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Abstract—T-Wave alternans (TWA) is a cardiac phenomenon 

regarded as an index of high risk of sudden cardiac death (SCD). 
Although a number of methods have been proposed for TWA 
detection, their final decision always fully depends on one single 
lead which is usually picked out for its strongest TWA detection 
result among all the other leads. That is to say that lots of useful 
information have been unused and wasted. To our best knowledge, 
no method that fuses TWA detection results independently 
obtained by each lead to do comprehensive decision has been 
introduced. In this paper, a novel multi-lead method for TWA 
fusion detection is proposed. This method combines 
Dezert-Smarandache theory (DSmT) with Laplacian likelihood 
ratio method (LLR) to gain higher detection rate. The proposed 
method was evaluated and compared with standard LLR method 
by means of a simulation study, in which extracted TWA 
waveform and clean background ECG from real records were 
used to synthetize simulated data with different types of simulated 
or physiological noises. These methods were also applied to real 
records from PTB Diagnostic ECG Database. The results are 
presented by constructing receiver-operator characteristic (ROC) 
curves. All test results show that the proposed method has a larger 
margin of separability and higher detection rate than traditional 
methods. A more accurate and robust TWA detection method has 
great value to predict the risk of sudden cardiac death(SCD). 
 

Index Terms—Dezert-Smarandache theory (DSmT), ECG, 
Laplacian likelihood ratio method (LLR), multilead fusion 
detection, T-wave alternans (TWA) 
 

I. INTRODUCTION 
-WAVE alternans (TWA), also known as repolarization 
alternans, is a cardiac phenomenon, which is strongly 

associated with sudden cardiac death (SCD) [1], [2]. Visible 
TWA [see Fig. 1(a)] was first reported in 1908 by Hering [3] and 
at that time it was believed to be rare for the lack of detection 
methodology. In 1981, Adam et al. reported the existence of the 
microvolt level TWA, which is difficult to detect for its small 
amplitude and the strong background noise [4]. Follow-up 
studies and clinical trials had demonstrated the existence of a 
link between TWA and SCD [5], [6]. So an urgent need for 
accurate and robust TWA detection method arises from the 
demands to predict the risk for SCD.  

TWA is defined as a beat-to-beat fluctuation in the amplitude, 
waveform, or duration of the ST-segment or T-wave [see Fig. 
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1(b)] and a lot of methods have been proposed for TWA 
analysis. Some of the most widely used single-lead TWA 
detection methods are the spectral method (SM) [7], [8], the 
modified moving average (MMA) method [9], the complex 
demodulation (CD) method [10] and Laplacian likelihood ratio 
(LLR) method [11], [12]. Based on these methods, some modified 
schemes were proposed [13]-[15]. A unified framework that holds 
these different approaches to TWA analysis can be found in 
[16], which represents the state of art for the existing 
single-lead TWA detection algorithms proposed in the 
literature.  

However, due to the individual varieties of subjects and 
uncertainty of electrode placement in clinical environment, the 
potential TWA component may arise in any of several (or 
single) dimension of vectorcardiogram (VCG), which lead to a 
very high false dismissal probability (also called false negative 
rate) for single-lead detection result. So when multi-lead ECG 
data available, a basic multi-lead strategy adopted by most of 
these single-lead TWA detection methods is that if TWA is 
detected at least in one lead then the overall TWA detection test 
is positive after the single-lead method is applied to each lead 
individually. (For short, the single-lead LLR method with this 
strategy is called “OR” method in following sections.) Some 
multi-lead schemes for TWA detection and analysis have also 
been proposed, as described in [17], [18], which take advantage 
of the correlation of background ECG between leads to 
de-noise and reconstruct the multi-lead ECG signal by using 
principal component analysis (PCA). However, for the decision 
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Fig. 1.  (a) Single lead ECG signal with visible TWA. (b) Superposition of 
averaging waveform of odd and even beats. (c) Alternans waveform from 

different leads. 
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part, the same ‘OR’ strategy as most single-lead methods 
adopted is performed.  

