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An attempt of using elementary approach to prove Fermat’s last theorem (FLT)

is given. For infinitely many prime numbers, Case I of the FLT can be proved

using this approach. Furthermore, if a conjecture proposed in this paper is

true (k3-conjecture), then case I of the FLT is proved for all prime numbers.

For case II of the FLT, a constraint for possible solutions is obtained.

Introduction

Fermat’s Last Theorem (conjecture before 1995) asserts that the following equation has no

integer soluation of a, b, and c when N ≥ 3.

aN + bN = cN , (1)

It is one of the most famous mathematical theorem, perhaps due to what Mr. Fermat wrote on

the margin of his copy of Arithmetica of Diophantus: “I have discovered a truly remarkable
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proof of this theorem which this margin is too small to contain.” Ever since then many genera-

tions of mathematician have attempted to find such a proof. Some 350 years later, the conjecture

was proved by Wiles (1) and Taylor and Wiles (2) in 1994 through proving a special case of the

Shimura-Taniyama Conjecture. The proof was by no means “elementary”, and one wonders if

an elementary proof exists.

Here we present an approach to prove case I of FLT.

The Proof

We prove it by the method of contradiction. We only need to prove it for N being an odd prime

number. Rewrite equation (1) to,

aN + bN + cN = 0. (2)

We refer to equation (2) as the FLT below. As done previously by many workers, we separate

the proof to two cases (case I and II) according to if N divides one of a, b, c. We make use of

the Barlow-Abel relations. These relations are (e.g. 3).

Barlow-Abel Relation case I: If pairwise relatively prime integers a, b, c satisfy FLT for

N > 2, and are not multiples of N , then we have

a+ b = tN ,
aN + bN

a+ b
= tN1 , c = −tt1 (3)

where t and t1 are co-prime and t1 is odd. Similar relations exist for b+ c and c+ a.

Barlow-Abel Relation case II: If N | c and N - (ab), then we have,

a+ b = NαN−1tN ,
aN + bN

a+ b
= NtN1 , c = −Nαtt1, (4)

b+ c = rN ,
bN + cN

b+ c
= rN1 , a = −rr1 (5)

c+ a = sN ,
cN + aN

c+ a
= sN1 , b = −ss1 (6)
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where t and t1 are co-prime and t1 is odd; r and r1 are co-prime and r1 is odd; s and s1 are

co-prime and s1 is odd.

A notation: Any number a can be written as a = a0 + ã1N , where 0 ≤ |a0| ≤ N − 1. And

ã1 can be further written as ã1 = a1 + ã2N . Clearly, ãi = ai (mod N). In the following, we use

this notation for a, b and c, but not other variables.

Case I: N - (abc), i.e. N is relatively prime to a, b and c. From Fermat’s little theorem we

have,

a+ b+ c = xNα = (x0 + x̃1N)Nα, (7)

where α ≥ 1 and |x0| < N . So a+ b+ c is of order Nα.

By multiplying q < N , we can always transform a, b, c to the following,

a → 1 + ã1N (8)

b → k + b̃1N (9)

c → −(k + 1) + c̃1N (10)

where 1 ≤ k ≤ N − 2. Requiring aN + bN + cN = 0 leads to the condition

1N + kN − (k + 1)N = 0 mod N2 (11)

Equation (11) is a rather strong constraint on N . For prime numbers smaller than 30, no such k

exists for N = 3, 5, 11, 17, 23, 29. Therefore Fermat’s Last Theorem for case I is immediatedly

proved for these prime numbers. We now consider prime numbers for which equation (11)

is satisfied. For example, N = 7, N = 13 and N = 19. Consider the auxiliary quantity

Ω = aN + (b+ c)N . We have

Ω = (b+ c)N + aN = (xNα − a)N + aN = x0N
α+1 +O(Nα+2). (12)

So Ω is of order Nα+1.
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From the Barlow-Abel relation, we can write (b+ c) as rN . Therefore,

Ω = (r)N
2

+ aN = (r0 + r̃1N)N
2

+ (a0 + ã1N)N (13)

Clearly, rN2
= r0 (mod N), so r0 = −a0. Let aN−10 = 1 +maN , we then have,

Ω = (−a0 + r̃1N)N
2

+ (a0 + ã1N)N = −aN2

0 + aN
2−1

0 r̃1N
3 + aN0 + aN−10 ã1N

2 + ...

