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Abstract

If several independent algorithms for a computer-calculated quantity
exist, then one can expect their results (which differ because of numerical
errors) to follow approximately Gaussian distribution. The mean of this
distribution, interpreted as the value of the quantity of interest, can be de-
termined with much better precision than what is the precision provided
by a single algorithm. Many practical algorithms introduce a bias using a
parameter, e.g. a small but finite number to compute a limit or a large but
finite number (cutoff) to approximate infinity. One may vary such param-
eter of a single algorithm, interpret the resulting numbers as generated
by several algorithms and compute the average. A numerical evidence for
the validity of this approach is, in the context of a fixed machine epsilon,
shown for differentiation: the method greatly improves the precision and
leads, presumably, to the most precise numerical differentiation nowadays
known.
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1 Introduction

Numerical differentiation (ND) can be addressed in different contexts. The
context is usually linked to the reason why a symbolic approach is not used.
One might want to differentiate a function f numerically because

1. one has only a (measured) set of data points {xi, f(xi)}Ni=1,

2. f is highly-composed with large number of nested functions,

3. it is unknown how values of f are computed.
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The first scenario is not the one which is addressed in this text. The nu-
merical precision of (measured) data points is usually much smaller then the
precision provided by computer variables. Thus, the problem of differentiation
reduces to search for an interpolation with appropriate properties (smoothness,
data-noise filtering, etc..).

The second situation is also (usually) outside the scope of this text. Knowing
the function formula, one can increase the precision of ND by using arbitrary-
precision software or automatic differentiation [1]. Sometimes, however, the
here-presented ideas may be applicable. This mostly refers to the situation
where the above-mentioned approaches require a lot of work related to re-
programming a function which is already coded in some standard (double pre-
cision) framework. The precision increase allowed by methods explained here
may, under some circumstances, make the benefits of re-programming not worth
the work.

The last scenario represents the framework which is relevant for this work -
it is the most usual context in which the precision of the ND is addressed and
discussed. The accuracy of the ND is here seen as an optimization task with
contradictory aims: the size of discretization parameter should take neither
large values (bias error), nor very small ones (rounding errors). A compromise
leading to the best overall precision is to be found. One may refer to this
situation using terms ”fixed machine epsilon” or ”black-box function”. Most
commonly such situation happens when one uses compiled external numerical
libraries with fixed number format. It may also happen in the client-server
environment, where the client asks for function values but has no access to the
process in which server computes them. Practically it may also occur very often
when one uses, for numerical purposes, his favorite programming language (with
fixed number formats) and is unwilling to learn and implement new specific
framework to increase the precision of the ND.

I would also like to state the context of this work with respect to the prop-
erties of the functions to be differentiated: In this text I focus on the (ill-
conditioned) ND of a general differentiable function. I will therefore ignore
special recipes suited for special situations, e.g. the set of analytic functions
and well-conditioned differentiation based on the Cauchy theorem.

Once the context is clear, one can focus on the aim: reaching the ultimate
accuracy in the procedure of ND. Different prescriptions for increasing precision
proposed up to now (e.g. [2, 3, 4, 5, 6, 7, 8, 9]) are based on the evaluation of
the function value at small number of points near to the point of differentiation
and some smart ideas on how to reduce the numerical imprecision. However,
all of them neglect the information which can be extracted from statistical
considerations.

Here I present a novel statistics-based approach which allows for important
error reduction. It uses averaging and may be applied to more situations then
just to the ND.

In following section I present some general statistical arguments to support
the presented method. Then the text fully focuses on the ND. To honestly study
the subject I will use several prescriptions for ND. The corresponding issues will
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be reviewed in Sec. 3. Next, in Sec. 4, I will explain the heuristic testing method
and present its results. In the last sections I will discuss different result-related
observations and make summary and conclusions.

2 Statistical arguments

Average understood as summation (divided by a constant) is under very general
assumptions subject to the central limit theorem. This can be used in numerical
computations for precision increase. Indeed, if several independent algorithms
for computing a quantity of interest exist, each of them having certain numerical
imprecision, one may average the results and get a smaller error. Depending
on circumstances, this procedure may be regarded as repeated unbiased inde-
pendent measurements with random errors and, for this scenario, the expected
shrinking of the error is

σ =

√∑N
i=1 σ

2
i

N
≈ σtypical

√
N

, (1)

where one expects the numerical errors of the various methods not to be very
different (all close to a typical value σtypical).

