Annals of Fuzzy Mathematics and Informatics

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

© Kyung Moon Sa Co. http://www.kyungmoon.com

Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points

A. BORUMAND SAEID, YOUNG BAE JUN

Received dd mm 2017

ABSTRACT. Properties on neutrosophic $\in \lor q$ -subsets and neutrosophic q-subsets are investigated. Relations between an $(\in, \in \lor q)$ -neutrosophic subalgebra and a $(q, \in \lor q)$ -neutrosophic subalgebra are considered. Characterization of an $(\in, \in \lor q)$ -neutrosophic subalgebra by using neutrosophic \in -subsets are discussed. Conditions for an $(\in, \in \lor q)$ -neutrosophic subalgebra to be a $(q, \in \lor q)$ -neutrosophic subalgebra are provided.

2010 AMS Classification: 06F35, 03B60, 03B52.

Keywords: Neutrosophic set, neutrosophic \in -subset, neutrosophic q-subset, neutrosophic I_{Φ} -point, neutrosophic I_{Φ} -point, neutrosophic I_{Φ} -point.

Corresponding Author: Y. B. Jun (skywine@gmail.com)

1. Introduction

The concept of neutrosophic set (NS) developed by Smarandache [4, 5] is a more general platform which extends the concepts of the classic set and fuzzy set, intuition-istic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various part (refer to the site http://fs.gallup.unm.edu/neutrosophy.htm). Jun [2] introduced the notion of neutrosophic subalgebras in BCK/BCI-algebras with several types. He provided characterizations of an (\in, \in) -neutrosophic subalgebra and an $(\in, \in \vee q)$ -neutrosophic subalgebra. Given special sets, so called neutrosophic \in -subsets, neutrosophic \in -subsets, neutrosophic \in -subsets, neutrosophic \in -subsets and neutrosophic \in -subsets to be subalgebras. He discussed conditions for a neutrosophic set to be a $(q, \in \vee q)$ -neutrosophic subalgebra.

In this paper, we give relations between an $(\in, \in \lor q)$ -neutrosophic subalgebra and a $(q, \in \lor q)$ -neutrosophic subalgebra. We discuss characterization of an $(\in, \in \lor q)$ -neutrosophic subalgebra by using neutrosophic \in -subsets. We provide conditions

for an $(\in, \in \lor q)$ -neutrosophic subalgebra to be a $(q, \in \lor q)$ -neutrosophic subalgebra. We investigate properties on neutrosophic q-subsets and neutrosophic $\in \lor q$ -subsets.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, *, 0) of type (2, 0) satisfying the axioms:

- (a1) ((x*y)*(x*z))*(z*y) = 0,
- (a2) (x*(x*y))*y = 0,
- (a3) x * x = 0,
- (a4) $x * y = y * x = 0 \implies x = y$,

for all $x, y, z \in X$. If a BCI-algebra X satisfies the axiom

(a5)
$$0 * x = 0$$
 for all $x \in X$,

then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x*y \in S$ for all $x,y \in S$.

We refer the reader to the books [1] and [3] for further information regarding BCK/BCI-algebras.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee\{a_i\mid i\in\Lambda\}:=\left\{\begin{array}{ll} \max\{a_i\mid i\in\Lambda\} & \text{if Λ is finite,}\\ \sup\{a_i\mid i\in\Lambda\} & \text{otherwise.} \end{array}\right.$$

$$\bigwedge \{a_i \mid i \in \Lambda\} := \left\{ \begin{array}{ll} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{array} \right.$$

If $\Lambda = \{1, 2\}$, we will also use $a_1 \vee a_2$ and $a_1 \wedge a_2$ instead of $\bigvee \{a_i \mid i \in \Lambda\}$ and $\bigwedge \{a_i \mid i \in \Lambda\}$, respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [4]) is a structure of the form:

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}$$

where $A_T: X \to [0,1]$ is a truth membership function, $A_I: X \to [0,1]$ is an indeterminate membership function, and $A_F: X \to [0,1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A = (A_T, A_I, A_F)$ for the neutrosophic set

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}.$$

3. Neutrosophic subalgebras of several types

Given a neutrosophic set $A = (A_T, A_I, A_F)$ in a set $X, \alpha, \beta \in (0, 1]$ and $\gamma \in [0, 1)$, we consider the following sets:

$$\begin{split} T_{\in}(A;\alpha) &:= \{x \in X \mid A_T(x) \geq \alpha\}, \\ I_{\in}(A;\beta) &:= \{x \in X \mid A_I(x) \geq \beta\}, \\ F_{\in}(A;\gamma) &:= \{x \in X \mid A_F(x) \leq \gamma\}, \\ T_q(A;\alpha) &:= \{x \in X \mid A_T(x) + \alpha > 1\}, \\ I_q(A;\beta) &:= \{x \in X \mid A_I(x) + \beta > 1\}, \\ F_q(A;\gamma) &:= \{x \in X \mid A_F(x) + \gamma < 1\}, \\ T_{\in \vee q}(A;\alpha) &:= \{x \in X \mid A_T(x) \geq \alpha \text{ or } A_T(x) + \alpha > 1\}, \\ I_{\in \vee q}(A;\beta) &:= \{x \in X \mid A_I(x) \geq \beta \text{ or } A_I(x) + \beta > 1\}, \\ F_{\in \vee q}(A;\gamma) &:= \{x \in X \mid A_F(x) \leq \gamma \text{ or } A_F(x) + \gamma < 1\}. \end{split}$$