One of the main drawbacks in all these existing multi-lead 
TWA detection methods mentioned above is that only TWA 
component from one lead is used to do the final decision, which 
leads to low utilization rate of data and high sensitivity to 
impulse noise. In some cases, the ‘OR’ strategy may even 
worsen the detection performance when compared to the result 
obtained from specific lead. But multi-lead fusion TWA 
detection by data from all leads is a difficult task for reasons 
below. First, the differences of morphology and amplitude of 
TWA waveform in each lead [see Fig. 1(c)] make it difficult to 
utilize the correlation between leads to extract a fusion TWA 
waveform by multilead signal processing methodologies such 
as PCA. Second, the high conflict between detection results 
from different leads and the different definitions between 
single-lead hypotheses and overall hypotheses make it 
improper to apply existing fusion methodologies directly. That 
is to say, a test subject may be regarded as positive for TWA 
detection test if TWA is detected in certain lead, but it cannot 
be regarded as negative if TWA is not detected in this lead. To 
our best knowledge, no study to address these issues has been 
introduced so far.  

In this paper, a multi-lead fusion TWA detection 
methodology that combines Dezert-Smarandache Theory 
(DSmT) with LLR method is proposed. The proposed fusion 
detection framework based on DSmT can work with different 
single-lead methods after a few modifications. LLR is chosen 
here for its robustness to noise. A detailed comparison of 
performance between LLR and other traditional single-lead 
methods just like SM and MMA can be found in [11], [12]. 
DSmT of plausible and paradoxical reasoning is introduced to 
fusion results from leads into an overall detection result. The 
result obtained by single-lead method from single-lead data 
cannot be used as input of DSmT fusion processing directly, so 
some transformations are used to transform these results into 
basic belief assignment (bba) which can be regarded as the 
universal format of input or output of DSmT fusion processing. 
Besides, in order to evaluate the performance of proposed 
method theoretically, synthetic ECG records with high degree 
of realism were created and a Monte Carlo simulation approach 
was adopted. Experiments on real ECG datasets from public 
databases were also conducted to evaluate its clinical 
performance.  

The remainder of the paper is organized as follows. Section 
II introduces the LLR method for single lead TWA detection 
and DSmT for fusion decision, followed by a detailed 
description of proposed TWA fusion detection method. Section 
III is presented  with detail of datasets and relevant experiments. 
Results are shown in Section IV. Finally, the discussion and 
conclusions are given in Section V and VI respectively.  

II. METHODS 

A. LLR Method 
The LLR method was firstly proposed in [11], [12]. Under 

assumption of Laplacian noise, this method adopts a 

generalized likelihood ratio test (GLRT) on single-lead data to 
decide whether TWA is present or not. 

Just like the most other single-lead methods for TWA 
detection, in the first place, consecutive ST-T complexes are 
extracted, aligned and put into an ST-T matrix which can be 
expressed as 
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where N  is the number of samples in each ST-T complex and 

K  is the number of beats under analysis. In LLR method, the 

ST-T complex of thk  beat is modelled as 

( )1 k

k k= + − +x s a v                              (2) 
where s  is the background ST-T complex vector, a  is the 
TWA waveform and kv  is the vector of additive noise in thk  
beat. Since the noise is assumed zero-mean and K  is even, the 
background ST-T complex can be canceled easily by 
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Since random process kv  is assumed zero-mean and its 

probability distribution function (pdf) is symmetrical, k
′x  can 

be simplified by 

( )1 ,     1, , .k

k k k k K′= − = + =y x a v             (4) 
The maximum likelihood estimation (MLE) of a  is given by 
Table-I in [12] 
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the GLRT statistic can be expressed as 
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Then the GLRT result Z  is compared with a threshold ,λ if
Z λ≥  the detection results is positive, otherwise negative.  
Before going further, it is worth to note that the output result 

Z  essentially represents the ratio between TWA component 
and average noise [12]. Based on this idea, GLRT result Z  can 
be expressed as 

 

noise twa

noise

Z
E E

E
=

+

                              

(8) 

where noiseE  and twaE  are the estimations of energy of 
average noise and TWA component during ST-T segment 
respectively. Different single-lead methods have their own 
ways to estimate the amplitude or energy of TWA component 
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and noise, but most of them finally result in similar a ratio just 
like Z  in LLR. That’s why the proposed DSmT fusion method 
may be able to compatible with other similar single-lead 
method with a few modifications.   