The question of algorithm independence arises. Clearly, if each algorithm
from a given set leads to the same result then the algorithms are, in the mathe-
matical sense, fully correlated. However, for what concerns numerical errors, a
different optics can be adopted: otherwise result-equivalent algorithms may dif-
fer a lot in the functions they use (and corresponding register operations) which
de-correlates their numerical uncertainties. It is reasonable to assume that the
numerical errors arise from technical details of the computer processing and do
not actually depend a lot on the global “idea” of a given algorithm. Therefore
one expects that algorithms which differ in “technical” sense provide practically
uncorrelated numerical errors of their results.

Unfortunately, in practice, one usually does not have many independent
methods to compute a given quantity. What is however often the case is a
biased parameter-dependent algorithm. The parameters allow to approximate
an ideal situation which is inaccessible via computers: a small (but finite) h can
be used as a step in ND or integration, a large (but finite) Λ lambda can be
used as a cutoff (approximating infinity). A natural idea arises: one may use
different (but reasonable) values for these parameters, compute for each value
the result and average the results1. Two issues can be addressed here: bias and
error correlations.

Obviously, any ND (as an example) with nonzero step h is biased and even if
infinite-precision computers were available the result would not be fully correct.
The overall “wrongness” thus has two components: numerical errors and bias.
Here an expectation can be made: if the averaging helps to shrink the numerical

1In other words, one considers two (otherwise identical) methods which differ in parameter
value as different methods

3



errors then one should tend to use, in the averaging approach, an algorithm (its
parameter values) with smaller bias2. In other words: the averaging cannot
remove the bias but does remove numerical effects and so one expects to get the
most precise results for less biased algorithm 3 compared to the bias leading to
the most precise results for a single (i.e. non-averaged) algorithm.

The correlation of uncertainties of results from the parameter-changing ap-
proach is something one can examine empirically. The case of ND studied in
this text shows that their mutual independence is large enough to provide sub-
stantial error reduction.

3 Numerical differentiation prescriptions

To make sure that the error shrinking by averaging is not limited to some specific
prescription, I propose to test it on three different differentiation prescriptions
(with an appropriately chosen h):

• Averaged finite difference (AFD)

f ′AFD(x, h) =
1

2

[
f (x+ h)− f (x)

h
+
f (x)− f (x− h)

h

]
,

=
f (x+ h)− f (x− h)

2h
.

• “Five-point rule” based on the Richardson extrapolation (RE, [2, 3])

f ′RE(x, h) =
f (x− 2h)− 8f (x− h) + 8f (x+ h)− f (x+ 2h)

12h
.

The implementation of the ND is in many common mathematical com-
puter packages based on the Richardson extrapolation.

• Lanczos differentiation by integration (LDI, [4])

f ′LDI(x, h) =
3

2h3

∫ x+h

x−h
(x− t) f (t) dt.

To evaluate the integral I use, in my programs, the composite Boole’s
rule [10] with 16 equidistant points {xi}i=16

i=1 , x1 = x − h, x16 = x + h,

2A typical value of a parameter is meant here. Of course, when averaging, parameter is
changed in each evaluation (by construction of the method).

3A set of less biased algorithms.
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xi+1 − xi = 4x∫ x+h

x−h
f (t) dt ≈ 24x (I1 + I2 + I3 + I4) /45,

I1 = 7 [f (x1) + f (x16)] ,

I2 = 32

i=7∑
i=1

f (x2i+1) ,

I3 = 14

i=3∑
i=1

f (x4i) ,

I4 = 12

i=3∑
i=0

f (x4i+2) .

Let me index these prescriptions by the letter k, kε {AFD, RE, LDI}. I imple-
ment the averaging procedure in the straightforward way

f ′AV
k (x) =

1

N

N∑
i=1

f ′k(x, hi), hiεH,

where the set H is chosen in function of the h used in the single algorithm
computation as follows:

• For AFD H = [0.5h, 1.5h] where two options are investigated

– hi is generated as a random number with uniform distribution from
the interval H (noted AFDAV

MC).

– successive values of hi are generated such as to be equidistant with
h1 = 0.5h and hN = 1.5h (noted AFDAV

ED).

• For RE and LDI H = [0.5h, 1.5h], where hi is generated as a random
number with uniform distribution from this interval (only this option is
investigated).

Use of random numbers seems to be a safer option if aiming uncorrelated errors,
yet regular division of the interval is tested also. For testing purposes I use a
program4 written in the JAVA programming language and double precision
variables.

