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Abstract

We first introduce the concept of interval-valued neutrosophic competition graphs. We then
discuss certain types, including k-competition interval-valued neutrosophic graphs, p-competition
interval-valued neutrosophic graphs and m-step interval-valued neutrosophic competition graphs.
Moreover, we present the concept of m-step interval-valued neutrosophic neighbouhood graphs.
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1 Introduction

In 1975, Zadeh [26] introduced the notion of interval-valued fuzzy sets as an extension of fuzzy sets
[25] in which the values of the membership degrees are intervals of numbers instead of the numbers.
Interval-valued fuzzy sets provide a more adequate description of uncertainty than traditional fuzzy sets.
It is therefore important to use interval-valued fuzzy sets in applications, such as fuzzy control. One
of the computationally most intensive part of fuzzy control is defuzzification [13]. Atanassov [10] pro-
posed the extended form of fuzzy set theory by adding a new component, called, intuitionistic fuzzy sets.
Smarandache [19, 20] introduced the concept of neutrosophic sets by combining the non-standard analy-
sis. In neutrosophic set, the membership value is associated with three components: truth-membership
(t), indeterminacy-membership (i) and falsity-membership (f), in which each membership value is a real
standard or non-standard subset of the non-standard unit interval |0~, 11| and there is no restriction on
their sum. Wang et al. [21] presented the notion of single-valued neutrosophic sets to apply neutrosophic
sets in real life problems more conveniently. In single-valued neutrosophic sets, three components are
independent and their values are taken from the standard unit interval [0,1]. Wang et al. [22] pre-
sented the concept of interval-valued neutrosophic sets, which is more precise and more flexible than the
single-valued neutrosophic set. An interval-valued neutrosophic set is a generalization of the concept of
single-valued neutrosophic set, in which three membership (¢,14, f) functions are independent, and their
values belong to the unit interval [0, 1].

Kauffman [12] gave the definition of a fuzzy graph. Fuzzy graphs were narrated by Rosenfeld [15]. After
that, some remarks on fuzzy graphs were represented by Bhattacharya [11]. He showed that all the
concepts on crisp graph theory do not have similarities in fuzzy graphs. Wu [24] discussed fuzzy di-
graphs. The concept of fuzzy k-competition graphs and p-competition fuzzy graphs was first developed
by Samanta and Pal in [16], it was further studied in [9, 18, 14]. Samanta et al. [17] introduced the
generalization of fuzzy competition graphs, called m-step fuzzy competition graphs. Samanta et al. [17]
also introduced the concepts of fuzzy m-step neighbouthood graphs, fuzzy economic competition graphs,
and m-step economic competitions graphs. The concepts of bipolar fuzzy competition graphs and intu-
itionistic fuzzy competition graphs are discussed in [14, 18]. Akram and Shahzadi [8] studied properties
of single-valued neutrosophic graphs by level graphs. Akram et al. [1, 2, 3, 4] have introduced several



concepts on interval-valued fuzzy graphs and interval-valued neutrosophic graphs. Akram and Shahzadi
[6] introduced the notion of neutrosophic soft graphs with applications. Akram [7] introduced the notion
of single-valued neutrosophic planar graphs. Recently, Akram and Nasir [5] have discussed some concepts
of interval-valued neutrosophic graphs. In this paper, we first introduce the concept of interval-valued
neutrosophic competition graphs. We then discuss certain types, including k-competition interval-valued
neutrosophic graphs, p-competition interval-valued neutrosophic graphs and m-step interval-valued neu-
trosophic competition graphs. Moreover, we present the concept of m-step interval-valued neutrosophic
neighbouhood graphs.

2 Interval-Valued Neutrosophic Competition Graphs
Definition 2.1. [26] The interval-valued fuzzy set A in X is defined by
A= {(s,[th(s), t4(s)]) = s € X},

where, t,(s) and t%(s) are fuzzy subsets of X such that t,(s) < t%(s) for all x € X. An interval-valued
fuzzy relation on X is an interval-valued fuzzy set B in X x X.

Definition 2.2. [22, 23] The interval-valued neutrosophic set (IVN-set) A in X is defined by
A= {(s, [t (), 85 ()], i (), % ()]s [FL (), FE(5)) < s € X,

where, t!(s), t4(s), i%4(s), i%(s), f4(s), and f%(s) are neutrosophic subsets of X such that t',(s) < t%(s),
il (s) < i%(s) and f(s) < f4(s) for all s € X. An interval-valued neutrosophic relation (IVN-relation)
on X is an interval-valued neutrosophic set B in X x X.

Definition 2.3. [5] An interval-valued neutrosophic digraph (IVN-digraph) on a non-empty set X is
a pair G = (A, B), (in short, G), where A = ([t4, 4], [i44,4%], [f4, f4]) is an [VN-set on X and B =
([ts,t%], [i%,3%], [f5, f4]) is an IVN-relation on X, such that:

1. th( sw§<tl ) Aty (w), t% (s, w) < t4(s) AtY(w),
2. il(s wigi% (s) A il (w), i%(s w;<zA ) A i (w),

3. f33w3<f,4 ) A fly(w), f33w3<f,4 )N fi(w), forall s,w e X.
Example 2.1. We construct an IVN-digraph G = (A4, ﬁ) on X = {a,b,c} as shown in Fig. 1.

Figure 1: IVN-digraph



Definition 2.4. Let 8 be an IVN-digraph then interval-valued neutrosophic out-neighbourhoods (IVN-
out-neighbourhoods) of a vertex z is an IVN-set
N (s) = (X0, [0, (0070 07, 0T, 10T, 0T,

where,

XF = {w|[ts(s,w) >0, t%(s,w) > 0], 4; %ﬁ f3m>0 fE(s,w) > 0]},

such that tél) : X — [0,1], defined by t( )" ( 3 5 [0,1], defined by t(u) (w)
(s, w), i‘gl)+ + X = [0,1], defined by “l) lB (s, 3 — [0, 1], defined by i (w)
it (s,w0), 17 XF 5 [0,1], defined by £ (w) = fL(s, w), f (“’ [0, 1], defined by £ (w) =

(s, w).

Definition 2.5. Let 8 be an IVN-digraph then interval-valued neutrosophic in-neighbourhoods (IVN-

in-neighbourhoods) of a vertex z is an ITVN-set

N=(s) = (X7, 10 (8 il ),

where,

X7 = {wl|[tlh(s,w) >0, t%(s,w) > 0], ;>OzBsw > 0], f]lgsw;>0f}§sw > 0]},
such that ¢V : X7 — [0,1], defined by t M~ (w) = th(s, ) : X7 — [0,1], defined by ts ()™ (w) =
t%(s,w;, i : X7 — [0,1], defined by il! (w) = il (s, b (") — [0, 1], defined by i (w) =
i}g(s,w;, F- : X7 — [0, 1], defined by FO (w) = fL(s, ) Fl” X — [0, 1], defined by Fl” (w) =

(s, w).