B. Dezert-Smarandache Theory 
Evidence theories are widely applied in the field of 

information fusion and DSmT is one of the most appealing and 
promising theories. The task of DSmT is to combine imprecise, 
uncertain, incomplete, qualitative or quantitative and possibly 
conflicting information under consideration for 
decision-making support. A short introduction to DSmT can be 
found in [19]. More details and examples can be found in [20]. 
DSmT is extended and refined from Dempster-Shafer Theory 
(DST) [21] by proposing new underlying models for the frames 
of discernment (FOD) in order to fit better with the nature of 
real problems, and new combination and conditioning rules for 
circumventing problems with DS rule especially when the 
sources to combine are highly conflicting. More details about 
the relationship between DST and DSmT can be found in [22]. 
Three basic parts of DSmT that will be used in this paper are 
briefly recalled as follows: 

● Frame of Discernment and Basic Belief Assignment: In 
DSmT framework, all the sources of evidences must be unified 
and transformed into (generalized) basic belief assignment (bba, 
also called basic probability function or mass function) [20] 
based on the same frame of discernment (FOD). FOD of the 
problem under consideration is defined as a finite set 

{ }1 2, , , nθ θ θΘ =   which consists of all possible hypotheses 

, 1, ,i i nθ =  . In order to deal with vague/fuzzy and relative 
concepts, all the hypotheses (or elements) are not necessarily 
exclusive and there is no restriction except exhaustivity. To 
describe all propositions built from hypotheses of Θ  with   
and  , a fusion space called hyper-power set DΘ  (Dedekind’s 
lattice) is introduced and the mapping function 

( ) [ ]. : 0,1m DΘ →  is defined as bba which satisfies: 

( ) 1A D m AΘ∈ =∑  and ( ) 0.m ∅ =                (9) 

In this paper, in order to be compatible with single-lead 
method, the hypotheses are defined the same as (6) and the 
FOD can be expressed as 

{ }1 1 2 0overall positive,  overall negative .H Hθ θΘ = = = = =
    (10) 

Since the fact that the result of GLRT cannot  be recognized as 
positive and negative at the same time, the two hypotheses are 
considered truly exhaustive. So the hyper-power set DΘ  is 
simplified as a power set 2Θ  which can be expressed as 

{ }1 2 1 22 ,  ,  .D A B Cθ θ θ θΘ Θ= = = = =         (11) 

That is to say, before fusion process, GLRT result from thn  
lead must be transformed into a bba on power set 2Θ  which can 
be expressed as a vector 

 ( ) ( ) ( )[ ]T  .n n n nm A m B m C=m                   (12) 
● Proportional Conflict Redistribution Rule no. 5 and no. 

6: In DSmT, many rules were proposed to combine basic belief 
assignments (bba’s) and Proportional Conflict Redistribution 
no. 5 (PCR5) is one of the most efficient rules. The basic idea of 
PCR5 is transferring the conflicting mass only to the elements 
involved in the conflict and proportionally to their individual 
masses to preserve all input information in the fusion process. 
PCR5 can be expressed as 
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A variant of PCR5, called Proportional Conflict 
Redistribution no. 6 (PCR6), for combining 2s >  sources and 
working in more generalized fusion spaces (hyper-power sets 
or super power-sets), was firstly proposed by Martin and 
Osswald in [20], Vol. 2. PCR6 can be expressed as 
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More details about PCR5/PCR6 can be found in [20]. 
For sharing the same redistribution strategy for conflicting 

mass and same fusion space, PCR6 coincides with PCR5 when 
the number of bba’s from source evidences is two. So to make 
these rules easy to comprehend, a block diagram of fusion 
process based on PCR5/PCR6 with fusion space in (11) is 
shown in Fig. 2(a). In this block diagram,  

( ) ( )1 2XYm m X m Y=                             (17) 
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where , 2X Y Θ∈ . Some fusion tests according to this block 
diagram had been done to show its basic behavior and 
performance in Fig. 2(b). It is worth to note that the test results 
during the annotation rectangle indicate that how the mass of 
C  in bba1 redistribution is determined by the mass distribution 
of another bba. 

Since the number of leads that  may access in clinical setting 
is usually larger than 2 (3 for Frank XYZ leads and 12 for 
conventional leads), PCR6 will be used in this paper to combine 
bba’s built on fusion space defined in (11). 