= −aN0 (1 +maN)N + r̃1N
3 + aN0 + ã1N

2 + ...

= (ã1 −maa0)N
2 +O(N3) (14)

We first show that α can not be 1. For if so, then the fact that a+ b+ c is of order Nα yields

a1 + b1 + c1 = x0. From equation (12) and (14) we have to have,

(a1 −maa0) = x0 mod N (15)

Similarly, by considering (a+ b)N + cN and (c+ a)N + bN , we obtain,

(b1 −mbb0) = x0 mod N, (c1 −mcc0) = x0 mod N (16)

where bN−10 = 1 +mbN and cN−10 = 1 +mcN are understood.

Adding equations (15) and (16) together we see that,

maa0 +mbb0 +mcc0 + 2x0 = 0 mod N (17)

On the other hand we have,

aN + bN + cN = aN0 + bN0 + cN0 + (a1 + b1 + c1)N
2 +O(N3)

= a0(1 +maN) + b0(1 +mbN) + c0(1 +mcN) + x0N
2 +O(N3)

= (a0ma + b0mb + c0mc)N + x0N
2 +O(N3). (18)

where we have used a0 + b0 + c0 = 0. So

a0ma + b0mb + c0mc = −x0N mod N2. (19)
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Therefore

a0ma + b0mb + c0mc = 0 mod N (20)

So equation (17) contradicts with (20). Therefore we must have x0 = 0 and α ≥ 2.

If x0 = 0 and α ≥ 2, we can expand a, b and c to,

a = a0 + a1N + ã2N
2, b = b0 + b1N + b̃2N

2, c = c0 + c1N + c̃2N
2 (21)

with a0 + b0 + c0 = 0 and a1 + b1 + c1 = 0. Equations (15) and (16) become,

a1 = maa0 mod N, b1 = mbb0 mod N, c1 = mcc0 mod N, (22)

So,

a = a0(1 +maN) + ..., b = b0(1 +mbN) + ..., c = c0(1 +mcN) + ..., (23)

Or,

a = aN0 + ã′2N
2, b = bN0 + b̃′2N

2, c = cN0 + c̃′2N
2 (24)

Since a1 + b1 + c1 = 0, from the first line of equation (18) we have,

aN0 + bN0 + cN0 = 0 mod N3 (25)

Note that if a+b+c is of orderN2, then ã′2, b̃′2 and c̃′2 in equation (24) has to satisfy, ã′2+b̃′2+c̃′2 =

∆′N2 where ∆′ 6= 0 mod N. Let q = a−10 , i.e., a0q = 1 + εaN . Denote b0q = k + εbN , and

c0q = −(k + 1) + εcN . Multiply qN to equation (24), let anew = qNa, bnew = qNb, and

cnew = qNc, we find,

anew = (a0q)
N + (ã′2q

N)N2 = (1 + εaN)N + (ã′2q
N)N2 = 1 + ã′′2N

2 (26)

bnew = (b0q)
N + (b̃′2q

N)N2 = (k + εbN)N + (b̃′2q
N)N2 = kN + b̃′′2N

2 (27)

cnew = (c0q)
N + (c̃′2q

N)N2 = (−(k + 1) + εcN)N + (c̃′2q
N)N2 = −(k + 1)N + c̃′′2N

2 (28)

5



Define m and m′ through,

kN−1 = 1 +mN, (k + 1)N−1 = 1 +m′N, (29)

Equations (27) and (28) can be rewritten as,

bnew = k + kmN + b̃′′′2 N
2 (30)

cnew = −(k + 1)− (k + 1)m′N + c̃′′′2 N
2 (31)

Since (a+ b+ c) is of order Nα, so anew + bnew + cnew is also of order Nα. Because α ≥ 2, we

have

km = (k + 1)m′ mod N (32)