Example 2.2. Consider an IVN-digraph G = (A4, ﬁ) on X = {a,b,c} as shown in Fig. 2
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Figure 2: IVN-digraph

We have Table 1 and Table 2 representing interval-valued neutrosophic out and in-neighbourhoods,

respectively.

Table 1: IVN-out-neighbourhoods

s | NT(s)

a | (b, [0.1,0.2],0.2,0.31,]0.1,0.6], (c, [0.1,0-2],0.1,0.3],[0.2,0.6])}
b |0

¢ | {(b, [0.1,0.2],0.2,0.3],[0.2,0.5])}




Table 2: TVN-in-neighbourhoods

s | N7 (s)

a |

b | {(a, [0.1,0.2],[0.2,0.3],0.1,0.6]), (c, [0.1,0.2],[0.2,0.3],[0.2,0.5])}
¢ | {(a, [0.1,0.2],[0.1,0.3],[0.2,0.6])}

Definition 2.6. The height of IVN-set A = (s, [t4, %], [}, %], [f4, f4]) in universe of discourse X is
defined as,

h(A) = ([h1(A), hi (A)), [ha(A), b3 (A)], [h5(A), ks (A))]),

= ([sup t}4(s), sup t4(s)], [sup %4 (s), sup i%4 ()], [inf_fi(s), inf fi(s)]), forall seX.
seX seX seX seX seX seX

Definition 2.7. An interval-valued neutrosophic competition graph (IVNC-graph) of an interval-valued
neutrosophic graph (IVN-graph) = (A, 3) is an undirected IVN-graph (C(E; = (A, W) which has the
same vertex set as in G and there is an edge between two vertices s and w if and only if NT (s)NNT (w) # 0.

The truth-membership, indeterminacy-membership and falsity-membership values of the edge (s,w) are
defined as,

Lty (s,w) = (tl(s) Aty (w))hs (N* (s) N NF (w), ty (s,w) = (t4(s) At (w))hy (NF (s) NN (w),
2. iy (s,w) = (il (s) N ily (w) A5 (NF (s) N NF (w), iy (s, w) = (i%(s) A (w))hg (N*(s) N NT(w),
3. fiv(s,w) = (Fa(s) A fa(w)) RS (NF (s) NN (w), Fiv (s,w) = (FA(s) A fa(w))hg (N (s) NN (w),

for all z,y € X.

Example 2.3. Consider an IVN-digraph G = (4, B) on X = {a,b,c} as shown in Fig. 3.
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Figure 3: IVN-digraph

We have Table 3 and Table 4 representing interval-valued neutrosophic out and in-neighbourhoods,
respectively.

Table 3: IVN-out-neighbourhoods

N*(s)

{(b, [0.1,0.2],[0.2,0.3],[0.1,0.6]), (c, [0.1,0.2],[0.1,0.3],[0-2,0.6)) }
)

{(b, [0.1,0.2],[0.2,0.3],[0.2,0.5])}

o o ol|lw




Table 4: TVN-in-neighbourhoods

s | N7 (s)

a |

b | {(a, [0.1,0.2],[0.2,0.3],0.1,0.6]), (c, [0.1,0.2],[0.2,0.3],[0.2,0.5])}
¢ | {(a, [0.1,0.2],[0.1,0.3],[0.2,0.6])}

Then IVNC-graph of Fig. 3 is shown in Fig. 4.
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Figure 4: IVNC-graph

Definition 2.8. Consider an IVN-graph G = (A, B), where A = ([A}, AY], [A}, AY], [A}, AY)], and
B = ([B., By, [B,, BY], [BL, BY)] then, an edge (s, w), s, w € X is called independent strong if
[A1(s) A Aj(w)] < Bi(s,w),  5[A}(s) A A (w)] < By (s,w),

[A3(s) A A (w)] < Bi(s,w),  5[A5(s) A Af(w)] < B (s,w),

N RN~ DN
NN~ DN

[A5(s) A Ag(w)] > Bi(s,w),  5[A5(s) A A (w)] > B (s,w).

Otherwise, it is called weak.
We state the following theorems without thier proofs.

Theorem 2.1. Suppose G is an IVN-digraph. If NT(x) NNt (y) contains only one element of 8, then
the edge (s, w) of (C(a) is independent strong if and only if

IN*(s) AN ()]l > 0.5, |[[N*(s) " N* (w)]|en > 0.5,
N (

IN*(s) AN (w)]la > 0.5, [[NT(s) " NF(w)]|s > 0.5,
IN*(s) A\ NF(w)]| 1 < 0.5, [[N*(s) "NT(w)]

fu < 0.5.

Theorem 2.2. If all the edges of an IVN-digraph 8 are independent strong, then

Bi(s.w) Bi(s.w)

(AL (s) A Al (w))? > 0.5, (A0 (s) A AT ()2 > 0.5,
Byl v) B (s,

(Aé(s) A AIQ(w))Q > 0.5, (A5 () A Ag(w))Q > 0.5,
Bi(s.w) By(s.w)

(L) A AL =% Ay Az <

for all edges (s, w) in (C(a)

Definition 2.9. The interval-valued neutrosophic open-neighbourhood (IVN-open-neighbourhood) of a
vertex s of an IVN-graph G = (A, B) is IVN-set N(s) = (X, [t,, t¥], [iL, i, [fL, f%]), where,

57 Vs s$7 7S



XS = {w|[Bi(s,w) > 07 B%(svw) > ] [BQ(S w) > O BQ (S w) > O] [Bé(svw) > 07 Bg(S,UI) > O]}v

and ¢, : X; — [0, 1] defined by ! (w) = Bl (s, w), t* : X, — [0, 1] defined by t%(w) = B¥(s, w), i, : X —
[0, 1] defined by i\ (w) = Bé(s w), i%: Xg — [0, 1] defined by i%(w) = B¥(s, w), f.: Xs — [0,1] defined
by fl(w) = Bi(s, w), f&: Xy — [0,1] defined by f“(w) = B¥(s, w). For every vertex s € X, the interval-
valued neutrosophic blngleton set, A, = (s, [AV, AW], [AY, AY], [AY, AY) such that: AY : {s} — [0,1],
AV s} — [0,1], AY : {s} — [0,1], AY : {s} —[0,1], AY : {s} — [0,1], AY : {s} — [0,1], defined by
Ab(s) = Al(s), AY(5) = AY(s), AU(s) = Ab(s), AY(5) = AY(s), Al(s) = AL(s) and AY'(s) = AY(s),
respectively. The interval-valued neutrosophic closed-neighbourhood (IVN-closed-neighbourhood) of a
vertex s is N[s] = N(s) U A,.