● Decision-making: A final decision based on bba must be 
taken after fusion process. Various decision rules are proposed 
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in the literature. The most common are the maximum 
credibility and maximum plausibility and the probability. 
Based on these common rules, many variant decision rules, just 
like Generalized Pignistic Transformation (GPT), DSmP and 
Sudano’s rule, etc. provide more reasonable options for specific 
situations. Consequently, the maximum credibility rule was 
chosen for its simplicity of implementation in this paper. 

C. Multi-lead Scheme 
The block diagram of the proposed multi-lead scheme is 

shown in Fig. 3(a). It consists of five stages: signal 
preprocessing, ST-T matrix generation, LLR detection, bba 

generation & unification and fusion detection. 
1) Signal Preprocessing: In signal preprocessing stage, the 

level of out-of-band noises in raw signal is reduced and ST-T 
complexes are extracted and aligned to construct a matrix of 
ST-T complex lead by lead. To achieve this goal, we utilized 
the similar preprocessing steps across all methods [24]. Firstly, 
in order to eliminate high-frequency noise, a low-pass-filter 
(LPF) with a cutoff frequency of 150 Hz is adopted. Secondly, 
baseline wander is removed with a cubic splines interpolation 
technique. Thirdly, a QRS detector from PhysioToolkit [25], 
whose algorithm can be found in [26], [27], is used to locate the 
fiducial point and then the position of each ST-T complex. 
Fourthly, 32 (which required by LLR method) consecutive 
ST-T complexes from a single lead are extracted to construct 
the ST-T matrix nX  of thn  lead. 

2) LLR Detection: After signal preprocessing, a standard 
single-lead LLR method is performed in the matrixes of ST-T 
complex to do TWA detection. The background ECG are firstly 
removed by (3) and then the GLRT is applied to each matrix of 
ST-T complex as shown in Section II-A. The GLRT result of 
this lead-by-lead detection is denoted as nZ . In traditional 
strategy, the overall TWA detection is positive if TWA is 
detected at least in one matrix of ST-T complex. In proposed 
multi-lead scheme, the GLRT results ,  1, 2, ,nZ n N=   are 
delivered to next stage to do fusion detection as shown in Fig. 
3(a). 

3) Bba Generation: In bba generation stage, the GLRT 
results are transformed into bba’s. According to the description 
of (8), nZ ′  is designed as the ratio of power of TWA to noise 
estimation as 

.n
twa

noise

Z
E
E

′ =                                     (19) 

Combining it with (8), the single-lead GLRT results are 
transformed into nZ ′  by 

2 1,n nZ Z′ = −                                    (20) 

which can be expressed as bba nm  of thn  lead 
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where single-lead FOD is defined as 
{ }single lead positive,  single lead negative .s s sA BΘ = = =  (22) 

4) Fusion Detection: In fusion detection stage, PCR6 is 
applied to combine all these bba’s from each lead into one. It is 
worthy to note that, for TWA fusion detection, the definitions 
of hypothesizes in (10) are not uniformly the same as 
hypothesizes in (22). To unify the definition of FOD before 
PCR6 fusion, a step called FOD unification is performed by 
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Fig. 2.  (a) Block diagram of fusion process based on PCR5. (b) Input & output 

bba’s of fusion process based on PCR5. 
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where hypotheses { , , }A B C  are defined in (11). 
The basic idea here is that the overall detection result may 

be regarded as positive if TWA is detected in at least one lead 
(i.e. sA A= ), but the overall result cannot be regarded as 
positive if TWA is not detected in a specific single lead (i.e. 

sB B≠ ). The spare mass of sB  is redistributed to C  which 
represents the uncertain mass that will be determined by 
other leads. Then, the fusion based on PCR6 is performed as 
described in Section II-B.  

After fusion process, maximum credibility rule is used to 
do final decision based on overallm . For ease of comparison 

between single-lead method and multi-lead scheme, overallZ  is 
defined as 

( )overall overallZ m A=                             (24) 

which means that if overallZ λ≥ , the overall TWA detection 
overall result is positive, otherwise negative.  

III. EXPERIMENTS 
In this section, records from three two databases are used to 

evaluate the proposed multi-lead fusion detection method. How 
these signals synthesized or recorded is described and then 
three methods (LLR method on single-lead data, LLR method 
on multi-lead data with “OR” strategy and proposed multi-lead 
method) are applied to detect TWA component on these records. 
The results are shown and the performances of the three 
methods are compared.  