So, we can write

km = b1 + b̃2N, and (k + 1)m′ = b1 + c̃2N, (33)

where we have reused the symbols b̃2 and c̃2. Requiring aNnew + bNnew + cNnew = 0 leads to,

1 + kN − (k + 1)N = 0 mod N3, or 1 + kN − (k + 1)N = δN3, δ 6= 0 mod N (34)

This is an even stronger condition than equation (11). Of the 167 (1228) prime numbers smaller

than 1000 (10000), 80 (611) of them, i.e. only 50% of them have k’s satisfy equation (34). With

the condition (34), equation (32) becomes,

km = (k + 1)m′ mod N2, (35)

If the set [1, k,−(k+1)] satisfies the requirement (34), then the set [1, k−N,N−(k+1)] also

satisfies (34). Denote this as the adjoint set. We will regard these two as the same set. Denote

q < N to be k−1, i.e., qk = 1 (mod N), then we can generate another set [q, 1,−(q+ 1)] which

also satisfies (34). Denote k∗ = N − (q + 1), with its inverse to be q∗, then the adjoint set of

[q, 1,−(q + 1)] is [q − N, 1, N − (q + 1)] = [−(k∗ + 1), 1, k∗]; from which we can multiply
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q∗ to generate another set [−(q∗ + 1), q∗, 1]. So from one set [1, k,−(k + 1)] we obtain three

sets [1, k,−(k + 1)], [q, 1,−(q + 1)] and [−(q∗ + 1), q∗, 1]. These three sets are either distinct

or they can be the same.

A quick check of all prime numbers smaller than 10000 shows that if the requirement (34) is

satisfied, then only one set of [1, k, k+1] exists, i.e., the three sets [1, k,−(k+1)], [q, 1,−(q+1)]

and [−(q∗ + 1), q∗, 1] are the same.

Definition: a prime number N is called a k3-prime if the condition (34) is satisfied by one

and only one set of [1, k,−(k+ 1)] (not counting adjoint sets). For k3-primes, case I of FLT can

be proved in below. The k3 conjecture: All prime numbers which satisfy condition (34) are

k3-primes. For any given prime number N , it is straightforward to verify the condition (34),

therefore if the k3 conjecture is true. However, the author failed to see a simple argument to

prove he k3-conjecture.

IfN is a k3-prime, then the three sets which are generated from the single set [1, k,−(k+1)]

are the same, so we must have,

−(k + 1) = k2 − βN where 1 < β < N − 1. (36)

From equation (36), we also obtain k2+k+1 = βN , k(k+1) = −1+βN , k3 = 1+(k−1)βN ,

and k(k + 2) = (k − 1) + βN . Furthermore, from equation (35) we have,

m′ = (k + 1)m mod N2. (37)

We can multiply kN and k2N to the requirement (34) to obtain,

kN + k2N − (k(k + 1))N = δkNN3, (38)

k2N + k3N − (k2(k + 1))N = δk2NN3, (39)
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Using equation (29), the requirements (34), (38) and (39) yield the following relationships:

β = (k + 2)m mod N (40)

(k + 1)m2 + 2δ = 0 mod N (41)

where δ in equation (41) is defined in equation (34).

To prove FLT, below we first show that α can not be 2, then show that α can not be 3, etc.

This is the standard method of induction. However, we will refer to it here as the “infinite

ascent” technique in contrast to Fermat’s original “infinite descent” technique.

Assuming α = 2, i.e. a + b + c is of order N2. Let us suppose anew + bnew + cnew =

∆2N
2 + O(N3) where ∆2 is to remind us that we are on level II of the “infinte ascending

ladder”. By multiplying terms in the form of 1 − alN l to anew, bnew and cnew with l ≥ 2 (this

operation leaves ∆2 unchanged), we can always transform anew, bnew, and cnew into,

anew → a = 1 + ∆2N
2 + ã3N

3 (42)

bnew → b = kN + b2N
2 + b̃3N

3 = k + b1N + b′2N
2 + b̃′3N

3 (43)

cnew → c = −(k + 1)N − b2N2 + c̃3N
3 = −(k + 1)− b1N − b′2N2 + c̃′3N

3 (44)

where b1 satisfies km = b1 (mod N), as can be seen from equation (33). For convenience we

re-use a, b, c in these equations. To the order of N3, using k(k + 1) = −1 (mod N), we have

k(k + 1)(aN + bN + cN) = {−(δ + ∆2) + kmb1 +
N − 1

2
b21}N3 +O(N4) (45)