We say $T_{\in}(A; \alpha)$, $I_{\in}(A; \beta)$ and $F_{\in}(A; \gamma)$ are neutrosophic \in -subsets; $T_q(A; \alpha)$, $I_q(A; \beta)$ and $F_q(A; \gamma)$ are neutrosophic q-subsets; and $T_{\in \vee q}(A; \alpha)$, $I_{\in \vee q}(A; \beta)$ and $F_{\in \vee q}(A; \gamma)$ are neutrosophic $\in \vee q$ -subsets. For $\Phi \in \{\in, q, \in \vee q\}$, the element of $T_{\Phi}(A; \alpha)$ (resp., $I_{\Phi}(A; \beta)$ and $F_{\Phi}(A; \gamma)$) is called a neutrosophic T_{Φ} -point (resp., neutrosophic I_{Φ} -point and neutrosophic F_{Φ} -point) with value α (resp., β and γ) (see [2]).

It is clear that

$$(3.1) T_{\in \vee q}(A;\alpha) = T_{\in}(A;\alpha) \cup T_q(A;\alpha),$$

$$(3.2) I_{\in \vee q}(A;\beta) = I_{\in}(A;\beta) \cup I_q(A;\beta),$$

(3.3)
$$F_{\in \vee a}(A;\gamma) = F_{\in}(A;\gamma) \cup F_{a}(A;\gamma).$$

Definition 3.1 ([2]). Given $\Phi, \Psi \in \{\in, q, \in \lor q\}$, a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X is called a (Φ, Ψ) -neutrosophic subalgebra of X if the following assertions are valid.

$$(3.4) x \in T_{\Phi}(A; \alpha_x), \ y \in T_{\Phi}(A; \alpha_y) \Rightarrow x * y \in T_{\Psi}(A; \alpha_x \wedge \alpha_y),$$
$$x \in I_{\Phi}(A; \beta_x), \ y \in I_{\Phi}(A; \beta_y) \Rightarrow x * y \in I_{\Psi}(A; \beta_x \wedge \beta_y),$$
$$x \in F_{\Phi}(A; \gamma_x), \ y \in F_{\Phi}(A; \gamma_y) \Rightarrow x * y \in F_{\Psi}(A; \gamma_x \vee \gamma_y)$$

for all $x, y \in X$, α_x, α_y , $\beta_x, \beta_y \in (0, 1]$ and $\gamma_x, \gamma_y \in [0, 1)$.

Lemma 3.2 ([2]). A neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X is an $(\in, \in \lor q)$ -neutrosophic subalgebra of X if and only if it satisfies:

(3.5)
$$(\forall x, y \in X) \begin{pmatrix} A_T(x * y) \ge \bigwedge \{A_T(x), A_T(y), 0.5\} \\ A_I(x * y) \ge \bigwedge \{A_I(x), A_I(y), 0.5\} \\ A_F(x * y) \le \bigvee \{A_F(x), A_F(y), 0.5\} \end{pmatrix}.$$

Theorem 3.3. A neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X is an $(\in, \in \lor q)$ -neutrosophic subalgebra of X if and only if the neutrosophic \in -subsets $T_{\in}(A; \alpha)$, $I_{\in}(A; \beta)$ and $F_{\in}(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0, 0.5]$ and $\gamma \in [0.5, 1)$.

Proof. Assume that $A = (A_T, A_I, A_F)$ is an $(\in, \in \lor q)$ -neutrosophic subalgebra of X. For any $x, y \in X$, let $\alpha \in (0, 0.5]$ be such that $x, y \in T_{\in}(A; \alpha)$. Then $A_T(x) \ge \alpha$ and $A_T(y) \ge \alpha$. It follows from (3.5) that

$$A_T(x * y) \ge \bigwedge \{A_T(x), A_T(y), 0.5\} \ge \alpha \land 0.5 = \alpha$$

and so that $x * y \in T_{\in}(A; \alpha)$. Thus $T_{\in}(A; \alpha)$ is a subalgebra of X for all $\alpha \in (0, 0.5]$. Similarly, $I_{\in}(A; \beta)$ is a subalgebra of X for all $\beta \in (0, 0.5]$. Now, let $\gamma \in [0.5, 1)$ be such that $x, y \in F_{\in}(A; \gamma)$. Then $A_F(x) \leq \gamma$ and $A_F(y) \leq \gamma$. Hence

$$A_F(x * y) \le \bigvee \{A_F x\}, A_F(y), 0.5\} \le \gamma \lor 0.5 = \gamma$$

by (3.5), and so $x * y \in F_{\in}(A; \gamma)$. Thus $F_{\in}(A; \gamma)$ is a subalgebra of X for all $\gamma \in [0.5, 1)$.

