣/𝑐)ଶ comes out as a rather special case, where one 
of the reference frames applies just a single clock for the time comparisons.  

An interesting observation is that if we choose the midpoint between x = 0 and xv = 0 as the location for 
time comparisons, then we will observe tv = t. Therefore, this choice represents an observational 
principle being symmetric with respect to the two reference frames. So when we observe t ≠ tv, in an 
otherwise symmetric situation, we claim that this is caused by the asymmetry of the chosen observational 
principle.  

Investigations of time dilation should take this overall view, clearly accounting for the effect of the 
observational principle. Our approach proceeds to introduce an auxiliary reference frame that serves as 
a primary system. That is, we relate all time observations to this auxiliary system; thus providing a link 
between the original two reference frames moving at relative speed, v. This provides a useful support in 
lack of a complete definition of simultaneity across systems.   

The distinction/specification of which system(s) are SC and which are MC becomes a crucial element 
of the approach. Another element is the concept ‘simultaneity by symmetry’, (supplementing the 
‘simultaneity by location’). This concept applies for events that actually are not simultaneous in any of 
the two original reference frames. Thus, the clock readings of synchronized clocks will differ. However, 
by symmetry considerations and by use of the auxiliary system, we claim this to represent an actual 
simultaneity. 

We conclude by applying the suggested approach to the so-called travelling twin case. As the standard 
example goes, the travelling twin will – at a speed of 0.6∙c – age only 8 years during his trip, as opposed 
to the 10 years passed on the earth. Our claim is that the observational principle – in combination with 
symmetry considerations - is essential to explain the phenomenon. It seems no doubt that the trip actually 
takes just 8 years, (cf. the length contraction). But by taking an overall view of the situation (including 
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‘simultaneity by symmetry’), our claim is that the earthbound twin has aged the same number of years 
(i.e. 8).  

It is my opinion that under the conditions of having strict symmetry in all respects it would be rather 
meaningless to claim a ‘true’ time dilation, causing different ageing on the two systems. So it should be 
interesting to identify the conditions – in particular departures from symmetry - that could cause time 
dilation to represent such a physical reality. In the travelling twin case I cannot see that such conditions 
are identified. 

A further comment is that an observer moving relative to a reference frame where the actual event takes 
place might be a rather ‘unreliable’ observer regarding time. The various observational principles will 
provide him with different results; so one should be careful to let such an ‘outside’ observer define the 
phenomenon, (without properly considering his position).  

The main results given here are a rather direct consequence of the Lorentz transformation, and are not 
necessarily new. However, overall I believe the suggested approach for investigating the phenomenon 
of time dilation has some distinct differences, compared to current narratives on the topic.  
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Appendix Some trigonometric relations 

As suggested in some versions of [2], we may introduce φ by the identity 

sin 𝜑 = 𝑣/c  

Thus, the Lorentz factor ඥ1 − (𝑣/𝑐)ଶ becomes 

cos φ = ඥ1 − (𝑣/𝑐)ଶ 

This might be of some interest as the speed v obviously enters the time dilation formulas only through 
the angle φ. In particular, a fundamental formula like (11) becomes 

tSC = tMC cos φ 

More generally, if we also let θ be defined by 

sin θ = 𝑤/c  

then our version of the Lorentz transformation, (4), (5) takes the form 

𝑡௩ =
1 − 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜑
𝑡 

𝑤௩

𝑐
=  

𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜑

1 − 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑
 

Further, by a standard trigonometric formula we have that the w’ of (12) is given by 

𝑤ᇱ/𝑐 = 𝑡𝑔 (
ఝ

ଶ
)  
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Figure 1. Time, tv(w),on Kv as a function of w. Here we have the perspective of K: The time all over K 
equals, t. Further, w gives the position on K. 

 

 

Figure 2. Time observations on reference frames K1 and K2 at relative speed ± w’ relative to an auxiliary 
system, K, which serves as a ‘primary system’. So time equals t all over K. We note that tw’ = t-w’ in both 
case a and case b, cf. eq. (18) and (22) respectively. Note that case b refers to two different locations. 
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Figure 3. Times 𝑡ି௪ᇱ(𝑤) on K1 and 𝑡௪ᇱ(𝑤) on K2 as a function of w; (here we have replaced v in the 
standard situation with w’ and –w’.) so here the main reference frames K1 and K2 have speed ±w’ relative 
to the auxiliary system K. Time equals t all over K.  Simultaneous time readings for case a and b are 
marked with circles as in Fig. 2. Again observe that we have tw’ = t-w’ in both cases. 

 