4 Testing and results

To study the behavior of the averaging method in more details I make an effort
to examine it depending on the first and second derivatives of the function and

4The program can be, at least temporarily, downloaded from http://www.dthph.sav.sk/

fileadmin/user_upload/liptaj/differentiationAveraging.zip or requested from the au-
thor. I also greatly profited from the WxMaxima software.
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Case number Function x= |f ′ (x)| ≈ |f ′′ (x)| ≈
1 L7 (x) 9.683 19.88 0.0011
2 L7 (x) 11.2345 0.0031 28.57
3 L7 (x) 15.83 265.1 0.1534
4 L7 (x) 17.65 1.443 358.1
5 L7 (x) 15.8285 265.1 0.0026
6 L7 (x) 17.64595 0.0048 356.8
7 exp (x) −6.9 0.0010 0.0010
8 ln (x) 10 0.1 0.01
9 arctan (x) 6.245 0.0249 0.0078
10 cos (x) 1.47 0.9949 0.1006
11 cos (x) 0.1 0.0998 0.9950
12 cos (x) 0.0025 0.0024 0.9999
13 arctan (x) 0.002 0.9999 0.0039
14 ln (x) 0.03 33.33 1111.1
15 exp (x) 6.9 992.2 992.2
16 ln (x) 1.0 1.0 1.0
17 L7 (x) 9.67477 19.88 0.1000
18 L7 (x) 11.2311 0.1001 28.49
19 exp (x) 4.25 70.10 70.10

Table 1: Cases (points and functions) for which the averaging procedure was
tested.

on the step size5 h. The first quantity directly correlates with what is being
approximated (f ′), the two others (f ′′, h) are often related to the expected pre-
cision of the approximation. I do the analysis by scanning 6 orders of magnitude
for each “dependence” (its absolute value). For that purpose I choose 19 points
in the |f ′|, |f ′′| plane, trying, in the logarithmic scale, to map it more or less
uniformly. To avoid any fine-tuning suspicions I choose to use the basic ele-
mentary functions: cos (x), exp (x), ln (x) and arctan (x). However, with this
choice, it is impossible to “uniformly” cover the 10−3 > |f ′| , |f ′′| . 103 region.
Aiming this purpose, I add a suitable polynomial: the Laguerre polynomial
L7 (x). Situation is summarized in Tab 1 and in Fig. 1. From now on I will use
the word “case” to refer to any of the 19 settings, each of them characterized
by a function f , its argument x and the absolute value of its first and second
derivatives at x. I will stick to the numbering presented in Tab. 1.

The step size h is changed from h = 10−3 to h = 10−8 in geometrical
progression with factor 10. One needs also to define the size of the statistical
sample. To profit most from the averaging method a big number is suitable; I
fix it to N = 106. This choice is driven also by practical considerations, i.e. the
wish to keep the computer processing time in reasonable limits (∼ minutes).

5For averaging method the average step value is meant here, individuals step values go
from 0.5h to 1.5h.
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Figure 1: Studied cases depicted in |f ′| , |f ′′|the plane.

The error is shown as absolute error∣∣f ′approximated − f ′true
∣∣ , (2)

where for f ′true the numerical value of the corresponding (known) derivative
function is taken.

To prevent long listings within the main text, I put the tables with detailed
results in Attachment. Each table corresponds to a single case and is differential
in the step size and used prescription/method. Here, I average these tables (i.e.
I average each cell over 19 cases), which might be somewhat artificial but has
more message-conveying power.

Case-averaged results
h 10−3 10−4 10−5

AFD 2.0× 10−3 2.0× 10−5 1.8× 10−7

AFDAV
MC 2.2× 10−3 2.2× 10−5 2.2× 10−7

AFDAV
ED 1.2× 10−3 1.2× 10−5 1.2× 10−7

RE 6.9× 10−9 7.6× 10−9 7.1× 10−8

REAV 1.1× 10−8 6.0× 10−12 4.2× 10−11

LDI 1.2× 10−3 1.4× 10−5 7.2× 10−4

LDIAV 1.3× 10−3 1.3× 10−5 4.4× 10−7
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Case-averaged results
h 10−6 10−7 10−8

AFD 3.0× 10−7 1.8× 10−6 6.3× 10−2

AFDAV
MC 2.3× 10−9 3.1× 10−9 5.1× 10−5

AFDAV
ED 1.7× 10−9 1.6× 10−9 1.0× 10−6

RE 4.3× 10−7 2.4× 10−6 9.4× 10−2

REAV 7.1× 10−10 1.0× 10−9 4.0× 10−5

LDI 7.2× 10−2 5.5× 100 1.2× 107

LDIAV 9.3× 10−5 5.1× 10−3 8.0× 103

5 Discussion

Results confirm that the averaging method is very efficient in providing precise
numerical derivative and reducing related errors. The overall error reduction (in
absolute error) typically corresponds to two or three orders of magnitude6 (when
comparing the most precise results). Besides the obvious fact of reducing the
error by increasing statistics7, the assumptions concerning method functioning
are further confirmed by the behavior with respect to h: as predicted earlier
(Sec. 1) the most precise results of the averaging method typically happen for
smaller step h than is h which corresponds to the most precise result of the
same, but non-averaged prescription. Rather numerous are situations where h
remains the same, rare are exceptions where the behavior is opposite (RE in
case 12 and AFDAV

MC in case 16). Rather amazing are results for REAV in cases
13 and 14 where, within the computer precision, exact results are reconstructed.