Conversely, let $\alpha, \beta \in (0, 0.5]$ and $\gamma \in [0.5, 1)$ be such that $T_{\in}(A; \alpha)$, $I_{\in}(A; \beta)$ and $F_{\in}(A; \gamma)$ are subalgebras of X. If there exist $a, b \in X$ such that

$$A_I(a*b) < \bigwedge \{A_I(a), A_I(b), 0.5\},\$$

then we can take $\beta \in (0,1)$ such that

(3.6)
$$A_I(a*b) < \beta < \bigwedge \{A_I(a), A_I(b), 0.5\}.$$

Thus $a, b \in I_{\in}(A; \beta)$ and $\beta < 0.5$, and so $a * b \in I_{\in}(A; \beta)$. But, the left inequality in (3.6) induces $a * b \notin I_{\in}(A; \beta)$, a contradiction. Hence

$$A_I(x * y) \ge \bigwedge \{A_I(x), A_I(y), 0.5\}$$

for all $x, y \in X$. Similarly, we can show that

$$A_T(x * y) \ge \bigwedge \{A_T(x), A_T(y), 0.5\}$$

for all $x, y \in X$. Now suppose that

$$A_F(a*b) > \bigvee \{A_F(a), A_F(b), 0.5\}$$

for some $a, b \in X$. Then there exists $\gamma \in (0, 1)$ such that

$$A_F(a*b) > \gamma > \bigvee \{A_F(a), A_F(b), 0.5\}.$$

It follows that $\gamma \in (0.5, 1)$ and $a, b \in F_{\in}(A; \gamma)$. Since $F_{\in}(A; \gamma)$ is a subalgebra of X, we have $a * b \in F_{\in}(A; \gamma)$ and so $A_F(a * b) \leq \gamma$. This is a contradiction, and thus

$$A_F(x * y) \le \bigvee \{A_F(x), A_F(y), 0.5\}$$

for all $x, y \in X$. Using Lemma 3.2, $A = (A_T, A_I, A_F)$ is an $(\in, \in \lor q)$ -neutrosophic subalgebra of X.

Using Theorem 3.3 and [2, Theorem 3.8], we have the following corollary.

Corollary 3.4. For a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, if the nonempty neutrosophic $\in \vee$ q-subsets $T_{\in \vee q}(A; \alpha)$, $I_{\in \vee q}(A; \beta)$ and $F_{\in \vee q}(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0, 1]$ and $\gamma \in [0, 1)$, then the neutrosophic \in -subsets $T_{\in}(A; \alpha)$, $I_{\in}(A; \beta)$ and $F_{\in}(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0, 0.5]$ and $\gamma \in [0.5, 1)$.

Theorem 3.5. Given neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, the nonempty neutrosophic \in -subsets $T_{\in}(A;\alpha)$, $I_{\in}(A;\beta)$ and $F_{\in}(A;\gamma)$ are subalgebras of X for all $\alpha, \beta \in (0.5, 1]$ and $\gamma \in [0, 0.5)$ if and only if the following assertion is valid.

(3.7)
$$(\forall x, y \in X) \begin{pmatrix} A_T(x * y) \lor 0.5 \ge A_T(x) \land A_T(y) \\ A_I(x * y) \lor 0.5 \ge A_I(x) \land A_I(y) \\ A_F(x * y) \land 0.5 \le A_F(x) \lor A_F(y) \end{pmatrix}.$$

Proof. Assume that the nonempty neutrosophic \in -subsets $T_{\in}(A;\alpha)$, $I_{\in}(A;\beta)$ and $F_{\in}(A;\gamma)$ are subalgebras of X for all $\alpha,\beta\in(0.5,1]$ and $\gamma\in[0,0.5)$. Suppose that there are $a,b \in X$ such that $A_T(a*b) \vee 0.5 < A_T(a) \wedge A_T(b) := \alpha$. Then $\alpha \in (0.5, 1]$ and $a, b \in T_{\in}(A; \alpha)$. Since $T_{\in}(A; \alpha)$ is a subalgebra of X, it follows that $a*b \in T_{\in}(A;\alpha)$, that is, $A_T(a*b) \geq \alpha$ which is a contradiction. Thus

$$A_T(x*y) \lor 0.5 \ge A_T(x) \land A_T(y)$$

for all $x,y \in X$. Similarly, we know that $A_I(x*y) \vee 0.5 \geq A_I(x) \wedge A_I(y)$ for all $x, y \in X$. Now, if $A_F(x * y) \wedge 0.5 > A_F(x) \vee A_F(y)$ for some $x, y \in X$, then $x,y \in F_{\in}(A;\gamma)$ and $\gamma \in [0,0.5)$ where $\gamma = A_F(x) \vee A_F(y)$. But, $x * y \notin F_{\in}(A;\gamma)$ which is a contradiction. Hence $A_F(x * y) \land 0.5 \le A_F(x) \lor A_F(y)$ for all $x, y \in X$.