A. Synthetic Signal Database 
To evaluate the improvement of proposed multi-lead scheme 

theoretically, a Monte Carlo simulation study was carried out. 
Since the actual presence of alternans is unknown in real 

records, a synthetic database was generated and the process of 
synthesizing ECG records with TWA is shown in Fig. 4. 
Synthetic records were generated by adding noise and TWA to 
a clean background ECG. The synthesis scheme was designed 
on the basis of simulation setup in [18]. Four types of noise 
were added, and they were Gaussian (ga) noise, Laplacian (la) 
noise, electrode motion (em) noise and muscular activity (ma) 
noise. Noise ‘ga’ and ‘la’ were generated randomly and ‘em’ 
and ‘ma’ were extracted from real noise records from MIT-BIH 
Noise Stress Test Database. More details about these 2 types of 
noise and how these records were recorded can be found in [28]. 
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Fig. 3.  (a) Block diagram of the proposed multi-lead scheme. (b) Boxplots of three significant variables in detection process: nZ , nZ ′  and overallZ  with ANR=-37 

dB and ANR=-Inf means no TWA component. 
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Because each single-lead data are processed individually by all 
the methods to apply, simulation of correlation between 
different types of noise in different leads is not necessary in this 
simulation study. To synthesize multi-lead ECG records with 
TWA as universal as possible, the TWA waveform was 
extracted from 4 records: “s0260lre”, “s0261lre”, “s0265lre” 
and “s0315lre” by standard LLR method lead by lead. All these 
records come from “patient080” which have visible TWA. 
Alternans-to-noise (ANR) is widely used to access noise in 
TWA simulation study as known priori [11], [14], [29] and it is 
defined as the averaged relationship between the alternant wave 
power and the noise power in the ST-T complexes from one 
single lead. Considering multi-lead background, if the ka  and 

kv  of thl  lead in (2) can be also expressed as ,l ka  and ,l kv  

respectively, traditional definition of ANR of thl  lead can be 
defined as 

( )
( )

1 2
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1 2
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a
10 log

v
.

K N

l kk n
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l
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= =
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= =

=
∑ ∑
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               (25) 

In this paper, this definition is expanded as overall ANR to 
access noise in multi-lead signals, which can be defined as 

( )
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10 log
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l kl k n

n
ANR

n

−

= = =

−

= = =

=
∑ ∑ ∑
∑ ∑ ∑

       (26) 

All the ANR mentioned below refers to ANRoverall  unless 
otherwise stated. Besides, it is worthy to note that, to eliminate 
the effects of ST-T complex location error, which should not be 
ignored when ANR is low, the locations of ST-T complexes 
were determined before noise was added. For each type of noise 
and each specific ANR, 1000 records were generated for the 
Moto Carlo simulation. The detection rate of each 1000 
synthetic records is defined as the percentage of tests whose 
results are positive. 

For each method to test, the experiment was carried out in 2 
steps. Firstly, calculate  the threshold, which made the detection 
rate on the 1000 synthetic records without TWA ( ANR = −∞ ) 
equal to 0.01. This rate is defined as probability of detection, 
which called False Positive Rate (FPR) in detection problem. 
And then with this threshold, the detection rates on synthetic 

 
Fig. 5.  PD for PFA=0.01 of the proposed DSmT fusion method, traditional “OR” method and standard LLR method on each single lead versus ANR. All results 

obtained with an analysis window of 32 beats. Sub-figure below shows the difference between PD of proposed DSmT fusion method and traditional “OR” method 
with the same ANR. Sub-figure on the right side shows the difference of ANR with same PD of proposed DSmT fusion method and traditional “OR” method. The 

mean difference is shown in dotted line. 
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records with TWA whose ANR ranges from -50 dB to 0 dB 
were calculated. This rate is also called True Positive Rate 
(TPR) and the results are shown in Fig. 5. Secondly, with 
specific ANR, FPR and TPR with threshold ranges from 0 to 1 
were calculated. The results are shown as ROC curves in Fig. 6. 

In Fig. 3(b), boxplots of lZ , lZ ′′  and overallZ ′′  are shown. The 
9th lead (aka. lead V3 in standard 12 leads) was picked out to 
stand for all the single-leads for its largest amplitude of ST-T 
complex. It is obvious that the proportion of overlapped part 
between pdfs of overallZ ′′  is much smaller than lZ ′′  which means 
that the proposed fusion detection method has a higher 
detection power than single-lead methods.  