When comparing AFDAV
MC and AFDAV

ED approaches, one observes that their
performances are rather equivalent. Yet, the “equidistant” method performs
somewhat better which is little bit surprising: one can imagine that a regular
division could introduce some correlation into the numbers to be averaged and
thus slightly spoil the results. One can speculate that this behavior could be
related to what is know from quasi-Monte Carlo methods: random numbers are
often distributed quite unevenly, i.e. the “low-discrepancy” of the equidistant
method may be the reason for it to win. It might certainly be a good idea for
further studies to use, within the averaging method, low-discrepancy sequences.

The results also show that the averaging method can be combined with
any of the three proposed prescriptions, which points once more to the general
statistical aspects of the method. One may notice that the three prescriptions
differ quite not only in the definition but also in the optimal step size h. The
most precise of them is clearly the one based on the Richardson extrapolation.

6One may notice that this error reduction roughly corresponds to what is predicted by
the formula (1). It gives additional hint in favor of the expected ”modus operandi” of the
averaging method.

7Non-averaged results can be seen as averaged results with statistics equal to one.
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Finally, one needs to remark that for the LDI prescription in cases 14 and 16
the averaging method fails. I cannot think about a solid explanation, it might
by a random accident or it might be somehow related to the LDI itself. At least
in the case 14 the non-averaged result it atypically precise for this prescription,
which might be interpreted as a ”luck”. In case 16 the difference between results
is small, making the averaging failure not to be so ”pronounced”. In any case I
want to stress that, despite these two observations, the averaging method works
in general very well also for the LDI algorithm.

6 Summary and conclusion

In this text I made a numerical study of the averaging method applied to the ND.
A rigorous approach to the whole idea would require a rigorous treatment of the
floating-point arithmetic in computer registers. If possible, such an approach
would certainly be very tedious with many assumptions and special cases. I
believe the presented numerical evidence is strong enough to make claims about
the method and its mechanism. The method is efficient and provides an impor-
tant precision increase. It is very general and robust because of its statistical
character. It should be used in situations where precision is the priority, its main
drawback, slowness, makes it not suitable for quick computations. With lack
of any more accurate approach to be found in literature, one can claim that
the averaging method, when combined with a “standard” high precision pre-
scription, is, in the context of fixed machine epsilon, the most precise numerical
differentiation method at the market today.
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Appendix

The following tables give detailed results for cases mentioned in Tab 1. In
each table the step h is varied from 10−3 to 10−8 in columns, in rows different
prescriptions/methods are presented (notation from Sec. 3 is used). Individual
cells contain absolute error (formula 2), the most precise of them is, for each
method, shown in bold characters.
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Case number: 1
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.1× 10−4 2.1× 10−6 4.9× 10−9 2.1× 10−7 1.2× 10−6 9.5× 10−5

AFDAV
MC 2.2× 10−4 2.2× 10−6 2.2× 10−8 2.3× 10−10 1.8× 10−9 6.4× 10−8

AFDAV
ED 1.2× 10−4 1.2× 10−6 1.2× 10−8 3.9× 10−10 5.2× 10−10 2.1× 10−9

RE 1.5× 10−10 4.4× 10−10 2.3× 10−8 2.9× 10−7 1.9× 10−6 1.5× 10−4

REAV 5.0× 10−11 1.7× 10−12 1.2× 10−11 2.9× 10−10 7.8× 10−11 9.4× 10−8

LDI 1.2× 10−4 8.4× 10−7 2.6× 10−5 2.6× 10−3 1.3× 10−1 2.6× 104

LDIAV 1.3× 10−4 1.3× 10−6 2.8× 10−8 8.4× 10−6 5.5× 10−4 1.1× 101

Case number: 2
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 3.9× 10−4 3.9× 10−6 1.7× 10−8 3.4× 10−7 1.8× 10−6 4.8× 10−4