Conversely, let $A = (A_T, A_I, A_F)$ be a neutrosophic set in X satisfying the condition (3.7). Let $x, y, a, b \in X$ and $\alpha, \beta \in (0.5, 1]$ be such that $x, y \in T_{\epsilon}(A; \alpha)$ and $a, b \in I_{\in}(A; \beta)$. Then

$$A_T(x * y) \lor 0.5 \ge A_T(x) \land A_T(y) \ge \alpha > 0.5,$$

 $A_I(a * b) \lor 0.5 \ge A_I(a) \land A_I(b) \ge \beta > 0.5.$

It follows that $A_T(x*y) \geq \alpha$ and $A_I(a*b) \geq \beta$, that is, $x*y \in T_{\epsilon}(A;\alpha)$ and $a * b \in I_{\epsilon}(A; \beta)$. Now, let $x, y \in X$ and $\gamma \in [0, 0.5)$ be such that $x, y \in F_{\epsilon}(A; \gamma)$. Then $A_F(x*y) \wedge 0.5 \leq A_F(x) \vee A_F(y) \leq \gamma < 0.5$ and so $A_F(x*y) \leq \gamma$, i.e., $x * y \in F_{\in}(A; \gamma)$. This completes the proof.

We consider relations between a $(q, \in \lor q)$ -neutrosophic subalgebra and an $(\in,$ $\in \vee q$)-neutrosophic subalgebra.

Theorem 3.6. In a BCK/BCI-algebra, every $(q, \in \lor q)$ -neutrosophic subalgebra is $an \ (\in, \in \lor q)$ -neutrosophic subalgebra.

Proof. Let $A = (A_T, A_I, A_F)$ be a $(q, \in \lor q)$ -neutrosophic subalgebra of a BCK/BCIalgebra X and let $x, y \in X$. Let $\alpha_x, \alpha_y \in (0,1]$ be such that $x \in T_{\epsilon}(A; \alpha_x)$ and $y \in T_{\in}(A; \alpha_y)$. Then $A_T(x) \ge \alpha_x$ and $A_T(y) \ge \alpha_y$. Suppose $x * y \notin T_{\in \vee q}(A; \alpha_x \wedge \alpha_y)$. Then

$$(3.8) A_T(x*y) < \alpha_x \wedge \alpha_y,$$

$$(3.9) A_T(x * y) + (\alpha_x \wedge \alpha_y) \le 1.$$

It follows that

(3.10)
$$A_T(x*y) < 0.5.$$

Combining (3.8) and (3.10), we have

$$A_T(x*y) < \bigwedge \{\alpha_x, \alpha_y, 0.5\}$$

and so

$$1 - A_T(x * y) > 1 - \bigwedge \{\alpha_x, \alpha_y, 0.5\}$$

$$= \bigvee \{1 - \alpha_x, 1 - \alpha_y, 0.5\}$$

$$\geq \bigvee \{1 - A_T(x), 1 - A_T(y), 0.5\}.$$

Hence there exists $\alpha \in (0,1]$ such that

$$(3.11) 1 - A_T(x * y) \ge \alpha > \bigvee \{1 - A_T(x), 1 - A_T(y), 0.5\}.$$

The right inequality in (3.11) induces $A_T(x) + \alpha > 1$ and $A_T(y) + \alpha > 1$, that is, $x,y \in T_q(A;\alpha)$. Since $A = (A_T,A_I,A_F)$ is a $(q,\in \vee q)$ -neutrosophic subalgebra of X, we have $x*y \in T_{\in \vee q}(A;\alpha)$. But, the left inequality in (3.11) implies that $A_T(x*y) + \alpha \leq 1$, i.e., $x*y \notin T_q(A;\alpha)$, and $A_T(x*y) \leq 1 - \alpha < 1 - 0.5 = 0.5 < \alpha$, i.e., $x*y \notin T_{\in (A;\alpha)}$. Hence $x*y \notin T_{\in \vee q}(A;\alpha)$, a contradiction. Thus $x*y \in T_{\in \vee q}(A;\alpha_x \wedge \alpha_y)$. Similarly, we can show that if $x \in I_{\in (A;\beta_x)}$ and $y \in I_{\in (A;\beta_y)}$ for $\beta_x,\beta_y \in (0,1]$, then $x*y \in I_{\in \vee q}(A;\beta_x \wedge \beta_y)$. Now, let $\gamma_x,\gamma_y \in [0,1)$ be such that $x \in F_{\in (A;\gamma_x)}$ and $y \in F_{\in (A;\gamma_y)}$. $A_F(x) \leq \gamma_x$ and $A_F(y) \leq \gamma_y$. If $x*y \notin F_{\in \vee q}(A;\gamma_x \vee \gamma_y)$, then

$$(3.12) A_F(x*y) > \gamma_x \vee \gamma_y,$$

$$(3.13) A_F(x*y) + (\gamma_x \vee \gamma_y) \ge 1.$$

It follows that

$$A_F(x*y) > \bigvee \{\gamma_x, \gamma_y, 0.5\}$$

and so that

$$1 - A_F(x * y) < 1 - \bigvee \{\gamma_x, \gamma_y, 0.5\}$$

$$= \bigwedge \{1 - \gamma_x, 1 - \gamma_y, 0.5\}$$

$$\leq \bigwedge \{1 - A_F(x), 1 - A_F(y), 0.5\}.$$

Thus there exists $\gamma \in [0,1)$ such that

$$(3.14) 1 - A_F(x * y) \le \gamma < \bigwedge \{1 - A_F(x), 1 - A_F(y), 0.5\}.$$