In Fig. 5, TPR vs. ANR when FPR 0.01=  are shown. The 
maximum improvement 67.99% can be observed when 
ANR 14 dB= −  with ‘em’ noise. Besides, the ‘OR’ method is 
not always better than single-lead method. In cases of ‘ga’ and 
‘ma’ noise, some single-lead methods have better performance 
than ‘OR’ method when ANR is low.  In Fig. 6, ROC curves are 
drawn to show the FPR and TPR as a function of the detection 
thresholds γ  with a fixed ANR. It is obvious that the area under 
the ROC curves of the DSmT fusion detection method was 
greater than the area under curves of “OR” strategy based on 
single-lead LLR method which means a better detection 
performance.  

B. PTB Diagnostic Database 

As an example of application to real data, the proposed 
DSmT method was applied to a set of records from PTB 
Diagnostic Database. This database was provided by National 
Metrology Institute of Germany, which is also known as 
Physikalisch-Technische Bundesanstalt (PTB). These records 
were collected by Professor Michael Oeff, M.D. from patients 
and healthy volunteers. Each record was digitalized at 1000 
samples per second, with 16 bit resolution over a range of ±
16.384 mV with 15 leads which including 12 conventional 
leads and 3 Frank leads.  

To acquire universal result with adequate signals, two groups 
of records labeled with “healthy control” and “myocardial 
infarction”, which contain 368 records from 148 patients and 
80 records from 52 healthy volunteers respectively, were used 
to be analyzed by single-lead LLR methods, “OR” method and 
proposed DSmT method. Considering computational 
complexity and practical clinical setting, only 12 conventional 
leads were used in this experiment. The results of tests on 
subjects of “healthy control” and “myocardial infarction” by 
different methods are shown as ROC curves in Fig. 7.  

To show the compatibility with other single-lead method, 
similar tests which use standard SM method as the single-lead 
method rather than LLR method were applied on the same 
records. The single-lead SM detection result smZ , which can be 
expressed as 

 
Fig. 6.  ROC curves of detection results obtained by proposed DSmT fusion method, traditional “OR” method and standard LLR method on each single lead. 

  

0 20 40 60 80 100
0

20

40

60

80

100

FPR (%)

TP
R

 (%
)

"ga" noise (ANR = -37 dB)

 

 

DSmT
OR
single

0 20 40 60 80 100
0

20

40

60

80

100

FPR (%)
TP

R
 (%

)

"la" noise (ANR = -37 dB)

 

 

DSmT
OR
single

0 20 40 60 80 100
0

20

40

60

80

100

FPR (%)

TP
R

 (%
)

"ma" noise (ANR = -14 dB)

 

 

DSmT
OR
single

0 20 40 60 80 100
0

20

40

60

80

100

FPR (%)

TP
R

 (%
)

"em" noise (ANR = -16 dB)

 

 

DSmT
OR
single

 
Fig. 7.  Comparison between ROC curves of detection results on real records from PTBDB obtained by OR method and DSmT method based on different 

single-lead method: (a) LLR and (b) SM method. 
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( ) ,
( )
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noise
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E psd E

− ′= = =        (27) 

is directly used to construct input bba nm  of thn  lead by (20). 
The 0.5psd  represents the alternans power which is the 
amplitude of power spectral density (pdf) at 0.5 cycles per beat 
(cps). The 0.4~0.46( )E psd  represents the power of background 
noise which is calculated as the mean amplitude of pdf during 
0.4~0.46 cps. Though SM method generally use a threshold 

3λ =  to make the single-lead decision, the threshold was not 
fixed during calculating ROC curves.  The results are shown as 
ROC curves in Fig. 7.  

It should be specially explained that the length of data for 
each method is 129 beats for every records. The standard SM 
method require 129 beats while LLR method require 33 beats 
for every time. So a sliding window with 16 beats for every step 
in time is adopted by LLR method and the maximum result will 
be picked out to be the final result of corresponding lead. When 
some records do not have 129 beats, all the data were used to do 
single-lead TWA detection. 