AFDAV
MC 4.2× 10−4 4.2× 10−6 4.2× 10−8 4.5× 10−10 2.1× 10−9 4.7× 10−7

AFDAV
ED 2.3× 10−4 2.3× 10−6 2.3× 10−8 4.0× 10−10 6.0× 10−10 1.8× 10−9

RE 2.2× 10−9 4.4× 10−10 3.0× 10−8 4.1× 10−7 2.2× 10−6 7.2× 10−4

REAV 2.8× 10−9 7.0× 10−12 9.5× 10−12 4.8× 10−10 2.8× 10−9 2.7× 10−7

LDI 2.3× 10−4 1.6× 10−6 4.9× 10−5 4.9× 10−3 2.4× 10−1 1.2× 105

LDIAV 2.5× 10−4 2.5× 10−6 1.4× 10−7 5.5× 10−6 4.9× 10−4 2.6× 100
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Case number: 3
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.7× 10−3 1.7× 10−5 9.6× 10−8 2.5× 10−7 1.1× 10−6 4.6× 10−2

AFDAV
MC 1.8× 10−3 1.8× 10−5 1.8× 10−7 1.3× 10−9 2.3× 10−8 2.2× 10−5

AFDAV
ED 9.8× 10−4 9.8× 10−6 9.8× 10−8 5.5× 10−9 1.4× 10−8 7.4× 10−7

RE 1.1× 10−8 6.3× 10−9 1.0× 10−7 4.8× 10−7 5.1× 10−7 6.9× 10−2

REAV 1.8× 10−8 2.0× 10−11 1.2× 10−10 4.1× 10−9 1.9× 10−9 6.4× 10−5

LDI 1.0× 10−3 1.1× 10−6 6.0× 10−4 6.0× 10−2 3.0× 100 1.2× 107

LDIAV 1.1× 10−3 1.1× 10−5 6.2× 10−7 4.6× 10−5 6.5× 10−3 1.0× 104

Case number: 4
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.3× 10−3 5.3× 10−5 1.1× 10−7 2.6× 10−6 1.9× 10−5 5.4× 10−1

AFDAV
MC 5.7× 10−3 5.7× 10−5 5.7× 10−7 4.9× 10−9 1.7× 10−8 6.3× 10−4

AFDAV
ED 3.1× 10−3 3.1× 10−5 3.1× 10−7 2.3× 10−10 9.7× 10−10 9.0× 10−6

RE 2.1× 10−8 8.7× 10−8 6.2× 10−7 3.8× 10−6 2.7× 10−5 8.0× 10−1

REAV 2.7× 10−8 1.8× 10−11 3.4× 10−10 1.7× 10−9 4.0× 10−9 5.7× 10−5

LDI 3.2× 10−3 2.2× 10−5 9.6× 10−4 9.6× 10−2 9.6× 100 9.9× 107

LDIAV 3.4× 10−3 3.4× 10−5 1.7× 10−6 7.1× 10−4 1.9× 10−2 6.5× 104
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Case number: 5
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.7× 10−3 1.7× 10−5 5.2× 10−8 2.1× 10−7 5.8× 10−6 4.7× 10−2

AFDAV
MC 1.8× 10−3 1.8× 10−5 1.8× 10−7 2.2× 10−9 6.7× 10−9 6.0× 10−5

AFDAV
ED 9.8× 10−4 9.8× 10−6 9.8× 10−8 2.4× 10−9 5.7× 10−9 1.4× 10−7

RE 9.2× 10−9 7.9× 10−9 1.6× 10−7 4.5× 10−7 5.9× 10−6 6.9× 10−2

REAV 1.8× 10−8 1.9× 10−11 3.3× 10−11 1.3× 10−9 4.3× 10−9 3.1× 10−5

LDI 1.0× 10−3 1.1× 10−6 6.0× 10−4 6.0× 10−2 3.0× 100 1.2× 107

LDIAV 1.1× 10−3 1.1× 10−5 2.0× 10−7 3.5× 10−5 2.2× 10−3 1.0× 104

Case number: 6
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.3× 10−3 5.3× 10−5 7.7× 10−7 1.5× 10−6 1.6× 10−6 5.6× 10−1

AFDAV
MC 5.7× 10−3 5.7× 10−5 5.7× 10−7 7.4× 10−9 2.2× 10−9 2.7× 10−4

AFDAV
ED 3.1× 10−3 3.1× 10−5 3.1× 10−7 8.9× 10−9 5.7× 10−9 8.9× 10−6

RE 1.7× 10−8 3.3× 10−8 3.3× 10−7 1.9× 10−6 2.0× 10−6 8.4× 10−1

REAV 2.7× 10−8 3.0× 10−11 2.1× 10−10 4.8× 10−9 1.2× 10−9 6.0× 10−4

LDI 3.2× 10−3 2.2× 10−5 9.6× 10−4 9.6× 10−2 9.6× 100 9.8× 107

LDIAV 3.4× 10−3 3.4× 10−5 2.0× 10−6 2.8× 10−4 6.2× 10−2 6.7× 104
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Case number: 7
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.1× 10−2 2.1× 10−4 2.1× 10−6 2.5× 10−7 1.1× 10−7 3.7× 10−12