Definition 2.10. Suppose G = (4, B) is an IVN-graph. Interval-valued neutrosophic open-neighbourhood
graph (IVN-open-neighbourhood-graph) of G is an IVN-graph N(G) = (A, B’) which has the same IVN-
set of vertices in G and has an interval-valued neutrosophic edge between two vertices s, w € X in N(G) if
and only if N(s)NN(w) is a non-empty IVN-set in G. The truth-membership, indeterminacy-membership,
falsity-membership values of the edge (s, w) are given by:

BY (s,w) = [A}(s) A A} (w)]hi (N(s) "N(w)),  BY(s,w) = [A}(s) A A} (w)]ht (N(s) N N(w)),
By (s, w) = [A5(s) A Ay(w)]h5(N(s) "\N(w)),  B3'(s,w) = [A5(s) A Ag (w)]hs (N(s) N N(w)),
BY (s, w) = [A}(s) A AL(w)]RL(N(s) \N(w)), By (s,w) = [A%(s) A A% (w)]A%(N(s) N N(w)), respectively.
Definition 2.11. Suppose G = (4, B) is an IVN-graph. Interval-valued neutrosophic closed-neighbourhood
graph (IVN-closed-neighbourhood-graph) of G is an IVN-graph N(G) = (A4, B’) which has the same IVN-
set of vertices in G and has an interval-valued neutrosophic edge between two vertices s, w € X in N[G] if
and only if N[s]NN[w] is a non-empty IVN-set in G. The truth-membership, indeterminacy-membership,
falsity-membership values of the edge (s, w) are given by:
BY(s,w) = [A}(s) A A} (w)]A} (N[s] "\ N[w]),  BY(s,w) = [A}(s) A A} (w)]h{
By (s,w) = [Aj(s) A Ap(w)]hy(N[s] N N[w]),  By'(s,w) = [A5(s) A A3 (w)]hg (N[s] N N[uw]
By (s,w) = [A5(s) A Ag(w)]h5(N[s] "\ N[w]), Bjy'(s,w) = [A5(s) A Af (w)|h}

We now discuss the method of construction of interval-valued neutrospohic competition graph of the

Cartesian product of IVN-digraph in following theorem which can be proof using similar method as used
n [14], hence we omit its proof.

rI_>‘heorem 2i3>. Let (C@) = (Al,_>Bl) and (C(CT;) = (As, Bg_)> be_;fwo IVNC-graphs of IVN-digraphs
G1 = (A1, L1) and G2 = (Aa, Lo), respectively. Then C(G10G3) = GC(G ) D;%(G 2y U GH where,
GC(GI) -Oc(@,)- 8 an IVN-graph on the crisp graph (X1 X XQ,EC(G )*DEC(G )*) C(G1)* and (C(Gg) are
the crisp competition graphs of G1 and Gg, respectively. GU is an IVN-graph on (X7 x X,, EY ) such
that:

1. B9 = {(s1,82) (w1, ws) : w1 € N™(s1)*, wa € Nt (s3)*}
EC( & DE(C(@’)* = {(s1,82)(s1,w2) : $1 € X1, Sqwz € EC(@)*}U{(sl,SQ)(wl,SQ) 189 € Xo, 81w1 €

E(C(Gl)* .
2. thy o, = th, (s1) Aty (s2), ZﬁlmAQ 7{{41(51) /\?ﬁxg(sz), Fhoa, = Fh (s1) A fh, (s2),
th. 04, = th, (51) A ( 2), %04, = 14, (51) A4, (52), fi,0a, = F4,(51) A fi, (52).
3. thy((s1,52)(s1,w2)) = [tY, (s1) Aty (s2) Aty (w2)] X Va, {ty (s1) /\tlL—2>(82a2) /\tlL—;(wzaz)}a

(Sla 82)(81,102) € E(C(C?)*DE(C(G Y*0 az € (N+(82) N N+(U}2))*

4. i%((sl, 82)(81, wg)) = [’Lf41 (81) A if42 (82) A if42 (wg)] X \/a2 {7'541 (81) A ilf2>(82a2) A ZlL—2> (’LUQCLQ)},

(51, 82)(81, wg) S EC(a)*DEC(@)*’ as € (N+(52) N N+(w2))*



10.

11.

12.

13.

1.

15.

16.

17.

18.

19.

Fu((s1, 82)(s1,w2)) = [£h, (51) A fla, (52) A Fla, (w2)] X Vao {fl, (51) A f (5202) A fs (w2a2)},

(s1,82)(s1,w2) € E, 5. OE, az € (N*(s2) NNt (ws))*.

C(Gr)* (G2)*

ti((s1,82)(s1,w2)) = [t (s1) AT, (52) A E4, (wa)] X Vao {84, (51) AT (s202) At (weaz2)},

(51, 82)(81, wg) cFE. .= DE(C as € (N+(Sg) N N+(’LU2))*

C(Gr)* (@)

iB((s1,82)(s1,w2)) = [1%, (51) N i34, (s2) A, (w2)] X Vap {4, (51) A i (s2a2) N i (w2a2)},

(81; 82)(81; w2) € EC(CT;)*DEC(CTQ))*’ az € (N+(82) N N+(U}2))*

Fi((s1,82)(s1,w2)) = [F4, (s1) A FA, (52) A FR, (w2)] X Vao {fR, (s1) A fi(s202) A s (waaz)},

(51, 82)(81, wg) cFE. . = DE(C as € (N+(Sg) N N+(’LU2))*

C(Gr)* (G2)*

ts((s1,82) (w1, 52)) = [t (s1) Aty (1) Atly, (52)] X Va, {th, (s2) At (s101) At (wraa)},

(s1,82) (w1, s2) € E(C(CT{)*DEC(E;)*’ a; € (NT(s1) N NT(wq))*.

i ((s1, 82) (w1, 82)) = [ty (s1) Aty (wi) Aily, (s2)] X Va, {i4y, (s2) A ilL-1>(81a1) A ilL—;(wlal)}a
(s1,82)(w1,s2) € Ecgh-OEq gy @€ (NT(s1) N NT(wy))*.

Fu((s1, s2)(wi,52)) = [fh, (1) A fy, (W) A Fly, (52)] X Vay {th, (52) A f (s100) A f (wran)},

(81; 82)('[01, 52) € EC(CT;)*DEC(CTQ))*’ a1 € (N+(81) N N+(U}1))*

ti((s1,82)(wr, 82)) = [t4, (s1) A G, (wi) A4, (s2)] X Vau{E4, (s2) At (s101) At (wian)},

(51,82)(11)1,82) cFE. . — DE(C a] € (N+(Sl) ﬂN+(’LU1))*.

C(G1)* (G2

iB((s1,82) (w1, 82)) = [i%, (51) A0, (wi) Aih, (52)] X Vay {74, (52) A i (s100) A (wran),

(s1,82) (w1, s2) € E(C(CT{)*DE(C((T;)*’ a; € (N*(s1) NNt (wq))*.

Fi((s1,82)(wn, 52)) = [FX, (1) A F4, (wi) A F4, (52)] X Vai {84, (s2) A f (s100) A S (wran)},

(s1,82)(w1,82) € Eean-DE: a; € (N*(s1) NNt (wq))*.