In equations (45) the coefficient of N3 must equal to zero. So,

(b1 − km)2 = −2∆2 mod N (46)

Since b1 = km (mod N), so ∆2 is zero. Therefore we have α ≥ 3.
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We next suppose anew + bnew + cnew = ∆3N
3 + O(N4). Following the same procedure as

in equations (42), (43) and (44), we find, to order N4,

anew → a = 1 + (∆3 − δ)N3 + ã4N
4 (47)

bnew → b = kN + (b2N
2 + b3N

3) + b̃4N
4 (48)

cnew → c = −(k + 1)N − (b2N
2 + b3N

3) + c̃4N
4 (49)

Again we still have a + b + c = ∆3N
3 + O(N4) since the transformation from anew → a,

bnew → b, and cnew → c do not change ∆3. So,

a+ b+ c = 1 + kN − (k + 1)N + (∆3 − δ)N3 + {(1 +mN)− (1 +m′N)}b2N2 +O(N4)

= ∆3N
3 + (m−m′)b2N3 +O(N4)

= (∆3 + (m−m′)b2)N3 +O(N4) (50)

From equations (42), (43), (44), and noticing ∆2 = 0, we find, to order N3,

aN + bN + cN = 1 + kN
2 − (k + 1)N

2

= 1 + kN(1 +mN)N − (k + 1)N(1 +m′N)N

= 1 + kN(1 +mN2 +
N − 1

2
m2N3)− (k + 1)N(1 +m′N2 +

N − 1

2
(m′)2N3)

= δN3 +mkN2(kN−1 − (k + 1)N−1) +
N − 1

2
mkN3(mkN−1 −m′(k + 1)N−1)

= N3{δ +
1

2
mk(m−m′)} (51)

where we have used km = m′(k + 1) (mod N). Using equation (34) for δ, equation (37) for

m′, and multiply by 2k3, equation (51) becomes,

2k3(aN + bN + cN) = k2N3(m2 −m2k3) = 0 mod N4 (52)

So indeed aN + bN + cN = 0 up to order N3. Using equations (47), (48) and (49), we have, to

order N4,

aN + bN + cN = 1 + kN
2 − (k + 1)N

2

+ (∆3 − δ)N4 (53)
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Now that from equation (51) we know 1 + kN
2 − (k + 1)N

2 is zero up to order N3, so we

can let 1 + kN
2 − (k + 1)N

2
= εN4. Multiply by kN2 , we obtain,

kN
2

(1 + kN
2 − (k + 1)N

2

) = kN
2

εN4. (54)

To order N4, the RHS of equation (54) is kεN4. The LHS is,

LHS = kN
2

+ (k2)N
2 − (k(k + 1))N

2

= kN
2

+ (βN − (k + 1))N
2

+ (1− βN)N
2

= 1 + kN
2 − (k + 1)N

2

+ ((k + 1)N
2−1 − 1)βN3

+
1

2
N4(N2 − 1)β2(1− (k + 1)N

2−2)

= εN4 + βm′N4 − β2N4

2(k + 1)
(k + 1− 1) = N4(ε+ βm′ − β2k2

2k(k + 1)
) (55)

Equating LHS and RHS,

2k(k + 1)(k − 1)ε = 2k(k + 1)βm′ − β2k2, mod N (56)

Using k(k + 1) = −1 (mod N), k − 1 = k(k + 2) (mod N), β = (k + 2)m (mod N), and

m′ = (k + 1)m (mod N), we find,

2kε = 2(k + 1)m2 + (k + 2)m2k2 → 2ε = k2m2 = 2δ mod N (57)

Since ε = δ mod N, therefore ∆3 must be zero. Now we can apply this recursively (“infinitely

ascend”) to obtain ∆γ = 0 and (1 + kN
γ−1 − (k + 1)N

γ−1
) = δNγ+1 +O(Nγ+2).