AFDAV
MC 2.3× 10−2 2.3× 10−4 2.3× 10−6 2.2× 10−8 6.6× 10−10 5.0× 10−15

AFDAV
ED 1.2× 10−2 1.2× 10−4 1.2× 10−6 1.2× 10−8 9.6× 10−10 6.2× 10−17

RE 3.1× 10−8 4.0× 10−9 2.4× 10−8 4.0× 10−7 8.0× 10−7 5.6× 10−12

REAV 4.7× 10−8 2.7× 10−12 1.5× 10−11 2.8× 10−10 1.8× 10−9 4.2× 10−15

LDI 1.3× 10−2 2.0× 10−4 1.0× 10−2 1.0× 100 7.8× 101 2.7× 10−4

LDIAV 1.4× 10−2 1.4× 10−4 3.5× 10−6 6.5× 10−4 4.0× 10−3 3.3× 10−7

Case number: 8
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.5× 10−4 2.5× 10−6 4.8× 10−8 2.2× 10−7 7.6× 10−8 1.3× 10−4

AFDAV
MC 2.7× 10−4 2.7× 10−6 2.7× 10−8 2.4× 10−10 1.3× 10−9 7.7× 10−8

AFDAV
ED 1.5× 10−4 1.5× 10−6 1.5× 10−8 7.2× 10−11 8.6× 10−11 3.7× 10−10

RE 2.7× 10−10 5.1× 10−10 2.7× 10−8 3.1× 10−7 1.6× 10−7 1.9× 10−4

REAV 5.0× 10−10 2.0× 10−12 1.2× 10−11 2.6× 10−11 4.2× 10−10 1.4× 10−7

LDI 1.5× 10−4 1.0× 10−6 3.3× 10−5 3.3× 10−3 1.6× 10−1 3.5× 104

LDIAV 1.6× 10−4 1.6× 10−6 6.9× 10−8 8.7× 10−6 7.1× 10−4 1.7× 101
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Case number: 9
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 8.6× 10−5 8.6× 10−7 8.5× 10−9 3.0× 10−9 2.7× 10−8 1.3× 10−6

AFDAV
MC 9.3× 10−5 9.3× 10−7 9.3× 10−9 7.0× 10−11 1.1× 10−10 3.8× 10−10

AFDAV
ED 5.0× 10−5 5.0× 10−7 5.0× 10−9 3.3× 10−11 4.3× 10−11 1.3× 10−10

RE 1.1× 10−9 7.6× 10−11 2.0× 10−10 6.2× 10−9 4.2× 10−8 1.7× 10−6

REAV 1.6× 10−9 1.9× 10−13 1.9× 10−13 2.2× 10−11 1.7× 10−10 1.3× 10−9

LDI 5.2× 10−5 5.6× 10−7 5.5× 10−6 5.5× 10−4 4.1× 10−2 1.4× 102

LDIAV 5.6× 10−5 5.6× 10−7 7.1× 10−9 2.8× 10−7 1.3× 10−6 6.7× 10−1

Case number: 10
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 4.5× 10−5 4.5× 10−7 4.5× 10−9 1.1× 10−10 6.7× 10−10 1.4× 10−10

AFDAV
MC 4.9× 10−5 4.9× 10−7 4.9× 10−9 4.9× 10−11 2.6× 10−12 6.1× 10−12

AFDAV
ED 2.7× 10−5 2.7× 10−7 2.7× 10−9 2.7× 10−11 1.8× 10−13 2.9× 10−13

RE 3.9× 10−9 4.0× 10−12 4.1× 10−12 2.1× 10−10 1.4× 10−9 6.0× 10−10

REAV 5.9× 10−9 5.8× 10−13 1.7× 10−14 2.5× 10−13 2.0× 10−12 1.2× 10−12

LDI 2.7× 10−5 2.7× 10−7 4.1× 10−8 7.6× 10−6 1.1× 10−3 8.7× 10−1

LDIAV 3.0× 10−5 3.0× 10−7 2.7× 10−9 2.6× 10−8 1.7× 10−6 1.0× 10−3
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Case number: 11
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.3× 10−4 5.3× 10−6 5.3× 10−8 5.2× 10−10 6.6× 10−11 3.9× 10−11