(52))*’
t((s1,82) (wi, wa)) = [ty (s1) Aty (wi) A thy, (52) A thy, (wa)] x [ty (s1) At (wrst) A tly, (w2) A

ths (sgwa)],

Lo

(51, wl)(SQ, wg) S ED.

ip((s1,82) (wr,wa)) = [ily, (s1) Adly, (wi) Aily, (52) Ay, (wa)] X [ily, (s1) A i (wase) A dly, (w2) A
ilL—>2(52w2)],

(s1,w1)(s2,w2) € EH.

FB((s1,82) (wi,wa)) = [, (s1) A fhy, (wi) A fh, (s2) A fhy, (wa)] x [ (s1) A flL—1>(w151) A fly, (wa) A
flL—2>(82w2)],

(s1,w1)(52,ws) € EV.
i (51, 52) (wr,w2)) = [£5, (1) A5, (w) AEY, (s2) AES, (wa)] X 1, (s1) A 12 (wast) A £, (w2) A
t%;(sﬂvz)],

(51, wl)(SQ, wg) S ED.

i (51, 52) (wy, wa)) = [, (1) A i, (wi) Aif, (s2) Aty (wa)] x [i%, (s1) A it (wisy) A i, (w2) A
i (s2w2)],
(51,w1) (82, w2) € EY.



20. fi((s1,82)(wi,w2)) = [f, (51) A FA, (wi) A FR, (s2) A FA, (w2)] X [F4, (s1) A i (wasa) A F, (w2) A
f(s2w2)];

(51, wl)(SQ, wg) S ED.

A. k-Competition Interval-Valued Neutrosophic Graphs
We now discuss an extension of IVNC-graphs, called k-competition IVN-graphs.

Definition 2.12. The cardinality of an IVN-set A is denoted by
|A| = ([|A|t"7 |A t“la [|A|llv |A f”])'

Where [|Alg, |Als], [|Ala, |Al] and [|A]p, |Alf+] represent the sum of truth-membership values,
indeterminacy-membership values and falsity-membership values, respectively, of all the elements of A.

o], (14l 14

Example 2.4. The cardinality of an IVN-set A = {(a, [0.5, 0.7], [0.2, 0.8],[0.1, 0.3]), (b, [0.1, 0.2], [0.1,
0.5], [0.7, 0.9]), (¢, [0.3, 0.5, [0.3, 0.8], [0.6, 0.9])} in X = {a, b, c} is

Al = ([| Al [Alee], [|ALr, [Ali], [JA] 1, 1A
= ([0.9,1.4],[0.6,2.1], [1.4,2.1]).

)

We now discuss k-competition IVN-graphs.

Definition 2.13. Let k be a non-negative number. Then k-competition IVN-graph Cy, (8) of an IVN-
digraph G = (A, B) is an undirected IVN-graph G = (A, B) which has same IVN-set of vertices as in

and has an interval-valued neutrosophic edge between two vertices s, w € X in Ck(a) if and only if
|(NT(s) NNT(w))|g >k, [(NT(s) N NT(w))|w >k, |(NT(s) N NT(w))]z >k, |(NT(s) N NT(w))|ju > k,
|(N*(s) N Nt (w))|;2 > k and [(NT(s) N N*(w))|f« > k. The interval-valued truth-membership value
of edge (s, w) in Cx(G) is th(s, w) = kl_k[tl (s) A thy(w)]hl (N*(s) N NT(w)), where ki = |(N*(s) N

N*(w))|p and #h(s, w) = S2 [ (s) A £ (w)]hY (N*(s) 0 N*(w)), where kY = |(N*(s) N N*(w))]ou,

the interval-valued indeterminacy-membership value of edge (s, w) in Cyg (8) is ity (s, w) = kaL b ity (s) A

ity (w)] Ry (N* () N\N* (w)), where & = |(N* () \N* (w)) ;1 and (s, w) = kigk[ifi(s)/\iﬁ(w)]hg(NJ’(s)
NT(w)), where k% = |(N+( ) NN (w))]su, the interval-valued falsity-membership value of edge (s, w) in

Cu(G) is fh(s, w) = B2 (4 (5) A L4 (@) BN (5) N (w)), where B = [(N*(s) \N* (w)) 1, and f5(s,

w) = kku [£4(s) AfA(w)]héf(N*(S) NN*(w)), where k§ = [(N*(s) "NF (w))[ .

Example 2.5. Consider an IVN-digraph G = (A4, B) on X = {s,w,a,b,c}, such that A = {(s, [0.4,0.5]
[0.5,0.7], [0.8,0.9]), (w, [0.6,0.7], [0.4,0.6], [0.2,0.3]), (a, [0.2,0.6], [0.3,0.6], [0.2,0.6]), (b, [0.2,0.6],
[0.1,0.6], [0.2,0.6]), (¢, [0.2,0.7], [0.3,0.5], [0.2,0.6])}, and B = {((s,a), [0.1,0.4], [0.3,0.6], [0.2,0.6]),
(55, [0.2,04], [0.1,05], [0.2,0.6)), (5, ¢}, [0.2,0.5), [0.3,0.5], [0.2,0.6]), ((w,al, [0.2,0.5], [0.2,0.5],
10.2,0.3]), ((w, 5}, 0.2,0.6], [0.1,0.6], [0.2,0.3]), ((w, ¢}, [0.2,0.7], [0.3,0.5], [0.2,0.3))}, as shown in Fig. 5.
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5([0.4,0.5],[0.5,0.7], [0.8,0.9])

b([0.2,0.6],[0.1,0.6], 0.2, 0.6])

w([0.6,0.7],[0.4,0.6], 0.2, 0.3])

¢([0.2,0.7],[0.3,0.5], [0.2,0.6])

Figure 5: IVN-digraph

We calculate N+ (s) = {(a, [0.1,0.4], [0.3,0.6], [0.2,0.6]), (b, [0.2,0.4], [0.1,0.5], [0.2,0.6]), (c, [0.2,0.5],
0.3,0.5], [0.2,0.6])} and N*(w) = {(a, [0.2,0.5], [0.2,0.5], [0.2,0.3]), (b, [0.2,0.6], [0.1,0.6], [0.2,0.3]),
(¢, [0.2,0.7], [0.3,0.5], [0.2,0.3])}. Therefore, N*(s) N N*(w) = {(a, [0.1,0.4], [0.2,0.5], [0.2,0.3]), (b,
[0.2,0.4], [0.1,0.5], [0.2,0.3]), (c, [0.2,0.5], [0.3,0.5], [0.2,0.3)}. So, k! = 0.5, k% = 1.3, k}\, = 0.6, k¥ = 1.5,
kL = 0.6 and k¥ = 0.9. Let k = 0.4, then, ti3(s, w) = 0.02, t%(s, w) = 0.56, ik (s, w) = 0.06, i'%(s,
w) = 0.82, fL(s, w) = 0.02 and fi(s, w) = 0.11. This graph is depicted in Fig. 6.