It follows from the right inequality in (3.14) that $A_F(x) + \gamma < 1$ and $A_F(y) + \gamma < 1$, that is, $x,y \in F_q(A;\gamma)$, which implies that $x*y \in F_{\in \vee q}(A;\gamma)$. But, we have $x*y \notin F_{\in \vee q}(A;\gamma)$ by the left inequality in (3.14). This is a contradiction, and so $x*y \in F_{\in \vee q}(A;\gamma_x \vee \gamma_y)$. Therefore $A = (A_T,A_I,A_F)$ is an $(\in, \in \vee q)$ -neutrosophic subalgebra of X.

The following example shows that the converse of Theorem 3.6 is not true.

Table 1. Cayley table of the operation *

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	1	1
2	2	1	0	2	2
3	3	3	3	0	3
4	4	4	4	4	0

X	$A_T(x)$	$A_I(x)$	$A_F(x)$
0	0.6	0.8	0.3
1	0.2	0.3	0.6 0.6
2	0.2	0.3	0.6
3	0.7	0.1	0.7
4	0.4	0.4	0.9

Example 3.7. Consider a BCK-algebra $X = \{0, 1, 2, 3, 4\}$ with the following Cayley table.

Let $A = (A_T, A_I, A_F)$ be a neutrosophic set in X defined by Then

$$T_{\in}(A;\alpha) = \begin{cases} \{0,3\} & \text{if } \alpha \in (0.4,0.5], \\ \{0,3,4\} & \text{if } \alpha \in (0.2,0.4], \\ X & \text{if } \alpha \in (0,0.2], \end{cases}$$

$$I_{\in}(A;\beta) = \begin{cases} \{0\} & \text{if } \beta \in (0.4,0.5], \\ \{0,4\} & \text{if } \beta \in (0.3,0.4], \\ \{0,1,2,4\} & \text{if } \beta \in (0.1,0.3], \\ X & \text{if } \beta \in (0,0.1], \end{cases}$$

$$F_{\in}(A;\gamma) = \begin{cases} X & \text{if } \gamma \in (0.9,1), \\ \{0,1,2,3\} & \text{if } \gamma \in [0.7,0.9), \\ \{0,1,2\} & \text{if } \gamma \in [0.5,0.6), \end{cases}$$

which are subalgebras of X for all $\alpha, \beta \in (0, 0.5]$ and $\gamma \in [0.5, 1)$. Using Theorem 3.3, $A = (A_T, A_I, A_F)$ is an $(\in, \in \lor q)$ -neutrosophic subalgebra of X. But it is not a $(q, \in \forall q)$ -neutrosophic subalgebra of X since $2 \in T_q(A; 0.83)$ and $3 \in T_q(A; 0.4)$, but $2 * 3 = 2 \notin T_{\in \vee q}(A; 0.4)$.

We provide conditions for an $(\in, \in \lor q)$ -neutrosophic subalgebra to be a $(q, \in \lor q)$ neutrosophic subalgebra.

Theorem 3.8. Assume that any neutrosophic T_{Φ} -point and neutrosophic I_{Φ} -point has the value α and β in (0,0.5], respectively, and any neutrosophic F_{Φ} -point has the value γ in [0.5,1) for $\Phi \in \{\in, q, \in \vee q\}$. Then every $(\in, \in \vee q)$ -neutrosophic subalgebra is a $(q, \in \lor q)$ -neutrosophic subalgebra.

Proof. Let X be a BCK/BCI-algebra and let $A=(A_T,A_I,A_F)$ be an $(\in,\in\vee q)$ neutrosophic subalgebra of X. For $x, y, a, b \in X$, let $\alpha_x, \alpha_y, \beta_a, \beta_b \in (0, 0.5]$ be such that $x\in T_q(A;\alpha_x),\ y\in T_q(A;\alpha_y),\ a\in I_q(A;\beta_a)$ and $b\in T_q(A;\beta_b)$. Then $A_T(x)+\alpha_x>1,\ A_T(y)+\alpha_y>1,\ A_I(a)+\beta_a>1$ and $A_I(b)+\beta_b>1$. Since $\alpha_x,\alpha_y,\beta_a,\beta_b\in(0,0.5],$ it follows that $A_T(x)>1-\alpha_x\geq\alpha_x,\ A_T(y)>1-\alpha_y\geq\alpha_y,\ A_I(a)>1-\beta_a\geq\beta_a$ and $A_I(b)>1-\beta_b\geq\beta_b,$ that is, $x\in T_{\in}(A;\alpha_x),\ y\in T_{\in}(A;\alpha_y),\ a\in I_{\in}(A;\beta_a)$ and $b\in I_{\in}(A;\beta_b).$ Also, let $x\in F_q(A;\gamma_x)$ and $y\in F_q(A;\gamma_y)$ for $x,y\in X$ and $\gamma_x,\gamma_y\in[0.5,1).$ Then $A_F(x)+\gamma_x<1$ and $A_F(y)+\gamma_y<1,$ and so $A_F(x)<1-\gamma_x\leq\gamma_x$ and $A_F(y)<1-\gamma_y\leq\gamma_y$ since $\gamma_x,\gamma_y\in[0.5,1).$ This shows that $x\in F_{\in}(A;\gamma_x)$ and $y\in F_{\in}(A;\gamma_y).$ It follows from (3.4) that $x*y\in T_{\in\vee q}(A;\alpha_x\wedge\alpha_y),\ a*b\in I_{\in\vee q}(A;\beta_a\wedge\beta_b),$ and $x*y\in F_{\in\vee q}(A;\gamma_x\vee\gamma_y).$ Consequently, $A=(A_T,A_I,A_F)$ is a $(q,\in\vee q)$ -neutrosophic subalgebra of X.