AFDAV
MC 5.7× 10−4 5.7× 10−6 5.7× 10−8 5.7× 10−10 5.7× 10−12 3.6× 10−13

AFDAV
ED 3.1× 10−4 3.1× 10−6 3.1× 10−8 3.1× 10−10 3.1× 10−12 5.1× 10−15

RE 6.8× 10−9 7.0× 10−13 5.8× 10−13 2.2× 10−12 6.6× 10−11 4.1× 10−10

REAV 1.0× 10−8 1.0× 10−12 8.9× 10−16 3.6× 10−15 4.5× 10−14 1.4× 10−13

LDI 3.2× 10−4 3.2× 10−6 3.3× 10−8 5.0× 10−7 3.3× 10−5 1.8× 10−2

LDIAV 3.4× 10−4 3.4× 10−6 3.4× 10−8 2.2× 10−10 3.7× 10−8 3.6× 10−6

Case number: 12
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.8× 10−4 5.8× 10−6 5.8× 10−8 5.8× 10−10 7.8× 10−12 4.3× 10−10

AFDAV
MC 6.3× 10−4 6.3× 10−6 6.3× 10−8 6.3× 10−10 6.3× 10−12 2.8× 10−13

AFDAV
ED 3.4× 10−4 3.4× 10−6 3.4× 10−8 3.4× 10−10 3.4× 10−12 8.0× 10−14

RE 7.0× 10−9 7.6× 10−13 5.4× 10−13 4.8× 10−13 4.5× 10−11 6.1× 10−10

REAV 1.1× 10−8 1.1× 10−12 1.8× 10−15 5.3× 10−15 9.8× 10−15 7.0× 10−13

LDI 3.5× 10−4 3.5× 10−6 3.5× 10−8 1.3× 10−8 2.6× 10−6 1.3× 10−4

LDIAV 3.8× 10−4 3.8× 10−6 3.8× 10−8 4.3× 10−10 4.4× 10−9 3.8× 10−7
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Case number: 13
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.8× 10−4 5.8× 10−6 5.8× 10−8 5.8× 10−10 8.6× 10−11 3.7× 10−11

AFDAV
MC 6.3× 10−4 6.3× 10−6 6.3× 10−8 6.3× 10−10 6.4× 10−12 7.6× 10−13

AFDAV
ED 3.4× 10−4 3.4× 10−6 3.4× 10−8 3.4× 10−10 3.4× 10−12 4.3× 10−14

RE 7.0× 10−9 7.1× 10−13 2.7× 10−13 8.4× 10−13 7.7× 10−11 2.2× 10−10

REAV 1.1× 10−8 1.1× 10−12 0.0× 100 1.3× 10−14 3.8× 10−14 7.7× 10−14

LDI 3.5× 10−4 3.5× 10−6 3.5× 10−8 1.3× 10−8 2.6× 10−6 1.3× 10−4

LDIAV 3.8× 10−4 3.8× 10−6 3.8× 10−8 3.9× 10−10 2.1× 10−9 7.2× 10−7

Case number: 14
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 5.7× 10−4 5.7× 10−6 5.7× 10−8 5.6× 10−10 1.9× 10−11 3.0× 10−11

AFDAV
MC 6.1× 10−4 6.1× 10−6 6.1× 10−8 6.1× 10−10 6.2× 10−12 5.1× 10−13

AFDAV
ED 3.3× 10−4 3.3× 10−6 3.3× 10−8 3.3× 10−10 3.3× 10−12 4.9× 10−14

RE 6.9× 10−9 6.3× 10−13 2.5× 10−14 3.5× 10−12 1.0× 10−11 3.0× 10−11

REAV 1.0× 10−8 1.0× 10−12 0.0× 100 2.7× 10−15 2.7× 10−14 1.2× 10−12

LDI 3.4× 10−4 3.4× 10−6 3.6× 10−8 2.5× 10−7 2.0× 10−11 1.1× 10−3

LDIAV 3.7× 10−4 3.7× 10−6 3.7× 10−8 2.1× 10−10 6.2× 10−9 4.8× 10−6
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Case number: 15
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 7.7× 10−5 7.7× 10−7 4.9× 10−9 3.1× 10−9 1.0× 10−7 2.6× 10−6

AFDAV
MC 8.3× 10−5 8.3× 10−7 8.3× 10−9 4.7× 10−11 7.6× 10−11 3.6× 10−9

AFDAV
ED 4.5× 10−5 4.5× 10−7 4.5× 10−9 6.5× 10−11 2.1× 10−10 6.5× 10−11

RE 1.1× 10−9 2.2× 10−10 4.1× 10−9 4.5× 10−9 9.9× 10−8 3.9× 10−6

REAV 1.8× 10−9 3.8× 10−13 1.6× 10−12 9.6× 10−12 4.8× 10−10 1.4× 10−9

LDI 4.6× 10−5 5.1× 10−7 6.7× 10−6 6.7× 10−4 5.1× 10−2 2.6× 102

LDIAV 5.0× 10−5 5.0× 10−7 8.6× 10−10 3.7× 10−7 2.8× 10−5 1.1× 100

Case number: 16
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.6× 10−4 1.6× 10−6 1.6× 10−8 1.3× 10−10 1.2× 10−10 5.9× 10−11