2, 4 7
//o% . %,

O,
6/,/%

7 ([0.02,0.56], [0.06, 0.82], [0.02, 0.11]) N
4 0~ \3\\
L ® .Q_b;-%'
9 s“\"\
gn Q%
@\\

Figure 6: 0.4-Competition IVN-graph

Theorem 2.4. Let ¢ = (A, B) be an IVN-digraph. If

hi (N (s) "NT(w)) =1, hy(N* (s) NNF (w)) = 1, hy(N* (s) NN (w)) = 1,
RENT(s) NF(w) =1, hY(NF(s)NT(w) =1, AS(N*(s) NN*(w)) = 1,
and
|(NF(s) N NF(w))| > 2k, |(NT(s) NNT(w))[¢ > 2k, |(NT(s) NNT(w))| 1 < 2k,
(N (s) NNt (w))]pu > 2k, |(NT(s) NNt (w))]u > 2k, |(NT(s)N N+('UJ))|fu < 2k,

Then the edge (s,w) is independent strong in Ck(a)

Proof. Let G = (A, B) be an IVN-digraph. Let Cy (8) be the corresponding k-competition IVN-graph.



If Y (N*(s) NNt (w)) = 1 and |(N*(s) N N*(w))|u > 2k, then ki > 2k and therefore,

kL —k
th(s,w) = lk—l[tlA(S) Aty (w)]Rs (N* (s) N NF (w))
1
kL —k
or, thto,w) = S (5) 1ty o)
1
! I _
tB(S’IlU) _h l o0,
[th(s) Aty (w)] ky
If ¥ (N*(s) NNt (w)) =1 and [(NT(s) NNT(w))|t« > 2k, then k¥ > 2k and therefore,
ki —k u U u
tg(s,w) = == [th(s) At (w)]hY (NT(s) NN (w)
1
ki — U U
or,  tp(s,w) = == [th(s) Ath(w)]
1
t%(s,w) kY —k
= > 0.5.
[t (s) A 5 (w)] kY
If hY(N*(s) NN (w)) =1 and |(N*(s) NN (w))|; > 2k, then kb > 2k and therefore,
. Ky —k . .
ip(s,w) = le [i%4 () A g (w)]Ry (N* (s) NN (w))
2
. kY —k .
or,  ths,w) = 2K i 9) )
2
1 I
7 ZB(S’.T) _ lk>0.5.
[i%4(s) Nty (w)] k3
If R(NT(s) NNt (w)) =1 and |(NT(s) NNT(w))|;« > 2k, then k¥ > 2k and therefore,
ip(s,w) = Qku [i%(s) A ia (w)]hs (NT(s) NN (w))
2
or, ip(s,w)= Qku [t (s) A (w)]
2
_iplsw) Rk
[i%(s) Ay (w)] k3
If K5 (N*(s) NNT(w)) = 1 and [(NT(s) NN (w))|;1 < 2k, then k5 < 2k and therefore,
Ky —k
fo(s,w) = 3kl [f4(s) A fa(w)] (N (s) N NF (w))
3
! ks —k l
or, fp(s,w)= 7 [fa(s) A fa(w)]
3
fpsw) Kk g

[Fa(s) A fh(w)] K
If h(NT(s) NNt (w)) =1 and |(NT(s) NNt (w))| e < 2k, then k¥ < 2k and therefore,

o) = B 170 1 SRSV () N )
or,  fhls,w) = SR I74() A i)
3
Blow) Kk
TAG) AT

Hence, the edge (s,w) is independent strong in Cy (8)
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B. p-Competition Interval-Valued Neutrosophic Graphs
We now define another extension of IVNC-graphs, called p-competition IVN-graphs

Definition 2.14. The support of an IVN-set A = (s, [t4,

t4], [i%, 4], [f4, f4]) in X is the subset of X
defined by

supp(A) = {s € X : [t () # 0, t3(s) # 0], [

and |supp(A)| is the number of elements in the set.

(s) # 0, i4(s) # 0], [fa(s) # 1, f4(s) # 1]}

Example 2.6. The support of an IVN-set A = {(a, [0.5, 0.7], [0.2, 0.8],[0.1, 0.3]), (b, [0.1, 0.2], [0.1
0.5, 0.7, 0.9)), (c, [0.3, 0.5], [0.3, 0.8], [0.6, 0.9]), (d, [0, 0], [0, O], [1, 1))} in X = {a, b, ¢, d} is
supp(A) = {a, b, c} and |supp(A)| = 3.

We now define p-competition IVN-graphs.

Definition 2.15. Let p be a positive integer. Then p-competition IVN-graph (Cp(a) of the IVN-digraph
= (4, ﬁ) is an undirected IVN-graph G = (A, B) which has same IVN-set of vertices as in
and has an interval-valued neutrosophic edge between two vertices s, w € X in Cp(a) if and only if
|supp(NT(s)NNT (w))| > p. The interval-valued truth-membership value of edge (s, w) in (Cp(a) is thy (s,
w) = CZELRL (5) At (w)] R (NF(5) AN (w)), and £ (s, w) = L1 () At (w) Ry (N (5) NN (w)),
the interval-valued indeterminacy-membership value of edge (s, w) in CP(G) is i3 (s, w) = (lﬂzﬁ [iL4 (s)A

L (w)]hh (NT(s) NNT(w)), and i%(s, w) = {= p)'H[ (s) Ai%(w)]hy (NT(s) NNT(w)), the interval-valued
falsity-membership value of edge (s, w) in (Cp(a) is fL(s, w) = (i_p%[fi‘(s)/\fil(w)]hé(I\ﬁ'(s)ﬁN"r (w)),
and f35(s, w) = CEELf(5) A i (w)]BE (N () 1 NF (), where i = [supp(N* (s) N N* ().