Theorem 3.9. Both (\in, \in) -neutrosophic subalgebra and $(\in \lor q, \in \lor q)$ -neutrosophic subalgebra are an $(\in, \in \lor q)$ -neutrosophic subalgebra.

Proof. It is clear that (\in, \in) -neutrosophic subalgebra is an $(\in, \in \lor q)$ -neutrosophic subalgebra. Let $A = (A_T, A_I, A_F)$ be an $(\in \lor q, \in \lor q)$ -neutrosophic subalgebra of X. For any $x, y, a, b \in X$, let $\alpha_x, \alpha_y, \beta_a, \beta_b \in (0,1]$ be such that $x \in T_{\in}(A; \alpha_x), y \in T_{\in}(A; \alpha_y), a \in I_{\in}(A; \beta_a)$ and $b \in I_{\in}(A; \beta_b)$. Then $x \in T_{\in \lor q}(A; \alpha_x), y \in T_{\in \lor q}(A; \alpha_y), a \in I_{\in \lor q}(A; \beta_a)$ and $b \in I_{\in \lor q}(A; \beta_b)$ by (3.1) and (3.2). It follows that $x * y \in T_{\in \lor q}(A; \alpha_x \land \alpha_y)$ and $a * b \in I_{\in \lor q}(A; \beta_a \land \beta_b)$. Now, let $x, y \in X$ and $x \in T_{\in}(A; x)$ be such that $x \in T_{\in}(A; x)$ and $x \in T_{\in}(A; x)$ and $x \in T_{\in}(A; x)$ by (3.3). Hence $x \in T_{\in}(A; x)$ and $x \in T_{\in}(A; x)$ is an $x \in T_{\in}(A; x)$ is

The converse of Theorem 3.9 is not true in general. In fact, the $(\in, \in \vee q)$ -neutrosophic subalgebra $A = (A_T, A_I, A_F)$ in Example 3.7 is neither an (\in, \in) -neutrosophic subalgebra nor an $(\in \vee q, \in \vee q)$ -neutrosophic subalgebra.

Theorem 3.10. For a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, if the nonempty neutrosophic q-subsets $T_q(A; \alpha)$, $I_q(A; \beta)$ and $F_q(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0.5, 1]$ and $\gamma \in (0, 0.5)$, then

$$(3.15) x \in T_{\in}(A; \alpha_x), \ y \in T_{\in}(A; \alpha_y) \Rightarrow x * y \in T_q(A; \alpha_x \vee \alpha_y),$$
$$x \in I_{\in}(A; \beta_x), \ y \in I_{\in}(A; \beta_y) \Rightarrow x * y \in I_q(A; \beta_x \vee \beta_y),$$
$$x \in F_{\in}(A; \gamma_x), \ y \in F_{\in}(A; \gamma_y) \Rightarrow x * y \in F_q(A; \gamma_x \wedge \gamma_y)$$

for all $x, y \in X$, $\alpha_x, \alpha_y, \beta_x, \beta_y \in (0.5, 1]$ and $\gamma_x, \gamma_y \in (0, 0.5)$.

Proof. Let $x, y, a, b, u, v \in X$ and $\alpha_x, \alpha_y, \beta_a, \beta_b \in (0.5, 1]$ and $\gamma_u, \gamma_v \in (0, 0.5)$ be such that $x \in T_{\in}(A; \alpha_x), y \in T_{\in}(A; \alpha_y), a \in I_{\in}(A; \beta_a), b \in I_{\in}(A; \beta_b), u \in F_{\in}(A; \gamma_u)$ and $v \in F_{\in}(A; \gamma_v)$. Then $A_T(x) \geq \alpha_x > 1 - \alpha_x, A_T(y) \geq \alpha_y > 1 - \alpha_y, A_I(a) \geq \beta_a > 1 - \beta_a, A_I(b) \geq \beta_b > 1 - \beta_b, A_F(u) \leq \gamma_u < 1 - \gamma_u$ and $A_F(v) \leq \gamma_v < 1 - \gamma_v$. It follows that $x, y \in T_q(A; \alpha_x \vee \alpha_y), a, b \in I_q(A; \beta_a \vee \beta_b)$ and $u, v \in F_q(A; \gamma_u \wedge \gamma_v)$. Since $\alpha_x \vee \alpha_y, \beta_a \vee \beta_b \in (0.5, 1]$ and $\gamma_u \wedge \gamma_v \in (0, 0.5)$, we have $x * y \in T_q(A; \alpha_x \vee \alpha_y), a * b \in I_q(A; \beta_a \vee \beta_b)$ and $u * v \in F_q(A; \gamma_u \wedge \gamma_v)$ by hypothesis. This completes the proof.