AFDAV
MC 1.7× 10−4 1.7× 10−6 1.7× 10−8 1.7× 10−10 6.7× 10−13 1.4× 10−12

AFDAV
ED 9.1× 10−5 9.1× 10−7 9.1× 10−9 9.1× 10−11 1.1× 10−12 2.4× 10−13

RE 4.8× 10−9 1.1× 10−12 5.8× 10−12 3.8× 10−11 3.0× 10−10 1.2× 10−9

REAV 7.3× 10−9 7.3× 10−13 1.8× 10−14 1.2× 10−13 2.8× 10−13 1.1× 10−13

LDI 9.4× 10−5 9.4× 10−7 6.7× 10−9 3.4× 10−7 2.0× 10−5 4.4× 10−2

LDIAV 1.0× 10−4 1.0× 10−6 9.9× 10−9 2.3× 10−8 2.4× 10−6 1.6× 10−2
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Case number: 17
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 2.0× 10−4 2.0× 10−6 2.7× 10−8 1.8× 10−8 2.0× 10−6 1.0× 10−4

AFDAV
MC 2.2× 10−4 2.2× 10−6 2.2× 10−8 2.4× 10−10 1.2× 10−9 6.9× 10−10

AFDAV
ED 1.2× 10−4 1.2× 10−6 1.2× 10−8 1.3× 10−10 2.5× 10−10 5.1× 10−7

RE 1.8× 10−10 7.8× 10−10 1.0× 10−8 3.0× 10−8 2.2× 10−6 1.4× 10−4

REAV 3.9× 10−11 1.3× 10−12 2.2× 10−11 2.8× 10−10 2.2× 10−9 6.7× 10−8

LDI 1.2× 10−4 8.3× 10−7 2.6× 10−5 2.6× 10−3 1.3× 10−1 2.5× 104

LDIAV 1.3× 10−4 1.3× 10−6 1.7× 10−8 2.7× 10−7 1.2× 10−4 3.6× 101

Case number: 18
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 3.9× 10−4 3.9× 10−6 2.9× 10−8 2.6× 10−8 1.4× 10−6 4.8× 10−4

AFDAV
MC 4.2× 10−4 4.2× 10−6 4.2× 10−8 8.5× 10−10 2.5× 10−9 7.0× 10−7

AFDAV
ED 2.3× 10−4 2.3× 10−6 2.3× 10−8 1.6× 10−10 2.4× 10−9 9.8× 10−9

RE 1.8× 10−9 3.2× 10−9 1.7× 10−8 6.3× 10−8 1.9× 10−6 6.8× 10−4

REAV 2.7× 10−9 7.1× 10−12 3.4× 10−11 1.4× 10−10 8.6× 10−11 1.1× 10−6

LDI 2.3× 10−4 1.6× 10−6 4.9× 10−5 4.9× 10−3 2.4× 10−1 1.2× 105

LDIAV 2.5× 10−4 2.5× 10−6 3.7× 10−8 1.6× 10−5 3.0× 10−5 2.1× 102
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Case number: 19
h 10−3 10−4 10−5 10−6 10−7 10−8

AFD 1.0× 10−6 1.0× 10−8 7.6× 10−10 2.7× 10−9 1.6× 10−8 1.9× 10−7

AFDAV
MC 1.1× 10−6 1.1× 10−8 1.1× 10−10 1.5× 10−12 5.7× 10−11 2.2× 10−10

AFDAV
ED 5.8× 10−7 5.8× 10−9 5.8× 10−11 3.8× 10−12 2.9× 10−11 3.0× 10−12

RE 9.0× 10−11 6.3× 10−11 8.2× 10−10 3.6× 10−9 1.8× 10−8 2.8× 10−7

REAV 1.4× 10−10 4.3× 10−14 8.0× 10−13 1.3× 10−12 4.2× 10−11 2.2× 10−10

LDI 6.0× 10−7 1.7× 10−8 1.5× 10−6 1.5× 10−4 1.1× 10−2 1.9× 101

LDIAV 6.5× 10−7 6.5× 10−9 4.1× 10−10 4.1× 10−8 1.3× 10−5 8.0× 10−2
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