Assume ∆γ = 0 and (1 + kN
γ−1 − (k + 1)N

γ−1
) = δNγ+1 +O(Nγ+2), we show ∆γ+1 = 0

and (1 + kN
γ − (k + 1)N

γ
) = δNγ+2 + O(Nγ+3). We make use of (k + 1)N

γ−1 = (k +

1)(N−1)(1+N+N2+...+Nγ−1) = (1 + m′N)(1 + m′N)N(1 + m′N)N
2
...(1 + m′N)N

γ−1
= 1 +

m′N + ..., and similar expression for kNγ−1 (kNγ−1 = 1 +mN + ...).
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First, equations (47), (48) and (49) are now,

anew → a = 1 + (∆γ+1 − δ)Nγ+1 + ãγ+2N
γ+2 (58)

bnew → b = kN
γ−1

+ (b2N
2 + ...+ bγ+1N

γ+1) + b̃γ+2N
γ+2 (59)

cnew → c = −(k + 1)N
γ−1 − (b2N

2 + ...+ bγ+1N
γ+1) + c̃γ+2N

γ+2 (60)

For example, if γ = 3, we have

anew → a = 1 + (∆4 − δ)N4 + ã5N
5 (61)

bnew → b = kN
2

+ (b2N
2 + b3N

3 + b4N
4) + b̃5N

5 (62)

cnew → c = −(k + 1)N
2 − (b2N

2 + b3N
3 + b4N

4) + c̃5N
5 (63)

If (1 + kN
γ−1 − (k + 1)N

γ−1
) = δNγ+1 +O(Nγ+2), then up to order Nγ+1, we find,

1 + kN
γ − (k + 1)N

γ

= 1 + kN
γ−1

k(N−1)N
γ−1 − (k + 1)N

γ

(k + 1)(N−1)N
γ

= 1 + kN
γ−1

(1 +mN)N
γ−1 − (k + 1)N

γ

(1 +m′N)N
γ

= (1 + kN
γ−1 − (k + 1)N

γ−1

) + (mkN
γ−1 −m′(k + 1)N

γ−1

)Nγ

+
Nγ+1(Nγ−1 − 1)

2
(m2kN

γ−1 −m′2(k + 1)N
γ−1

) + ...

= δNγ+1 + (mkN
γ−1 −m′(1 + kN

γ−1 − δNγ+1))Nγ − Nγ+1

2
(m2 −m′2) + ...

= δNγ+1 + ((m−m′)kNγ−1 −m′)Nγ +
Nγ+1

2
(m′2(k + 1)−m2k) + ...

= δNγ+1 + ((m−m′)k(1 +mN)−m′)Nγ +
Nγ+1

2
(m′ −m)mk + ...

= δNγ+1 + ((mk −m′(k + 1))− k2m2N)Nγ +
Nγ+1

2
m2k2 + ...

= (δ − 1

2
k2m2)Nγ+1 + ... = 0 (64)

So we can let (1 + kN
γ − (k + 1)N

γ
) = εNγ+2 +O(Nγ+3). Multiply by kNγ , we obtain,

kN
γ

(1 + kN
γ − (k + 1)N

γ

) = kN
γ

εNγ+2. (65)
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To the order Nγ+2, the RHS of equation (54) is kεNγ+2. The LHS is,

LHS = kN
γ

+ (k2)N
γ − (k(k + 1))N

γ

= kN
γ

+ (βN − (k + 1))N
γ

+ (1− βN)N
γ

= 1 + kN
γ − (k + 1)N

γ

+ ((k + 1)N
γ−1 − 1)βNγ+1

+
1

2
Nγ(Nγ − 1)β2N2(1− (k + 1)N

γ−2)

= εNγ+2 + βm′Nγ+2 − β2Nγ+2

2(k + 1)
(k + 1− (k + 1)N

γ−1)

= Nγ+2(ε+ βm′ − β2k2

2k(k + 1)
) (66)

Equating LHS and RHS, we find the same equation (57) and ε = δ. So, ∆γ+1 must be zero. We

can continue this procedure and find a + b + c = 0 (mod Nτ ), with τ arbitrarily large. This is

absurd. Therefore Case I of FLT (for k3-primes) is proved.