Example 2.7. Consider an IVN-digraph G = (4, 3) on X = {s,w,a,b,c}, such that A = {(s, [0.4,0.5],
0.5,0.7], [0.8,0.9]), (w, [0.6,0.7], [0.4,0.6], [0.2,0.3]), (a, [0.2,0.6], [0.3,0.6], [0.2,0.6]), (b, [0.2,0.6],
[0.1,0.6], [0.2,0.6)), (¢, [0.2,0.7], [0.3,0.5], [0.2,0.6])}, and B = {((s,a), [0.1,0.4], [0.3,0.6], [0.2,0.6]),
((s,0), [0.2,0.4

[

,0.4], [0.1,0.5], [0.2,0.6]), ((s,¢), [0.2,0.5), [0.3,0.5], [0.2,0.6]), ((w,a), [0.2,0.5], [0.2,0.5],
0.2,0.3]), (m, 0.2,0.6], [0.1,0.6], [0.2,0.3]), (w, ¢}

¢), [0.2,0.7], [0.3,0.5], [0.2,0.3]) }, as shown in Fig. 7.

w([0-6, 0.7], (04, 0.6],(0-2, 0.3])

Figure 7: IVN-digraph

We calculate N*(s) = {(a, [0.1,0.4], [0.3,0.6], [0.2,0.6]), (b, [0.2,0.4], [0.1
[

0.2,0.6]), (c, [0.2,0.5],
0.3,0.5], [0.2,0.6])} and N+ (w) = {(a, [0.2,0.5], [0.2,0.5], [0.2,0.3]), (b,

[0.2,
,0.6], [0.1,0.6], [0.2,0.3]),
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(¢, [0.2,0.7], [0.3,0.5], [0.2,0.3])}. Therefore, N*(s) N N*(w) = {(a, [0.1,0.4], [0.2,0.5], [0.2,0.3]), (b,
[0.2,0.4], [0.1,0.5], [0.2,0.3]), (¢, [0.2,0.5], [0.3,0.5], [0.2,0.3)}. Now, i = |supp(NT(s) "N+t (w))| = 3. For
p = 3, we have, th(s, w) = 0.02, t%(s, w) = 0.08, il5(s, w) = 0.04, i'%(s, w) = 0.1, f(s, w) = 0.01 and
f&(s, w) = 0.03. This graph is depicted in Fig. 8.

Q(/O_Q 0’//0.9 (»//091

a N
‘) @ 9, ®
o “, 3

Qg Qs
6//03 Z/o

a a
K & 'y

N
o
A

o

2z Y
oo

&8

Figure 8: 3-Competition IVN-graph

We state the following theorem without its proof.
Theorem 2.5. Let 8 = (4, ﬁ) be an IVN-digraph. If

Ry (N*(s) NN* (w))
hi (N (s) "NT(w))

=1, hy(N*(s) N\N*(w)) =
=1, hy (N (s) "NT (w)) =
in (C[%](a), then the edge (s,w) is strong, where i = |supp(NT(s) N NT(w))|. (Note that for any real
number s, [s]=greatest integer not esceeding s.)

C. m-Step Interval-Valued Neutrosophic Competition Graphs
We now define another extension of IVNC-graph known as m-step IVNC-graph. We will use the following

notations:

P, ¢ An interval-valued neutrosophic path of length m from s to w.

?Z}w : A directed interval-valued neutrosophic path of length m from s to w.

N (s) : m-step interval-valued neutrosophic out-neighbourhood of vertex s.

N7 (s) : m-step interval-valued neutrosophic in-neighbourhood of vertex s.

N,,.(s) : m-step interval-valued neutrosophic neighbourhood of vertex s.

N, (G): m-step interval-valued neutrosophic neighbourhood graph of the IVN-graph G.
Cn(G): m-step IVNC-graph of the IVN-digraph 8

Definition 2.16. Suppose 8 = (4, B) is an IVN-digraph. The m-step IVN-digraph of 8 is denoted by
Bm = (A, B), where IVN-set of vertices of 8 is same with IVN-set of vertices of Bm and has an edge

m
s,w

between s and w in G, if and only if there exists an interval-valued neutrosophic directed path in

a.

Definition 2.17. The m-step interval-valued neutrosophic out-neighbourhood (IVN-out-neighbourhood)
of vertex s of an IVN-digraph G = (A, ﬁ) is IVN-set

NA(s) = (O, 807, 60071 0, a8 (107, £907)), where
X = {w] there exists a directed interval-valued neutrosophic path of length m from s to w, _P>;“w ,

1O xS0, 10,6887 x5 0,1], 07 x5 0,1],d T xE 0,1, £ X (0, 1] £
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I — [0, 1] are defined by tgl) = min{t!(s1, 52;, (s1, s2) is an edge of ? b tu) = min{t"(s1, 52;,
(s1, s2) is an edge of ?g’j‘w}, igl = min{i!(s1, 52;, (s1, s2) is an edge of 3 ot zgu) = min{i*(s1, 52;,
(s1, s2) is an edge of ?fow}, fs(l) = min{ f!(s1, s2 ;, (s1, s2) is an edge of ?Syw}, fsu = min{ f*(s1, $2 ;,

(s1, s2) is an edge of P’ }, respectively.

Example 2.8. Consider an IVN-digraph G = (A4, ﬁ) on X = {s,w,a,b,c,d}, such that A = {(s,
[0.4,0.5], [0.5,0.7], [0.8,0.9]), (w, [0.6,0.7], [0.4,0.6], [0.2,0.3]), (a, [0.2,0.6], [0.3,0.6], [0.2,0.6]), (b,
[0.2,0.6], [0.1,0.6], [0.2,0.6]), (¢, [0.2,0.7], [0.3,0.5], [0.2,0.6]), d([0.2,0.6],[0.3,0.6],[0.2,0.6))}, and B =

{((,a), 01,04, [0.3,0.6], [0.2,0.6]), ((a ), [0-2,0.6], [0.3,0.5], [0.2,0.6)), ((a,d), [0.2,0.6], [0.3,0.5],

0.2,0.4]), ((w,b), [0.2,0.6], [0.1,0.6], [0.2,0.3]), ((b,c), [0.2,0.4], [0.1,0.2], [0.1,0.3)), ((b,d), [0.1,0.3],
[0.1,0.2], [0. 2,04])}, as shown in Fig. 9.

5([0.4,0.5],[0.5,0.7],[0.8,0.9]) w([0.6,0.7],(0.4,0.6], [0.2,0.3])
® ®

¢([0.2,0.7],[0.3,0.5], 0.2, 0.6]) d([0.2,0.6],0.3,0.6], 0.2, 0.6])

Figure 9: IVN-digraph

We calculate 2-step IVN-out-neighbourhoods as, Ni(s) = {(¢, [0.1,0.4], [0.3,0.5], [0.2,0.6]), (d
[0.1,0.4], [0.3,0.5], [0.2,0.4])} and Nf (w) = {(c, [0.2,0.4], [0.1,0.2], [0.1,0.3]), (d, [0.1,0.3], [0.1,0.2],
0.2,0.3))}.

Definition 2.18. The m-step interval-valued neutrosophic in-neighbourhood (IVN-in-neighbourhood)
of vertex s of an IVN-digraph G = (A, ﬁ) is IVN-set

() = (X5, [, 68 0, il L [, A]), where

Ny, s
X, = {w] there exists a directed interval-valued neutrosophic path of length m from s to w, 3;”70}
t0 x5 00,1, ¢ X7 = 0,1],4i X7 0,10, s xm =01, £8P x> (0,1) £

X, — [0, 1] are defined by t() = min{t!(s1, s2), (s1, s2) is an edge of ?Sw}, #W7 = = min{t“(s1, s2),

s1, S2) is an edge of 3 (l) = min{i'(s1, s2), (51, $2) is an edge of 3 z(") = min{:"(s1, s
S, U) S,w
$1, S2) is an edge of 3 (l) = min{ f!(s1, s2), (51, s2) is an edge of 3 = min{ f“(s1, $2),
S, U) S, U)

(s1, $2) is an edge of ?S’w}, respectively.