From ROC curves in Fig. 7, one can draw a conclusion that 
whichever of SM and LLR method is chosen as the single-lead 
detection method, DSmT fusion detection generally achieve 
improvement of detection power, especially in FPR range 
below 10%. Besides, to compare these ROC curves in a simple 
way, the parameter called S95 proposed in [12] was calculated 
and shown in Table I.  

IV. DISCUSSION 

According to simulation results, the proposed DSmT method 
has higher performance than “OR” method and single-lead 
LLR method. For Gaussian (“ga”) noise, Laplacian (“la”) noise, 
muscular activity (ma) and electrode motion (em) noise, the 
maximum improvements are 66.89%, 61.30%, 64.76% and 
67.99%. From the point of ANR reduction, the proposed DSmT 
method can achieve the same detection power with 3.91 dB, 
3.51 dB, 3.68 dB and 3.44 dB lower ANR for “ga”,”la”,”ma” 
and “em” noise respectively.  

It is worthy to note that, in Fig. 5, the usually used “OR” 
method does not always have a better detection performance 
than all the single-lead methods especially when ANR is low. 
This is because that “OR” method improves both detection 
sensitivities of TWA and noise. With high ANR, the TWA 
becomes easy to detect by “OR” method while the noise has 
little effect. However, when ANR is low, noise suppresses 
TWA component and the FPR becomes high for the “OR” 
method , which  is more likely to misdiagnose noise as TWA 
than single-lead method. To keep FPR fixed, threshold of “OR” 
method becomes lower than that of  single-lead methods which 

naturally resulting in a reduction of TPR. Even so, the “OR” 
method is still widely used because in practical TWA detection, 
the distribution of TWA among leads and true ANR are 
unknown and varies from people to people, even time to time. 
So single-lead method with fixed lead cannot always ensure 
existence of TWA component with a high ANR, instead, it may 
cause a very high False Negative Rate (FNR). Following these 
analysis, a conclusion can be made that the “OR” method is a 
simple and crude fusion strategy which is adopted for reducing 
the FNR caused by the uncertain distribution of TWA among 
leads at the cost of low detection rate when ANR is low. In fact, 
similar to single-lead methods, it also uses only one lead to 
stand for all the others which means that any changes in leads, 
which don't have the biggest TWA component among others, 
are ignored and have no effect on the final decision. However, 
for proposed DSmT method, benefitted from the more 
reasonable fusion strategy and fully consideration of logical 
relationship between single-lead detection results and overall 
detection result, the detection performance mainly depends on 
the magnitude of conflict and treat the noise from different 
leads equally which leads to a better suppression of noise. In 
Fig. 5, it can be also noticed that the improvement of the 
proposed DSmT method is obvious for “ga”, “la” and “ma” 
noise while it is worse when facing “em” noise. That is because 
that LLR method is more sensitive to “em” noise and provide a 
more conflicting result  between leads.  

The proposed DSmT method not just works in simulation, 
but also on real records. The area under ROC curves obtained 
by DSmT fusion detection method is obviously larger than that 
by single-lead method including LLR and SM respectively in 
Fig. 7(a) and Fig. 7(b). Clinically, priority is usually given to 
ensure a low FPR, so the sections of ROC curves in FPR 
ranging below 10%, which have been enlarged in Fig. 7, should 
be given more attentions. In these parts, significant 
improvement obtained by DSmT fusion method can be 
observed. 

It is worthy to note that the sections of ROC curves in FPR 
ranging above 20% do not show obvious superior to TPR 
obtained by “OR” method, and in a few sections, the TPR 
obtained by “OR” method is even larger than TPR obtain by 
DSmT method. For this part of test results, three major aspects 
were discussed as follows. 

First, the definitions of TPR of ROC curves in simulation 
study and tests on real records are different. In simulation study, 
TPR means proportion of the number of records detected as 
positive among all records which contains TWA component for 
sure. But in tests on real records, TPR means proportion of the 
number of records detected as positive among all records from 
patients which may not show any TWA during recording. This 
is caused by a fact that TWA components usually do not 
emerge constantly. This fact can also partially explain why 
LLR method, which has a shorter detection range (32 beats per 
detection), achieves a better performance in tests on real 
records. Another detail can be observed from Fig. 7 is that the 
increment of ROC obtained by DSmT method based on LLR is 
small in the range of 5%~15% FPR. This gap indicates that the 
records from patients can be generally sorted into 2 groups. A 

TABLE I 
PERFORMANCES OF DETECTORS (S95) 

    SM LLR 

S95(%) 
OR 6.76 20.27 

DSmT 14.86 29.05 
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reasonable hypothesis can be made here is that the records 
during low FPR indeed contains TWA component while the 
records during high FPR, which have a similar distribution with 
records from healthy volunteers, do not contain any TWA 
component (or their TWA component is so weak or brief that it 
has been covered up by noise). Furthermore, the percentage of 
records contains TWA among all patients’ records can be rough 
to estimate as 30% according to the position of the gap between 
these 2 groups. 