Case II: N | c and N - (ab), i. e. N divides one and only one of a,b, and c (choosen here to

be c). Let c = yNα = (x0 + x1N)Nα where α ≥ 1 and |x0| < N ; and let γ = Nα − 1, From

Fermat’s little theorem, we have

a+ b+ c = (x0 + x′1N)Nα (67)

Clearly a + b + c is of order Nα. In a similar fashion as in Case I, we can show α ≥ 2.

Consider the auxiliary quantity Ω = aN + (b+ c)N . We have

Ω = (b+ c)N + aN = (xNα − a)N + aN = x0N
α+1 +O(Nα+2) (68)

So its leading term is x0Nα+1.

It is readily shown that,

a = ∆ + ãγN
γ, b = −∆ + b̃γN

γ, c = (c0 + c̃1N)Nα. (69)

where γ = Nα− 1. From the Barlow-Abel relation, we can express (b+ c) as rN . Therefore,

Ω = (r)N
2

+ aN = (r0 + r1N)N
2

+ (a0 + a1N)N (70)
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Clearly, rN2
= r0 mod N, so r0 = −a0. Let aN−10 = 1 +maN , we then have,

Ω = (r0 + r1N)N
2

+ (a0 + a1N)N = −aN2

0 + r1N
3 + aN0 + a1N

2 +O(N3)

= −aN0 (1 +maN
2) + r1N

3 + aN0 + a1N
2 +O(N3)

= (a1 −maa0)N
2 +O(N3) (71)

If α = 1, then we have,

(a1 −maa0) = x0 mod N (72)

Similarly, by considering (c+ a)N + bN , we obtain,

(b1 −mbb0) = x0 mod N (73)

where bN−10 = 1 + mbN is understood. However, since a0 = −b0, so aN−10 = bN−10 , therefore

ma = mb (mod N). Since x0 6= 0, equation (72) contradicts with (73) because a1 = −b1. So α

must be larger than 1, and x0 = 0. Equation (72) and (73) now become,

(a1 −maa0) = 0 mod N, (b1 −mbb0) = 0 mod N (74)

Therefore we have

a = aN0 + ã2N
2, b = −bN0 + b̃2N

2, c = (c0 + c̃1N)Nα (75)

with α ≥ 2. To further “ascend” α to 3 and beyond, however, can not be done as in Case I.

Discussion

Mr. Fermat is arguably the best amateur mathematician. Less known is that he was also a very

insightful physicist. He discovered that between two points light travels along a path which

yields the least travel time. This stimulated the later development of the least action principle

13



in theoretical physics. Perhaps Mr. Fermat’s impact to Physics is no less than his contribution

to Mathematics.

Could the approach presented here the one Mr. Fermat was thinking when he made his

famous remark in the margin of his copy of Arithmetica of Diophantus? Possibly, but we may

never know. Note that the proof is not complete for even case I of FLT, because the k3-conjecture

is not proven. So, it could well be that Mr. Fermat had an even better proof. The search goes

on.

Acknowledgement: This work was started when I took a full-year sabbatical leave from

the Department of Space Science at the University of Alabama in Huntsville (which now ends).

During this span, I took a guest professor position at the School of Geophysics and Information

Technology, China University of Geosciences (Beijing), Beijing, China; and a visiting scholar

position at the Hansen Experimental Physics Lab at the Stanford University, CA, USA. I thank

Dr. Shuo Yao for her help during my stay in Bejing and Dr. Xudong Sun for his help during my

stay in Stanford. I also thank Dr. Yao Chen and Dr. Yong Jiang for their hospitalities during

my visits to ShanDong University at Weihai and Nanjing University of Information and Science

Technology. Last but not least, I must thank my brother, Qiang Li, without whom this work can

never be completed.

References and Notes

1. Wiles, A., Ann. Math. 141, 443-551, (1995).

2. Taylor, R. and Wiles, A., Ann. Math. 141, 553-572, (1995).

3. Ribenboim, Paulo, 13 lectures on Fermat’s last theorem, Verlag: Springer. (1979).

14