Example 2.9. Consider an IVN-digraph G = (A4, B) on X = {s,w,a,b,c,d}, such that A = {(s,
[0.4,0.5], [0.5,0.7], [0.8,0.9]), (w, [0.6,0.7], [0.4,0.6], [0.2,0.3]), (a, [0.2,0.6], [0.3,0.6], [0.2,0.6]), (b,
[0.2,0.6], [0.1,0.6], [0.2,0.6]), (e, [0.2,0.7], [0.3,0.5], [0.2,0.6]), d([0.2,0.6],[0.3,0.6],[0.2,0.6])}, and B =

{((s,a), [0.1,0.4], [0.3,0.6], [0.2,0.6]), ((a,c), [0.2,0.6], [0.3,0.5], [0.2,0.6]), ((a,d), [0.2,0.6], [0.3,0.5],
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0.2,0.4]), ((w,b), [0.2,0.6], [0.1,0.6], [0.2,0.3]), (b, ¢}, [0.2,0.4], [0.1,0.2], [0.1,0.3]), ((b,d), [0.1,0.3],
[0.1,0.2], [0.2,0.4])}, as shown in Fig. 10.

5([0.4,0.5],[0.5,0.7], [0.8,0.9]) w([0.6,0.7], 0.4, 0.6], 0.2, 0.3])
® [ ]
= =
= IS
= o
o =2}
S =
& =
o °
= =
= = >
2 Y o S
z | e ol &
POl £ o
= =l 8

¢([0.2,0.7],[0.3,0.5], [0.2,0.6]) d([0.2,0.6],0.3,0.6], [0.2,0.6])

Figure 10: IVN-digraph

We calculate 2-step IVN-in-neighbourhoods as, N5 (s) = {(c, [0.1,0.4], [0.3,0.5], [0.2,0.6]), (d, [0.1,0.4],
[0.3,0.5], [0.2,0.4])} and N3 (w) = {(c, [0.2,0.4], [0.1,0.2], [0.1,0.3]), (d, [0.1,0.3], [0.1,0.2], [0.2,0.3])}.

Definition 2.19. Suppose 8 = (4, ﬁ) is an IVN-digraph. The m-step IVNC-graph of IVN-digraph 8
is denoted by C,,, (8) = (A, B) which has same IVN-set of vertices as in T and has an edge between two
vertices s, w € X in «:m(@) if and only if (N}, (s) "N;\ (w)) is a non-empty IVN-set in G'. The interval-
valued truth-membership value of edge (s, w) in C,,(G) is th (s, w) = [ty (s) At (w)]hE (N (s) N (w)),
and t'% (s, w) = [t4%(s) A t% (w)]h} (N, (s) "N;f (w)), the interval-valued indeterminacy-membership value
of edge (s, w) in (Cm(a) is il (s, w) = [i%(s) A iy (w)]hb (N (s) NN (w)), and i%(s, w) = [i%(s) A
i% (w)]h4 (N} (s) NN} (w)), the interval-valued falsity-membership value of edge (s, w) in C,,(G) is f5(s,
w) = [f4(s) A fa(w)]hs (NG (5) NNT (w)), and fE (s, w) = [f4(s) A f(w)]hg (N (5) NN (w)).

The 2—step IVNC-graph is illustrated by the following example.

Example 2.10. Consider an IVN-digraph G = (A4, g) on X = {s,w,a,b,c,d}, such that A = {(s,
[0.4,0.5], [0.5,0.7], [0.8,0.9]), (w, [0.6,0.7], [0.4,0.6], [0.2,0.3]), (a, [0.2,0.6], [0.3,0.6], [0.2,0.6]), (b,
[0.2,0.6], [0.1,0.6], [0.2,0.6]), (e, [0.2,0.7], [0.3,0.5], [0.2,0.6]), d([0.2,0.6],[0.3,0.6],[0.2,0.6])}, and B =
{(m, [0.1,0.4], [0.3,0.6], [0.2,0.6]), ((a,c), [0.2,0.6], [0.3,0.5], [0.2,0.6]), ((a,d), [0.2,0.6], [0.3,0.5],
[0.2,0.4]), ((w,b), [0.2,0.6], [0.1,0.6], [0.2,0.3]), ((1;7%, 0.2,0.4], [0.1,0.2], [0.1,0.3]), ((b,d), [0.1,0.3],
[0.1,0.2], [0.2,0.4])}, as shown in Fig. 11.
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5([0.4,0.5],[0.5,0.7],[0.8,0.9]) w([0.6,0.7],10.4,0.6], 0.2, 0.3])
® ®

= =
:—A V)
o =
S =
= =
& =
= =
= =)
= = >
= | £ PlS
= o o £~
wola & S

¢([0.2,0.7],0.3,0.5],[0.2,0.6]) d([0.2,0.6],0.3,0.6],[0.2,0.6])

Figure 11: IVN-digraph

We calculate N3 (s) = {(c, [0.1,0.4], [0.3,0.5], [0.2,0.6]), (d, [0.1,0.4], [0.3,0.5], [0.2,0.4]) } and NJ (w) =
{(c, [0.2,0.4], [0.1,0.2], [0.1,0.3]), (d, [0.1,0.3], [0.1,0.2], [0.2,0.3])}. Therefore, N (s) N NJ (w) = {(c,
[0.1,0.4], [0.1,0.2], [0.2,0.6]), (d, [0.1,0.3], [0.1,0.2], [0.2,0.4])}. Thus, t5(s, w) = 0.04, t%(s, w) = 0.20,
ity (s, w) = 0.04, i'% (s, w) = 0.12, fL(s, w) = 0.04 and f¥(s, w) = 0.12. This graph is depicted in Fig.
12.

5(0.4,0.5],[0.5,0.7],[0.8,0.9]) w([0.6,0.7],[0.4,0.6], [0.2,0.3])
® L ]
([0.04,0.20], [0.04,0.12], [0.04,0.12])
e S
IS NS
v o
% S
z &
> @ [ J '3
8 $
2 &
£ K
B4 o
5 N3
2 $
o X ) X
¢([0.2,0.7],[0.3,0.5],[0.2,0.6]) d([0.2,0.6], [0.3,0.6], [0.2, 0.6])

Figure 12: 2-Step IVNC-graph

If a predator s attacks one prey w, then the linkage is shown by an edge (s, w) in an IVN-digraph. But,

if predator needs help of many other mediators s1, s, ..., S;m—_1, then linkage among them is shown by
interval-valued neutrosophic directed path P, in an IVN-digraph. So, m-step prey in an IVN-digraph

is represented by a vertex which is the m-step out-neighbourhood of some vertices. Now, the strength of
an IVNC-graphs is defined below.