Second, concluded from simulation results shown in Fig. 5, 
the improvement gained by DSmT method is mainly 
concentrated in certain range of ANR with any types of noise. 
Detection results obtained by no mater “OR” or DSmT method 
on records with too high or too low ANR are similar. In tests on 
real records, the true ANR of real records are unknown. So just 
part of patients’ records will be identified as positive while they 
are missed by single-lead method. 

Third, the traditional TWA detection is usually carried out on 
stress test records which have a higher percentage of records 
containing TWA component among all patients’ records. Stress 
test records are usually related to strenuous exercise which is 
not appropriate for quite a part of patients. This recording 
method also counts against long-term TWA monitoring for 
high risky populations in daily life. So in this study, 
conventional long-term (Holter) ECG recordings from PTB 
Diagnostic Database are used to observe TWA in the context of 
activities of daily living. This may lead to a relatively poor 
performance in general, but with relatively low ANR, the 
advantages of DSmT in fusing and dealing with conflicting 
information are fully shown. 

Another important advantage of proposed fusion method is 
that this method can be combined with most single-lead method 
with a few modifications to expand their detection ability while 
multi-lead ECG data can be accessed. Based on unmodified 
single-lead method, the proposed DSmT method can be 
combined with most single-lead method to improve their 
detection performance, what's more, it even can be easily 
applied to detection of other types of weak biological signals 
with a few modifications. To achieve that, the LLR used in 
proposed DSmT method is standard and the fusion algorithm is 
designed as an additive module. For the multi-lead method 
proposed in [18], the proposed DSmT method can also be 
combined with it by replacing the “OR” module described in 
[18]. That is because the multi-lead method in [18] makes use 
of the correlation among leads to do noise reduction, but for 
fusion parts, it also uses the traditional “OR” strategy which can 
be replaced by DSmT fusion method described in this paper to 
improve its performance. 

At the same time, the proposed DSmT method is far from 
perfect and it also has some problems to solve and there is still 
room for improvement. First of all, like many other methods 
based on DSmT, the proposed multi-lead method is restricted 
by the large computational complexity. The amount of 
computations increases sharply as that of leads and hypotheses 
in 2Θ  increase. Let L be the number of leads and K  be the 
number of hypotheses in 2Θ , the number of masses on fusion 

space will be L
mn K= . In the simulation of this paper, 

3,  12K L= =  and 123 531441mn = = ,which will spend about 
13.51s with Intel E8400@3.6GHz for each DSmT fusion 
detection. Besides, the improvement of proposed DSmT 
method is significantly related to the number of leads, and the 
more leads take part in the fusion detection, the more 
information can be made use of in detection, the better 
performance of proposed method will have. When the leads 
lack in numbers, the improvement will be very limited. The 
most promising potential improvement may lie in estimating 
the importance of each lead and using these information in 
DSmT fusion process to gain more accurate detection results. 
Many factors (just like ANR, power of ST-T wave and residual 
of baseline) may have impact on the credibility and accuracy of 
detection results of each lead. How to use single factor or 
combine some of them to estimate the weights of each lead will 
be the focus of future researches. 

V. CONCLUSION 
In this paper, a novel multi-lead TWA fusion detection 

method in ECG was proposed. The proposed DSmT method 
was designed based on LLR method and DSmT. By combining 
these two methods, the proposed method can make full use of 
all information from every lead to gain a higher detection rate 
than standard single-lead LLR method and its variant called 
“OR” method in TWA detection. The proposed method was 
firstly assessed by a set of synthetic records with different types 
of noise and specific ANR as priori, then it was applied to a set 
of real records. All results from these experiments showed 
improvements in detection rates. Finally, we analyzed the 
experiment results and discussed its advantages, disadvantages 
and what should be done in the future to further enhance its 
detection power. 
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