The following corollary is by Theorem 3.10 and [2, Theorem 3.7].

Corollary 3.11. Every $(\in, \in \lor q)$ -neutrosophic subalgebra $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X satisfies the condition (3.15).

Corollary 3.12. Every $(q, \in \lor q)$ -neutrosophic subalgebra $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X satisfies the condition (3.15).

Proof. It is by Theorem 3.6 and Corollary 3.11.

Theorem 3.13. For a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, if the nonempty neutrosophic q-subsets $T_q(A; \alpha)$, $I_q(A; \beta)$ and $F_q(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0, 0.5]$ and $\gamma \in (0.5, 1)$, then

$$(3.16) x \in T_q(A; \alpha_x), \ y \in T_q(A; \alpha_y) \Rightarrow x * y \in T_{\epsilon}(A; \alpha_x \vee \alpha_y),$$
$$(3.16) x \in I_q(A; \beta_x), \ y \in I_q(A; \beta_y) \Rightarrow x * y \in I_{\epsilon}(A; \beta_x \vee \beta_y),$$
$$x \in F_q(A; \gamma_x), \ y \in F_q(A; \gamma_y) \Rightarrow x * y \in F_{\epsilon}(A; \gamma_x \wedge \gamma_y)$$

for all $x, y \in X$, $\alpha_x, \alpha_y, \beta_x, \beta_y \in (0, 0.5]$ and $\gamma_x, \gamma_y \in (0.5, 1)$.

Proof. Let $x, y, a, b, u, v \in X$ and α_x , α_y , β_a , $\beta_b \in (0, 0.5]$ and $\gamma_u, \gamma_v \in (0.5, 1)$ be such that $x \in T_q(A; \alpha_x)$, $y \in T_q(A; \alpha_y)$, $a \in I_q(A; \beta_a)$, $b \in I_q(A; \beta_b)$, $u \in F_q(A; \gamma_u)$ and $v \in F_q(A; \gamma_v)$. Then $x, y \in T_q(A; \alpha_x \vee \alpha_y)$, $a, b \in I_q(A; \beta_a \vee \beta_b)$ and $u, v \in F_q(A; \gamma_u \wedge \gamma_v)$. Since $\alpha_x \vee \alpha_y, \beta_a \vee \beta_b \in (0, 0.5]$ and $\gamma_u \wedge \gamma_v \in (0.5, 1)$, it follows from the hypothesis that $x * y \in T_q(A; \alpha_x \vee \alpha_y)$, $a * b \in I_q(A; \beta_a \vee \beta_b)$ and $u * v \in F_q(A; \gamma_u \wedge \gamma_v)$. Hence

$$A_T(x*y) > 1 - (\alpha_x \vee \alpha_y) \ge \alpha_x \vee \alpha_y, \text{ that is, } x*y \in T_{\in}(A; \alpha_x \vee \alpha_y),$$

$$A_I(a*b) > 1 - (\beta_a \vee \beta_b) \ge \beta_a \vee \beta_b, \text{ that is, } a*b \in I_{\in}(A; \beta_a \vee \beta_b),$$

$$A_F(u*v) < 1 - (\gamma_u \wedge \gamma_v) \le \gamma_u \wedge \gamma_v, \text{ that is, } u*v \in F_{\in}(A; \gamma_u \wedge \gamma_v).$$

Consequently, the condition (3.16) is valid for all $x, y \in X$, $\alpha_x, \alpha_y, \beta_x, \beta_y \in (0, 0.5]$ and $\gamma_x, \gamma_y \in (0.5, 1)$.

Theorem 3.14. Given a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, if the nonempty neutrosophic $\in \vee q$ -subsets $T_{\in \vee q}(A; \alpha)$, $I_{\in \vee q}(A; \beta)$ and $F_{\in \vee q}(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0, 0.5]$ and $\gamma \in [0.5, 1)$, then the following assertions are valid.

$$(3.17) x \in T_q(A; \alpha_x), \ y \in T_q(A; \alpha_y) \Rightarrow x * y \in T_{\in \vee q}(A; \alpha_x \vee \alpha_y),$$

$$x \in I_q(A; \beta_x), \ y \in I_q(A; \beta_y) \Rightarrow x * y \in I_{\in \vee q}(A; \beta_x \vee \beta_y),$$

$$x \in F_q(A; \gamma_x), \ y \in F_q(A; \gamma_y) \Rightarrow x * y \in F_{\in \vee q}(A; \gamma_x \wedge \gamma_y)$$

for all $x, y \in X$, $\alpha_x, \alpha_y, \beta_x, \beta_y \in (0, 0.5]$ and $\gamma_x, \gamma_y \in [0.5, 1)$.