Definition 2.20. Let 8 = (4, ?) be an IVN-digraph. Let w be a common vertex of m-step out-

neighbourhoods of vertices s1, sa, ..., . Also, let Bj(u1,v1), a(UQ,UQ), ..., Bi(uy,v,) and B_}‘>(u1, v1),
ﬁ(l@, V2)y e B—{‘(ur, v, ) be the minimum interval-valued truth-membership values, B;(u1,v1), Bj(u2, v2),. . .
B (uy,vy) and B_§‘>(u1,vl), B—§‘>(uQ,Ug), cee B_§‘>(ur, vp) be the minimum indeterminacy-membership val-
ues, B5(u1,v1), Bg(ug,v2), ..., Bs(ur,vy) and B_g(ul,vl), Fg(UQ,UQ), ce B—g‘(ur,vr) be the maximum
false-membership values, of edges of the paths PY} ,, P{} ,, ..., P, respectively. The m-step prey

15



w € X is strong prey if

I Bl Bl

1(u7;,v7;) > 0.5, BQ(U,i,’Ui) > 0.5, Bg(ui,vi) < 0.5,
— — — ‘
BY (u;,v;) > 0.5, B5 (u;,v;) > 0.5, B (u;,v;) < 0.5, foralli=1,2,...,r

The strength of the prey w can be measured by the mapping S : X — [0, 1], such that:

Sw) =1{ S 1B s )] + S OB v)] + (Bl )]

i=1 =1 i=1

+ Z[Eg(unvi)] - Z[B?(uh ;)] — Z[B—ég(ui, Uz‘)]}
i=1

i=1 =1

Example 2.11. Consider an IVN-digraph 8 = (4, B) as shown in Fig. 11, the strength of the prey ¢
is equal to

(0.2 +0.2) + (0.6 +0.4) + (0.1 + 0.1) + (0.6 + 0.2) — (0.2 + 0.1) — (0.3 + 0.3)

=1.5>0.5.
5 >

Hence, c is strong 2-step prey.

We state the following theorem without its proof.

Theorem 2.6. If a prey w ofa = (4, g) is strong, then the strength of w, S(w) > 0.5.

Remark: The converse of the above theorem is not true, i.e. if S(w) > 0.5, then all preys may not be
strong. This can be explained as:

Let S(w) > 0.5 for a prey w in a. So,

S(w) =1{ S (B s, 0] + S (B, 0] + S (Bl 00)

=1 =1 i=1
DB )] = S IBhv)) — (B m]}.
Hence,

{ Z@(ui, v;)] + Z[B_f(ui, ;)] + Z[EQZ(U’% ;)]

i=1 =1

T _/u() T i _1; r
+ > B8 (ui,v)] — Z[Eg(ui,vi)] - > B (Uvnvz‘)]} >3
i=1 i=1 i=1
This result does not necessarily imply that
E{(ui,vi) > 0.5, E;(ui,vi) > 0.5, Bg(ui,vi) < 0.5,
— — — ‘
BY (u;,v;) > 0.5, B5 (u;,v;) > 0.5, B (u;,v;) < 0.5, foralli=1,2,...,r

. ,?m are not strong. So, the converse of the

Sp,w?

Since, all edges of the directed paths ?m ?m

S1,w? S2,wr"
above statement is not true i.e., if S(w) > 0.5, the prey w of 8 may not be strong.
Now, m-step interval-valued neutrosophic neighbouhood graphs are defines below.

Definition 2.21. The m-step IVN-out-neighbourhood of vertex s of an IVN-digraph = (A, ﬁ) is
IVN-set
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Np(s) = (X5, [tév tg]’ [il iu]’ [ é’ fg])v where

s? 7s

Xs = {w| there exists a directed interval-valued neutrosophic path of length m from s to w, P;’fw},
the Xy — [0, 1], t4 : Xy — [0, 1], 4L+ X — [0, 1], 4% : X — [0, 1], fL: Xy — [0, 1], f&: Xs — [0,
1], are defined by ¢!, = min{t'(s1, s), (s1, s2) is an edge of P7,}, t* = min{t“(s1, s2), (s1, s2) is an
edge of ]P’g’j‘w}, il = min{i!(s1, s2), (51, s2) is an edge of ]P’g’j‘w}, i¥ = min{i"(s1, s2), (51, $2) is an edge
of P}, fL = min{f!(s1, s2), (s1, s2) is an edge of P71}, fi = min{f"“(s1, s2), (s1, s2) is an edge of
P, }, respectively.

Definition 2.22. Suppose G = (A, B) is an IVN-graph. Then m-step interval-valued neutrosophic
neighbouhood graph Ny, (G) is defined by N,,(G) = (A, B) where A = ([AY, Ay, ’[Alz, Ay, (AL AY)),

B = (B, BY), [BL, By, (B, By]), BL - X x X — [0, 1], B : X x X = [0, 1], BS : X x X — [0, 1],
BY:XxX—[0,1],B,: X x X - [0, 1], and B¥ : X x X — [0, —1] are such that:

Bi(s,w) = Af(s) A AL (w)hi (Ni(5) N N (w)), Bi (s,w) = A (s) A A (w)h (N (5) N Ny (w)),

By(s,w) = Ay(s) A Ay (w)hy (N (s) NN (w)), By (s,w) = A5 (s) A A3 (w)hi (N (5) 1 Nyn (w)),

BL(s,w) = AY(s) A AL (w)hy (N, (s) NNy (w)),  BY(s,w) = A%(s) A AL (w)h% (N, (s) NNy, (w)), respectively.

s

We state the following theorems without thier proofs.

Theorem 2.7. If all preys 0f8 = (4, ﬁ) are strong, then all edges of (Cm(a) = (A, B) are strong.

A relation is established between m-step IVNC-graph of an IVN-digraph and IVNC-graph of m-step
IVN-digraph.

Theorem 2.8. Ifg is an IVN-digraph and GTT: is the m-step IVN-digraph of 8, then C(am) = (Cm(a)
Theorem 2.9. Let G — (A, B) be an IVN-digraph. If m > |X| then (Cm(a) = (A, B) has no edge.

Theorem 2.10. If all the edges of IVN-digraph 8 = (4, B) are independent strong, then all the edges
of (Cm(a) are independent strong.

3 Conclusion

Graph theory is an enjoyable playground for the research of proof techniques in discrete mathematics.
There are many applications of graph theory in different fields. We have introduced IVNC-graphs and
k-competition IVN-graphs, p-competition IVN-graphs and m-step IVNC-graphs as the generalized struc-
tures of IVNC-graphs. We have described interval-valued neutrosophic open and closed-neighbourhood.
Also we have established some results related to them. We aim to extend our research work to (1) Interval-
valued fuzzy rough graphs; (2) Interval-valued fuzzy rough hypergraphs, (3) Interval-valued fuzzy rough
neutrosophic graphs, and (4) Decision support systems based on IVN-graphs.
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