Proof. Let $x, y, a, b, u, v \in X$ and $\alpha_x, \alpha_y, \beta_a, \beta_b \in (0, 0.5]$ and $\gamma_u, \gamma_v \in [0.5, 1)$ be such that $x \in T_q(A; \alpha_x), y \in T_q(A; \alpha_y), a \in I_q(A; \beta_a), b \in I_q(A; \beta_b), u \in F_q(A; \gamma_u)$ and $v \in F_q(A; \gamma_v)$. Then $x \in T_{\in \forall q}(A; \alpha_x), y \in T_{\in \forall q}(A; \alpha_y), a \in I_{\in \forall q}(A; \beta_a), b \in I_{\in \forall q}(A; \beta_b), u \in F_{\in \forall q}(A; \gamma_u)$ and $v \in F_{\in \forall q}(A; \gamma_v)$. It follows that $x, y \in T_{\in \forall q}(A; \alpha_x \vee \alpha_y), a, b \in I_{\in \forall q}(A; \beta_a \vee \beta_b)$ and $u, v \in F_{\in \forall q}(A; \gamma_u \wedge \gamma_v)$ which imply from the hypothesis that $x * y \in T_{\in \forall q}(A; \alpha_x \vee \alpha_y), a * b \in I_{\in \forall q}(A; \beta_a \vee \beta_b)$ and $u * v \in F_{\in \forall q}(A; \gamma_u \wedge \gamma_v)$. This completes the proof.

Corollary 3.15. Every $(\in, \in \lor q)$ -neutrosophic subalgebra $A = (A_T, A_I, A_F)$ of a BCK/BCI-algebra X satisfies the condition (3.17).

Proof. It is by Theorem 3.14 and [2, Theorem 3.9].

Theorem 3.16. Given a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, if the nonempty neutrosophic $\in \vee q$ -subsets $T_{\in \vee q}(A; \alpha)$, $I_{\in \vee q}(A; \beta)$ and $F_{\in \vee q}(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0.5, 1]$ and $\gamma \in [0, 0.5)$, then the following assertions are valid.

$$(3.18) x \in T_q(A; \alpha_x), \ y \in T_q(A; \alpha_y) \Rightarrow x * y \in T_{\in \vee q}(A; \alpha_x \vee \alpha_y),$$
$$(3.18) x \in I_q(A; \beta_x), \ y \in I_q(A; \beta_y) \Rightarrow x * y \in I_{\in \vee q}(A; \beta_x \vee \beta_y),$$
$$x \in F_q(A; \gamma_x), \ y \in F_q(A; \gamma_y) \Rightarrow x * y \in F_{\in \vee q}(A; \gamma_x \wedge \gamma_y)$$

for all $x, y \in X$, $\alpha_x, \alpha_y, \beta_x, \beta_y \in (0.5, 1]$ and $\gamma_x, \gamma_y \in [0, 0.5)$.

Proof. It is similar to the proof Theorem 3.14.

Corollary 3.17. Every $(q, \in \lor q)$ -neutrosophic subalgebra $A = (A_T, A_I, A_F)$ of a BCK/BCI-algebra X satisfies the condition (3.18).

Proof. It is by Theorem
$$3.16$$
 and $[2, Theorem 3.10]$.

Combining Theorems 3.14 and 3.16, we have the following corollary.

Corollary 3.18. Given a neutrosophic set $A = (A_T, A_I, A_F)$ in a BCK/BCI-algebra X, if the nonempty neutrosophic $\in \vee q$ -subsets $T_{\in \vee q}(A; \alpha)$, $I_{\in \vee q}(A; \beta)$ and $F_{\in \vee q}(A; \gamma)$ are subalgebras of X for all $\alpha, \beta \in (0, 1]$ and $\gamma \in [0, 1)$, then the following assertions are valid.

$$x \in T_q(A; \alpha_x), \ y \in T_q(A; \alpha_y) \Rightarrow x * y \in T_{\in \vee q}(A; \alpha_x \vee \alpha_y),$$

$$x \in I_q(A; \beta_x), \ y \in I_q(A; \beta_y) \Rightarrow x * y \in I_{\in \vee q}(A; \beta_x \vee \beta_y),$$

$$x \in F_q(A; \gamma_x), \ y \in F_q(A; \gamma_y) \Rightarrow x * y \in F_{\in \vee q}(A; \gamma_x \wedge \gamma_y)$$

for all $x, y \in X$, $\alpha_x, \alpha_y, \beta_x, \beta_y \in (0, 1]$ and $\gamma_x, \gamma_y \in [0, 1)$.

References

- $[1]\,$ Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [2] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform (submitted).
- [3] J. Meng and Y. B. Jun, BCK-algebra, Kyungmoon Sa Co. Seoul, 1994.
- [4] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM, 1999.
- [5] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. 24(3) (2005), 287–297.

ARSHAM BORUMAND SAEID (a_b_saeid@yahoo.com)

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

YOUNG BAE JUN (skywine@gmail.com)

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea